1
|
Hu J, Li Y, Xie X, Song Y, Yan W, Luo Y, Jiang Y. The therapeutic potential of andrographolide in cancer treatment. Biomed Pharmacother 2024; 180:117438. [PMID: 39298908 DOI: 10.1016/j.biopha.2024.117438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Cancer poses a substantial global health challenge, necessitating the widespread use of chemotherapy and radiotherapy. Despite these efforts, issues like resistance development and severe side effects remain. As such, the search for more effective alternatives is critical. Andrographolide, a naturally occurring compound, has recently gained attention for its extensive biological activities. This review explores the role of andrographolide in cancer therapy, especially focusing on the molecular mechanisms that drive its anti-tumor properties. It also examines innovative methods to enhance andrographolide's bioavailability, thus boosting its effectiveness against cancer. Notably, andrographolide has potential for use in combination with various clinical drugs, and both preclinical and clinical studies provide strong evidence supporting its broader anticancer applications. Additionally, this paper proposes future research directions for andrographolide's anti-cancer effects and discusses the challenges in its clinical usage along with current research efforts to address these issues. In summary, this review underscores andrographolide's potential roles and contributes to the development of improved cancer treatment strategies.
Collapse
Affiliation(s)
- Jiaxuan Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Yi Li
- Department of Anesthesiology, Ganzhou Key Laboratory of Anesthesiology, Ganzhou Key Laboratory of Osteoporosis Research, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xin Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Yunlei Song
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Wenjing Yan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Yan Luo
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Yumao Jiang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
2
|
Feng Y, Pan M, Li R, He W, Chen Y, Xu S, Chen H, Xu H, Lin Y. Recent developments and new directions in the use of natural products for the treatment of inflammatory bowel disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155812. [PMID: 38905845 DOI: 10.1016/j.phymed.2024.155812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/13/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) represents a significant global health challenge, and there is an urgent need to explore novel therapeutic interventions. Natural products have demonstrated highly promising effectiveness in the treatment of IBD. PURPOSE This study systematically reviews the latest research advancements in leveraging natural products for IBD treatment. METHODS This manuscript strictly adheres to the PRISMA guidelines. Relevant literature on the effects of natural products on IBD was retrieved from the PubMed, Web of Science and Cochrane Library databases using the search terms "natural product," "inflammatory bowel disease," "colitis," "metagenomics", "target identification", "drug delivery systems", "polyphenols," "alkaloids," "terpenoids," and so on. The retrieved data were then systematically summarized and reviewed. RESULTS This review assessed the different effects of various natural products, such as polyphenols, alkaloids, terpenoids, quinones, and others, in the treatment of IBD. While these natural products offer promising avenues for IBD management, they also face challenges in terms of clinical translation and drug discovery. The advent of metagenomics, single-cell sequencing, target identification techniques, drug delivery systems, and other cutting-edge technologies heralds a new era in overcoming these challenges. CONCLUSION This paper provides an overview of current research progress in utilizing natural products for the treatment of IBD, exploring how contemporary technological innovations can aid in discovering and harnessing bioactive natural products for the treatment of IBD.
Collapse
Affiliation(s)
- Yaqian Feng
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Mengting Pan
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Ruiqiong Li
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Weishen He
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yangyang Chen
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Shaohua Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Hui Chen
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, China.
| | - Huilong Xu
- Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Yao Lin
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| |
Collapse
|
3
|
Yuan W, Ji G, Shi X, Sun Z, Liu C, Yu Y, Li W, Wang X, Hu H. The male reproductive toxicity after 5-Fluorouracil exposure: DNA damage, oxidative stress, and mitochondrial dysfunction in vitro and in vivo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116465. [PMID: 38749198 DOI: 10.1016/j.ecoenv.2024.116465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/07/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024]
Abstract
5-Fluorouracil (5-FU), a chemotherapeutic drug used to treat a variety of cancers, can enter the environment through different routes, causing serious public health and environmental concerns. It has been reported that 5-FU exposure adversely affects male reproductive function, and its effects on this system cannot be avoided. In this study, using western blotting and quantitative polymerase chain reaction studies, we found that 5-FU promoted testicular injury by inducing oxidative stress, which was accompanied by the inhibition of nuclear factor erythroid 2-related factor 2/antioxidant response element signaling. Accumulation of reactive oxygen species (ROS) aggravated 5-FU-mediated mitochondrial dysfunction and apoptosis in murine cell lines and testes, indicating oxidative stress and mitochondrial-dependent apoptotic signaling play crucial roles in the damage of spermatogenic cells caused. N-Acetyl-L-cysteine, an antioxidant that scavenges intracellular ROS, protected spermatogenic cells from 5-FU-induced oxidative damage and mitochondrial dysfunction, revealing the important role of ROS in testicular dysfunction caused by 5-FU. We found that 5-FU exposure induces testicular cell apoptosis through ROS-mediated mitochondria pathway in mice. In summary, our findings revealed the reproductive toxicological effect of 5-FU on mice and its mechanism, provided basic data reference for adverse ecological and human health outcomes associated with 5-FU contamination or poisoning.
Collapse
Affiliation(s)
- Wenzheng Yuan
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Guojie Ji
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Xiaowei Shi
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Zhibin Sun
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Chenyan Liu
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Yangyang Yu
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Wenmi Li
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Xiaoyi Wang
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Huanhuan Hu
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China.
| |
Collapse
|
4
|
Liu S, Liu J, Su N, Wei S, Xie N, Li X, Xie S, Liu J, Zhang B, Li W, Tan S. An Integrated Network Pharmacology and RNA-seq Approach for Exploring the Protective Effect of Andrographolide in Doxorubicin-Induced Cardiotoxicity. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07555-3. [PMID: 38400848 DOI: 10.1007/s10557-024-07555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/26/2024]
Abstract
PURPOSE Doxorubicin (Dox) is clinically limited due to its dose-dependent cardiotoxicity. Andrographolide (Andro) has been confirmed to exert cardiovascular protective activities. This study aimed to investigate protective effects of Andro in Dox-induced cardiotoxicity (DIC). METHODS The cardiotoxicity models were induced by Dox in vitro and in vivo. The viability and apoptosis of H9c2 cells and the myocardial function of c57BL/6 mice were accessed with and without Andro pretreatment. Network pharmacology and RNA-seq were employed to explore the mechanism of Andro in DIC. The protein levels of Bax, Bcl2, NLRP3, Caspase-1 p20, and IL-1β were qualified as well. RESULTS In vitro, Dox facilitated the downregulation of cell viability and upregulation of cell apoptosis, after Andro pretreatment, the above symptoms were remarkably reversed. In vivo, Andro could alleviate Dox-induced cardiac dysfunction and apoptosis, manifesting elevation of LVPWs, LVPWd, EF% and FS%, suppression of CK, CK-MB, c-Tnl and LDH, and inhibition of TUNEL-positive cells. Using network pharmacology, we collected and visualized 108 co-targets of Andro and DIC, which were associated with apoptosis, PI3K-AKT signaling pathway, and others. RNA-seq identified 276 differentially expressed genes, which were enriched in response to oxidative stress, protein phosphorylation, and others. Both network pharmacology and RNA-seq analysis identified Tap1 and Timp1 as key targets of Andro in DIC. RT-QPCR validation confirmed that the mRNA levels of Tap1 and Timp1 were consistent with the sequenced results. Moreover, the high expression of NLRP3, Caspase-1 p20, and IL-1β in the Dox group was reduced by Andro. CONCLUSIONS Andro could attenuate DIC through suppression of Tap1 and Timp1 and inhibition of NLRP3 inflammasome activation, serving as a promising cardioprotective drug.
Collapse
Affiliation(s)
- Sa Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Jiaqin Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Nan Su
- Department of Ophthalmology, the First People's Hospital of Lanzhou City, Lanzhou, 730050, Gansu Province, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Ning Xie
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha, 410013, China
| | - Xiangyun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Suifen Xie
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Jian Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Shengyu Tan
- Department of Gerontology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
5
|
Tang D, Qiu R, Qiu X, Sun M, Su M, Tao Z, Zhang L, Tao S. Dietary restriction rescues 5-fluorouracil-induced lethal intestinal toxicity in old mice by blocking translocation of opportunistic pathogens. Gut Microbes 2024; 16:2355693. [PMID: 38780487 PMCID: PMC11123560 DOI: 10.1080/19490976.2024.2355693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Chemotherapy remains a major treatment for malignant tumors, yet the application of standard dose intensity chemotherapy is limited due to the side effects of cytotoxic drugs, especially in old populations. The underlying mechanisms of cytotoxicity and strategies to increase the safety and tolerance of chemotherapy remain to be explored. Using 5-fluorouracil (5-FU), a cornerstone chemotherapeutic drug, we demonstrate that the main cause of death in ad libitum (AL) fed mice after 5-FU chemotherapy was infection caused by translocation of intestinal opportunistic pathogens. We show that these opportunistic pathogens greatly increase in the intestine after chemotherapy, which was closely related to loss of intestinal lysozyme. Of note, two weeks of dietary restriction (DR) prior to chemotherapy significantly protected the loss of lysozyme and increased the content of the beneficial Lactobacillus genera, resulting in a substantial inhibition of intestinal opportunistic pathogens and their translocation. The rescue effect of DR could be mimicked by Lysozyme or Lactobacillus gavage. Our study provides the first evidence that DR achieved a comprehensive protection of the intestinal physical, biological and chemical barriers, which significantly improved the overall survival of 5-FU-treated mice. Importantly, the above findings were more prominent in old mice. Furthermore, we show that patients over 65 years old have enriched opportunistic pathogens in their gut microbiota, especially after 5-FU based chemotherapy. Our study reveals important mechanisms for the poor chemotherapy tolerance of the elderly population, which can be significantly improved by short-term DR. This study generates new insights into methods for improving the chemotherapeutic prognosis by increasing the chemotherapy tolerance and safety of patients with malignant tumors.
Collapse
Affiliation(s)
- Duozhuang Tang
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Rongrong Qiu
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xingxing Qiu
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Man Sun
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Mingyue Su
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhendong Tao
- Department of Medical Laboratory Medicine, Jiangxi Province Hospital of Integrated Chinese & Western Medicine, Nanchang, Jiangxi, China
| | - Liu Zhang
- Intensive Care Unit, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Si Tao
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Alipanah-Moghadam R, Khodaei M, Aghamohammadi V, Malekzadeh V, Afrouz M, Nemati A, Zahedian H. Andrographolide induced heme oxygenase-1 expression in MSC-like cells isolated from rat bone marrow exposed to environmental stress. Biochem Biophys Res Commun 2023; 687:149212. [PMID: 37944470 DOI: 10.1016/j.bbrc.2023.149212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Mesenchymal stem cells (MSC-like cells) are the most important stem cells that are used in transplantation clinically in various applications. The survival rate of MSC-like cells is strongly reduced due to adverse conditions in the microenvironment of transplantation, including environmental stress. Heme oxygenase-1 (HO-1) is a member of the heat shock protein, as well as a stress-induced enzyme, present throughout the body. The present study was conducted to investigate the effect of andrographolide, an active derivative from andrographolide paniculate, on HO-1 expression in mesenchymal stem cells derived from rat bone marrow. MATERIALS AND METHODS The rat bone marrow-derived mesenchymal stem cells (BMSC-like cells) were extracted and proliferated in several passages. The identity of MSC-like cells was confirmed by morphological observations and differential tests. The flow cytometry method was used to verify the MSC-specific markers. Isolated MSC-like cells were treated with different concentrations of andrographolide and then exposed to environmental stress. Cell viability was assessed using the MTT colorimetric assay. A real-time PCR technique was employed to evaluate the expression level of HO-1 in the treated MSC-like cells. RESULTS Isolated MSC-like cells demonstrated fibroblast-like morphology. These cells in different culture mediums differentiated into osteocytes and adipocytes and were identified using alizarin red and oil red staining, respectively. As well, MSC-like cells were verified by the detection of CD105 surface antigen and the absence of CD14 and CD45 antigens. The results of the MTT assay showed that the pre-treatment of MSC-like cells with andrographolide concentration independently increased the viability and resistance of these cells to environmental stress caused by hydrogen peroxide and serum deprivation (SD). Real-time PCR findings indicated a significant increase in HO-1 gene expression in the andrographolide-receiving groups (p < 0.01). CONCLUSION Our results suggest that andrographolide creates a promising strategy for enhancing the quality of cell therapy by increasing the resistance of MSC-like cells to environmental stress and inducing the expression of HO-1.
Collapse
Affiliation(s)
- Reza Alipanah-Moghadam
- Department of Clinical Biochemistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maryam Khodaei
- Department of Clinical Biochemistry, Ardabil University of Medical Sciences, Ardabil, Iran.
| | | | - Vadoud Malekzadeh
- Department of Anatomical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mehdi Afrouz
- Department of Plant Production and Genetics, University of Mohaghegh Ardabili, Iran.
| | - Ali Nemati
- Department of Clinical Biochemistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hoda Zahedian
- Department of Deutsch-Sprachen, Volkshochschule, Gütersloh, Germany
| |
Collapse
|
7
|
Liu D, Tang F, Zhang L, Zhang JN, Zhao XL, Xu LY, Peng C, Ao H. Alpinia katsumadai Hayata Volatile Oil Is Effective in Treating 5-Fluorouracil-Induced Mucositis by Regulating Gut Microbiota and Modulating the GC/GR Pathway and the mPGES-1/PGE2/EP4 Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15156-15169. [PMID: 37800952 DOI: 10.1021/acs.jafc.3c05051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
This study was aimed to investigate the therapeutic effect and mechanism of AKHO on 5-fluorouracil (5-FU)-induced intestinal mucositis in mice. Mouse body weight, diarrhea score, and H&E staining were applied to judge the therapeutic effect of AKHO. 16S rDNA and nontargeted metabolomics have been used to study the mechanism. WB, ELISA, and immunohistochemistry were adopted to validate possible mechanisms. The results demonstrated that AKHO significantly reduced diarrhea scores and intestinal damage induced by 5-FU in mice. AKHO lowered the serum levels of LD and DAO, and upregulated the expressions of ZO-1 and occludin in the ileum. Also, AKHO upregulated the abundance of Lactobacillus in the gut and suppressed KEGG pathways such as cortisol synthesis and secretion and arachidonic acid metabolism. Further validation studies indicated that AKHO downregulated the expressions of prostaglandin E2 (PGE2), microsomal prostaglandin E synthase-1 (mPGES-1), and PGE2 receptor EP4, as well as upregulated the expression of glucocorticoid (GC) receptor (GR), leading to improved intestinal epithelial barrier function. Taken together, AKHO elicited protective effects against 5-FU-induced mucositis by regulating the expressions of tight junction proteins via modulation of GC/GR and mPGES-1/PGE2/EP4 pathway, providing novel insights into the utilization and development of this pharmaceutical/food resource.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
8
|
Gao J, Cao B, Zhao R, Li H, Xu Q, Wei B. Critical Signaling Transduction Pathways and Intestinal Barrier: Implications for Pathophysiology and Therapeutics. Pharmaceuticals (Basel) 2023; 16:1216. [PMID: 37765024 PMCID: PMC10537644 DOI: 10.3390/ph16091216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The intestinal barrier is a sum of the functions and structures consisting of the intestinal mucosal epithelium, mucus, intestinal flora, secretory immunoglobulins, and digestive juices. It is the first-line defense mechanism that resists nonspecific infections with powerful functions that include physical, endocrine, and immune defenses. Health and physiological homeostasis are greatly dependent on the sturdiness of the intestinal barrier shield, whose dysfunction can contribute to the progression of numerous types of intestinal diseases. Disorders of internal homeostasis may also induce barrier impairment and form vicious cycles during the response to diseases. Therefore, the identification of the underlying mechanisms involved in intestinal barrier function and the development of effective drugs targeting its damage have become popular research topics. Evidence has shown that multiple signaling pathways and corresponding critical molecules are extensively involved in the regulation of the barrier pathophysiological state. Ectopic expression or activation of signaling pathways plays an essential role in the process of shield destruction. Although some drugs, such as molecular or signaling inhibitors, are currently used for the treatment of intestinal diseases, their efficacy cannot meet current medical requirements. In this review, we summarize the current achievements in research on the relationships between the intestinal barrier and signaling pathways. The limitations and future perspectives are also discussed to provide new horizons for targeted therapies for restoring intestinal barrier function that have translational potential.
Collapse
Affiliation(s)
- Jingwang Gao
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Ruiyang Zhao
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Hanghang Li
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Qixuan Xu
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Bo Wei
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
| |
Collapse
|
9
|
Liu X, Zhao Z, Zhao D, Zhao S, Qin X. Comprehensive microbiomes and fecal metabolomics combined with network pharmacology reveal the effects of Jichuanjian on aged functional constipation. Exp Gerontol 2023; 178:112216. [PMID: 37211069 DOI: 10.1016/j.exger.2023.112216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Functional constipation is a common gastrointestinal disorder especially severely affecting the life quality of the aged. Jichuanjian (JCJ) has been widely used for aged functional constipation (AFC) in clinic. Yet, the mechanisms of JCJ merely scratch the surface with being studied at a single level, rather than from a systematic perspective of the whole. AIM The purpose of this study was to explore the underlying mechanisms of JCJ in treating AFC from the perspectives of fecal metabolites and related pathways, gut microbiota, key gene targets and functional pathways, as well as "behaviors-microbiota-metabolites" relationships. METHODS 16S rRNA analysis and fecal metabolomics combined with network pharmacology were applied to investigate the abnormal performances of AFC rats, as well as the regulatory effects of JCJ. RESULTS JCJ significantly regulated the abnormalities of rats' behaviors, the microbial richness, and the metabolite profiles that were interrupted by AFC. 19 metabolites were found to be significantly associated with AFC involving in 15 metabolic pathways. Delightfully, JCJ significantly regulated 9 metabolites and 6 metabolic pathways. AFC significantly interrupted the levels of 4 differential bacteria while JCJ significantly regulated the level of SMB53. HSP90AA1 and TP53 were the key genes, and pathways in cancer was the most relevant signaling pathways involving in the mechanisms of JCJ. CONCLUSION The current findings not only reveal that the occurrence of AFC is closely related to gut microbiota mediating amino acid and energy metabolism, but also demonstrate the effects and the underlying mechanisms of JCJ on AFC.
Collapse
Affiliation(s)
- Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist, Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China.
| | - Ziyu Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist, Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China
| | - Di Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist, Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China
| | - Sijun Zhao
- Department of Pharmacology, Shanxi Institute for Food and Drug Control, Taiyuan 030001, Shanxi, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist, Taiyuan 030006, Shanxi, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China; Institute of Biomedicine and Health, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan 030006, Shanxi, China
| |
Collapse
|
10
|
Koeberle SC, Kipp AP, Stuppner H, Koeberle A. Ferroptosis-modulating small molecules for targeting drug-resistant cancer: Challenges and opportunities in manipulating redox signaling. Med Res Rev 2023; 43:614-682. [PMID: 36658724 PMCID: PMC10947485 DOI: 10.1002/med.21933] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Ferroptosis is an iron-dependent cell death program that is characterized by excessive lipid peroxidation. Triggering ferroptosis has been proposed as a promising strategy to fight cancer and overcome drug resistance in antitumor therapy. Understanding the molecular interactions and structural features of ferroptosis-inducing compounds might therefore open the door to efficient pharmacological strategies against aggressive, metastatic, and therapy-resistant cancer. We here summarize the molecular mechanisms and structural requirements of ferroptosis-inducing small molecules that target central players in ferroptosis. Focus is placed on (i) glutathione peroxidase (GPX) 4, the only GPX isoenzyme that detoxifies complex membrane-bound lipid hydroperoxides, (ii) the cystine/glutamate antiporter system Xc - that is central for glutathione regeneration, (iii) the redox-protective transcription factor nuclear factor erythroid 2-related factor (NRF2), and (iv) GPX4 repression in combination with induced heme degradation via heme oxygenase-1. We deduce common features for efficient ferroptotic activity and highlight challenges in drug development. Moreover, we critically discuss the potential of natural products as ferroptosis-inducing lead structures and provide a comprehensive overview of structurally diverse biogenic and bioinspired small molecules that trigger ferroptosis via iron oxidation, inhibition of the thioredoxin/thioredoxin reductase system or less defined modes of action.
Collapse
Affiliation(s)
- Solveigh C. Koeberle
- Michael Popp Institute, Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckTirolInnsbruckAustria
- Department of Molecular Nutritional Physiology, Institute of Nutritional SciencesFriedrich Schiller University JenaThüringenJenaGermany
| | - Anna P. Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutritional SciencesFriedrich Schiller University JenaThüringenJenaGermany
| | - Hermann Stuppner
- Unit of Pharmacognosy, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckTirolInnsbruckAustria
| | - Andreas Koeberle
- Michael Popp Institute, Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckTirolInnsbruckAustria
| |
Collapse
|
11
|
Zheng X, Mai L, Xu Y, Wu M, Chen L, Chen B, Su Z, Chen J, Chen H, Lai Z, Xie Y. Brucea javanica oil alleviates intestinal mucosal injury induced by chemotherapeutic agent 5-fluorouracil in mice. Front Pharmacol 2023; 14:1136076. [PMID: 36895947 PMCID: PMC9990700 DOI: 10.3389/fphar.2023.1136076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Background: Brucea javanica (L.) Merr, has a long history to be an anti-dysentery medicine for thousand of years, which is commonly called "Ya-Dan-Zi" in Chinese. The common liquid preparation of its seed, B. javanica oil (BJO) exerts anti-inflammatory action in gastrointestinal diseases and is popularly used as an antitumor adjuvant in Asia. However, there is no report that BJO has the potential to treat 5-Fluorouracil (5-FU)-induced chemotherapeutic intestinal mucosal injury (CIM). Aim of the study: To test the hypothesis that BJO has potential intestinal protection on intestinal mucosal injury caused by 5-FU in mice and to explore the mechanisms. Materials and methods: Kunming mice (half male and female), were randomly divided into six groups: normal group, 5-FU group (5-FU, 60 mg/kg), LO group (loperamide, 4.0 mg/kg), BJO group (0.125, 0.25, 0.50 g/kg). CIM was induced by intraperitoneal injection of 5-FU at a dose of 60 mg/kg/day for 5 days (from day 1 to day 5). BJO and LO were given orally 30 min prior to 5-FU administration for 7 days (from day 1 to day 7). The ameliorative effects of BJO were assessed by body weight, diarrhea assessment, and H&E staining of the intestine. Furthermore, the changes in oxidative stress level, inflammatory level, intestinal epithelial cell apoptosis, and proliferation, as well as the amount of intestinal tight junction proteins were evaluated. Finally, the involvements of the Nrf2/HO-1 pathway were tested by western blot. Results: BJO effectively alleviated 5-FU-induced CIM, as represented by the improvement of body weight, diarrhea syndrome, and histopathological changes in the ileum. BJO not only attenuated oxidative stress by upregulating SOD and downregulating MDA in the serum, but also reduced the intestinal level of COX-2 and inflammatory cytokines, and repressed CXCL1/2 and NLRP3 inflammasome activation. Moreover, BJO ameliorated 5-FU-induced epithelial apoptosis as evidenced by the downregulation of Bax and caspase-3 and the upregulation of Bcl-2, but enhanced mucosal epithelial cell proliferation as implied by the increase of crypt-localized proliferating cell nuclear antigen (PCNA) level. Furthermore, BJO contributed to the mucosal barrier by raising the level of tight junction proteins (ZO-1, occludin, and claudin-1). Mechanistically, these anti-intestinal mucositis pharmacological effects of BJO were relevant for the activation of Nrf2/HO-1 in the intestinal tissues. Conclusion: The present study provides new insights into the protective effects of BJO against CIM and suggests that BJO deserves to be applied as a potential therapeutic agent for the prevention of CIM.
Collapse
Affiliation(s)
- Xinghan Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacy, Shenzhen University General Hospital/Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, China.,Pharmacy Department, Quanzhou Hospital of Traditional Chinese Medicine, Quanzhou, China
| | - Liting Mai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Medical Insurance Office, Zhaoqing Hospital, Sun Yat-sen University, Zhaoqing, China.,Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Ying Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Minghui Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Li Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Baoyi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Hongying Chen
- Guangzhou Baiyunshan Mingxing Pharmaceutical Co. Ltd, Guangzhou, China
| | - Zhengquan Lai
- Department of Pharmacy, Shenzhen University General Hospital/Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, China
| | - Youliang Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, China
| |
Collapse
|
12
|
Qin X, Wang X, Tian M, Dong Z, Wang J, Wang C, Huang Q. The role of Andrographolide in the prevention and treatment of liver diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154537. [PMID: 36610122 DOI: 10.1016/j.phymed.2022.154537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The presence or absence of damage to the liver organ is crucial to a person's health. Nutritional disorders, alcohol consumption, and drug abuse are the main causes of liver disease. Liver transplantation is the last irrevocable option for liver disease and has become a serious economic burden worldwide. Andrographolide (AP) is one of the main active ingredients of Herba Andrographitis. It has several biological activities and has been reported to have protective and therapeutic effects against liver diseases. Earlier literature has been written on AP's role in treating inflammation and other diseases, and there has not been a systematic review on liver diseases. This review is dedicated to sorting out the research results of AP against liver diseases. Pharmacokinetics, toxicity, and nanotechnology to improve bioavailability are discussed. Finally, an outlook and assessment of its future are provided. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. PubMed and web of Science databases were used to search all relevant literature on AP for liver disease up to 2022. RESULTS Studies have shown that AP plays an important role in different liver disease phenotypes, mainly through anti-inflammatory and antioxidant activities. AP regulates HO-1 and inhibits hepatitis virus replication. It affects the NF-κB pathway, downregulates inflammatory factors such as IL-1β, IL-6, and TNF-α, and reduces liver damage. In preventing liver fibrosis, AP inhibits angiogenesis and activation of hepatic stellate cells and reduces oxidative stress involved in the Nrf2 and TGF-β1/Smad pathways. In addition, AP impedes the development of liver cancer by promoting apoptosis and autonomous phagocytosis in a cell-dependent way. Interestingly, miRNAs are involved in the therapeutic process of liver cancer and hepatic fibrosis. The poor solubility of AP limits the development of dosage forms. Therefore, the advent of nanoformulations has improved bioavailability. Although the effect of AP is dose- and time-dependent, the magnitude of its toxicity is not negligible. Some clinical trials have shown that AP has mild side effects. CONCLUSIONS AP, as an effective natural product, has a good effect on the liver disease through multiple pathways and targets. However, the dose reaches a certain level, leading to its toxicity and side effects. For better clinical application of AP, high-quality clinical and toxic intervention mechanisms are needed to validate current studies. In addition, modulation of miRNA-mediated hepatocellular carcinoma and liver fibrosis and synergistic action with drugs may be the future focus of AP. In conclusion, AP can be regarded as an important candidate for treating different liver diseases in the future.
Collapse
Affiliation(s)
- Xiaoyan Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Xi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Maoying Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Zhaowei Dong
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Jin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China
| | - Chao Wang
- Sichuan Integrated Traditional Chinese and Western Medicine Hospital, No.51, Section 4, Renmin South Road, Wuhou District, Chengdu, 610042, PR. China.
| | - Qinwan Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, PR. China.
| |
Collapse
|
13
|
Huang J, Hwang AYM, Jia Y, Kim B, Iskandar M, Mohammed AI, Cirillo N. Experimental Chemotherapy-Induced Mucositis: A Scoping Review Guiding the Design of Suitable Preclinical Models. Int J Mol Sci 2022; 23:15434. [PMID: 36499758 PMCID: PMC9737148 DOI: 10.3390/ijms232315434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Mucositis is a common and most debilitating complication associated with the cytotoxicity of chemotherapy. The condition affects the entire alimentary canal from the mouth to the anus and has a significant clinical and economic impact. Although oral and intestinal mucositis can occur concurrently in the same individual, these conditions are often studied independently using organ-specific models that do not mimic human disease. Hence, the purpose of this scoping review was to provide a comprehensive yet systematic overview of the animal models that are utilised in the study of chemotherapy-induced mucositis. A search of PubMed/MEDLINE and Scopus databases was conducted to identify all relevant studies. Multiple phases of filtering were conducted, including deduplication, title/abstract screening, full-text screening, and data extraction. Studies were reported according to the updated Preferred Reporting Items for Systematic reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines. An inter-rater reliability test was conducted using Cohen's Kappa score. After title, abstract, and full-text screening, 251 articles met the inclusion criteria. Seven articles investigated both chemotherapy-induced intestinal and oral mucositis, 198 articles investigated chemotherapy-induced intestinal mucositis, and 46 studies investigated chemotherapy-induced oral mucositis. Among a total of 205 articles on chemotherapy-induced intestinal mucositis, 103 utilised 5-fluorouracil, 34 irinotecan, 16 platinum-based drugs, 33 methotrexate, and 32 other chemotherapeutic agents. Thirteen articles reported the use of a combination of 5-fluorouracil, irinotecan, platinum-based drugs, or methotrexate to induce intestinal mucositis. Among a total of 53 articles on chemotherapy-induced oral mucositis, 50 utilised 5-fluorouracil, 2 irinotecan, 2 methotrexate, 1 topotecan and 1 with other chemotherapeutic drugs. Three articles used a combination of these drugs to induce oral mucositis. Various animal models such as mice, rats, hamsters, piglets, rabbits, and zebrafish were used. The chemotherapeutic agents were introduced at various dosages via three routes of administration. Animals were mainly mice and rats. Unlike intestinal mucositis, most oral mucositis models combined mechanical or chemical irritation with chemotherapy. In conclusion, this extensive assessment of the literature revealed that there was a large variation among studies that reproduce oral and intestinal mucositis in animals. To assist with the design of a suitable preclinical model of chemotherapy-induced alimentary tract mucositis, animal types, routes of administration, dosages, and types of drugs were reported in this study. Further research is required to define an optimal protocol that improves the translatability of findings to humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia
| |
Collapse
|
14
|
Zhang W, Zhang Y, Zhu Q. Cigarette smoke extract-mediated FABP4 upregulation suppresses viability and induces apoptosis, inflammation and oxidative stress of bronchial epithelial cells by activating p38 MAPK/MK2 signaling pathway. J Inflamm (Lond) 2022; 19:7. [PMID: 35706027 PMCID: PMC9202166 DOI: 10.1186/s12950-022-00304-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 06/06/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Long-term inhalation of cigarette smoke is considered to be one of the main causes of bronchial epithelioid cell damage, but its underlying mechanism has to be further clarified.
Methods
Gene expression at mRNA level and protein levels were detected by qRT-PCR and western blot analysis respectively. CCK-8, TUNEL assays, ELISA, western blot analysis and commercial kits were utilized to test cell viability, apoptosis inflammatory response and oxidative stress. The correlation between fatty acid binding protein 4 (FABP4) and the p38 mitogen-activated protein kinase (MAPK)/MAPK activated kinase 2 (MK2) signaling pathway was verified by western blot analysis and rescue assays.
Results
Cigarette smoke extract (CSE) exposure decreased viability, induced apoptosis and inflammatory response in 16HBE cells. Moreover, the expression of FABP4 in CSE-treated 16HBE cells was up-regulated in a time and dose-dependent manner. Ablation of FABP4 in 16HBE cells significantly protected against CSE-mediated cell viability decline and apoptosis. Further, FABP4 knockdown suppressed inflammatory response by down-regulating the elevated levels of cellular inflammatory factors including TNF-α, IL-1β, IL-6, Cyclooxygenase-2 (Cox-2) and inducible nitric oxide synthase (iNOS) in CSE-treated 16HBE cells. The oxidative stress induced by CSE in 16HBE cells was also inhibited by FABP4 silence as evidence by reduced ROS and MDA level but increased SOD activity caused by FABP4 silence. Finally, all the above effects of FABP4 silence on CSE-treated 16HBE cells were reversed by asiatic acid, an agonist of p38 mitogen-activated protein kinase (MAPK).
Conclusions
The up-regulation of FABP4 expression mediated by CSE exerted pro-inflammatory, pro-oxidative stress and pro-apoptotic effects on bronchial epithelial cells by activating the p38 MAPK/MK2 signaling pathway. Our findings help to further understand the underlying mechanism of cigarette smoke-induced bronchial inflammation.
Collapse
|
15
|
Chen W, Zhao Y, Dai Y, Nie K. Gastrointestinal inflammation plays a critical role in chemotherapy-induced nausea and vomiting. Eur J Pharmacol 2022; 936:175379. [PMID: 36356927 DOI: 10.1016/j.ejphar.2022.175379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
16
|
Li C, Xie J, Wang J, Cao Y, Pu M, Gong Q, Lu Q. Therapeutic effects and mechanisms of plant-derived natural compounds against intestinal mucositis. Front Pharmacol 2022; 13:969550. [PMID: 36210837 PMCID: PMC9533105 DOI: 10.3389/fphar.2022.969550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/05/2022] [Indexed: 01/26/2023] Open
Abstract
Intestinal mucositis is a clinically related adverse reaction of antitumor treatment. Majority of patients receiving high-dose chemical therapy, radiotherapy, and bone-marrow transplant suffer from intestinal mucositis. Clinical manifestations of intestinal mucositis mainly include pain, body-weight reduction, inflammatory symptom, diarrhea, hemoproctia, and infection, which all affect regular nutritional input and enteric function. Intestinal mucositis often influences adherence to antitumor treatment because it frequently restricts the sufferer’s capacity to tolerate treatment, thus resulting in schedule delay, interruption, or premature suspension. In certain circumstances, partial and general secondary infections are found, increasing the expenditures on medical care and hospitalization. Current methods of treating intestinal mucositis are provided, which do not always counteract this disorder. Against this background, novel therapeutical measures are extremely required to prevent and treat intestinal mucositis. Plant-derived natural compounds have lately become potential candidates against enteric injury ascribed to the capacity to facilitate mucosal healing and anti-inflammatory effects. These roles are associated with the improvement of intestinal mucosal barrier, suppression of inflammatory response and oxidant stress, and modulation of gut microflora and immune system. The present article aims at systematically discussing the recent progress of plant-derived natural compounds as promising treatments for intestinal mucositis.
Collapse
Affiliation(s)
- Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jianhui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahao Wang
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Ying Cao
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Min Pu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
- *Correspondence: Qihai Gong, ; Qiang Lu,
| | - Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
- *Correspondence: Qihai Gong, ; Qiang Lu,
| |
Collapse
|
17
|
Li G, Liu L, Yin Y, Wang M, Wang L, Dou J, Wu H, Yang Y, He B. Network pharmacology and experimental verification-based strategy to explore the underlying mechanism of Liu Jun An Wei formula in the treatment of gastrointestinal reactions caused by chemotherapy for colorectal cancer. Front Pharmacol 2022; 13:999115. [PMID: 36204230 PMCID: PMC9530632 DOI: 10.3389/fphar.2022.999115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Liu Jun An Wei formula (LJAW), derived from “Liu Jun Zi Decoction”, is a classical prescription of Tradition Chinese Medicine and has been used for the treatment of gastrointestinal reactions caused by chemotherapy for colorectal cancer (CRC) for many years. Its molecular mechanism remains to be further explored.Objective: To clarify the mechanism of LJAW in attenuating gastrointestinal reactions caused by chemotherapy for CRC.Methods: The 5-fluorouracil (5-FU) induced mouse and intestine organoid models were established to observe the effect of LJAW. The ingredients of LJAW were analyzed and identified by UPLC-Q-TOF-MS technology. Targets of LJAW and chemotherapy-induced gastrointestinal reactions were collected from several databases. “Ingredient-target” network and protein-protein interaction network were constructed based on network pharmacology. Then, gene ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed. Subsequently, molecular docking method was used to verify the interaction between the core ingredients and key targets. The results were validated by both in vivo experiments and organoid experiments. Western Blot was used to analyze the influence of LJAW on key targets including PI3K, AKT1, MAPK1, MAPK14 proteins and their phosphorylated proteins. RT-qPCR and Western Blot were used to detect the mRNA and protein levels of apoptosis-related gene PUMA.Results: Compared with the 5-FU group, the LJAW group had better morphology in mouse small intestine and intestine organoids. In total, 18 core ingredients and 19 key targets were obtained from 97 ingredients and 169 common targets. KEGG analysis showed that the common targets were involved in PI3K/Akt, MAPK, apoptosis and other signal pathways, which are closely related to gastrointestinal injury. Experiments confirmed that LJAW lowered the expressions of phosphorylated proteins including p-PI3K, p-AKT1, p-MAPK1, and p-MAPK14 and reduced the mRNA and protein levels of PUMA.Conclusion: LJAW shows protective effect on 5-FU induced small intestine and intestinal organoids injury. LJAW attenuates gastrointestinal reactions caused by chemotherapy for CRC probably by regulating apoptosis-related genes through PI3K/AKT and MAPK signaling pathways.
Collapse
Affiliation(s)
- Gaobiao Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Liying Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yiran Yin
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengmeng Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lei Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianwei Dou
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yufei Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yufei Yang, ; Bin He,
| | - Bin He
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yufei Yang, ; Bin He,
| |
Collapse
|
18
|
Bullard BM, McDonald SJ, Cardaci TD, VanderVeen BN, Murphy EA. Nonpharmacological approaches for improving gut resilience to chemotherapy. Curr Opin Support Palliat Care 2022; 16:151-160. [PMID: 35862879 DOI: 10.1097/spc.0000000000000599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Mucositis of the gastrointestinal tract is a debilitating side effect of chemotherapy that negatively influences treatment tolerance and patient life quality. This review will evaluate the recent literature on nonpharmacological strategies that have the potential to improve chemotherapy-induced mucositis (CIM). RECENT FINDINGS Alternatives to pharmacological approaches have shown great promise in preventing CIM. Natural products, including curcumin, ginseng, quercetin, and patchouli all show potential in mitigating CIM. In addition, dietary patterns, such as the elemental diet, high fiber diet, and diets high in amino acids have documented benefits in preventing CIM. Perhaps the greatest advancement coming to this arena in recent years is in the field of probiotics. Indeed, research on single species as well as probiotic mixtures show potential in reducing CIM insofar as probiotics are now being suggested for treatment of CIM by governing bodies. Although behavioral interventions including psychological interventions and exercise interventions have shown promise in reducing cancer therapy-related side effects, more work in this domain is warranted and particularly in the context of CIM. SUMMARY Alternatives to pharmacological approaches show great potential for use in prevention and treatment of CIM and should be further developed for use in the clinic.
Collapse
Affiliation(s)
- Brooke M Bullard
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | | | | | | | | |
Collapse
|
19
|
Protective Effects of Oxyberberine in 5-Fluorouracil-Induced Intestinal Mucositis in the Mice Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1238358. [PMID: 35677366 PMCID: PMC9170416 DOI: 10.1155/2022/1238358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 04/10/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022]
Abstract
Berberine (BBR), a major active constituent of Rhizoma coptidis, was reported to exert beneficial effects on intestinal mucositis (IM) induced by 5-fluorouracil (5-FU). However, the bioavailability of BBR is extremely low, and its metabolites were perceived to contribute to its prominent pharmacological activities. Oxyberberine (OBB) is a gut metabolite of BBR, which has been reported to have a superior anti-inflammatory effect in experimental colitis. However, its anti-inflammatory effects against 5-FU-induced IM mice have not yet been investigated. Hence, the purpose of this study was to reveal the protective effects of OBB on IM induced by 5-FU and investigate its potential underlying mechanism. The IM mice model was induced by receiving 5-FU (60 mg/kg, i.p.) for five days. Meanwhile, BBR (50 mg/kg) and OBB (12.5, 25, and 50 mg/kg) were given prior to 30 min intraperitoneal injection of 5-FU for seven days. Results indicated that OBB ameliorated body weight loss, anorexia, diarrhea, and histopathological damage in 5-FU-induced IM mice. After OBB administration, the amounts of MDA, SOD, and GSH altered by IM were remarkably restored. OBB was also observed to dramatically decrease the levels of TNF-α, IL-8, IL-6, COX-2, and iNOS and promote the release of IL-10. Besides, OBB distinctly upregulated the mRNA expressions of PCNA, ZO-1, occludin, and mucin-1, which could improve intestinal homeostasis in IM mice. OBB also blocked the activation of the upstream TLR4/MyD88 signaling pathway, and then it inhibited the phosphorylation of the NF-κB and MAPK pathways. Importantly, compared with BBR, OBB displayed a superior therapeutic effect to BBR in alleviating 5-FU-induced IM mice. These results indicated that OBB has considerable potential to become a novel candidate drug against IM.
Collapse
|
20
|
Al-Khrashi LA, Badr AM, Al-Amin MA, Mahran YF. Thymol ameliorates 5-fluorouracil-induced intestinal mucositis: Evidence of down-regulatory effect on TGF-β/MAPK pathways through NF-κB. J Biochem Mol Toxicol 2022; 36:e22932. [PMID: 34665902 DOI: 10.1002/jbt.22932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/31/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022]
Abstract
5-Fluorouracil (5-FU) is a front-line cytotoxic therapy. However, intestinal mucositis is a well-known adverse event of 5-FU, which limits its therapeutic use. Indeed, thymol, which is a monoterpene component of the essential oil derived from thymus, has a potential anti-inflammatory and immunomodulatory activity. Therefore, this study aimed to investigate the potential chemoprotective effect of thymol against 5-FU-induced intestinal mucositis. Rats were either exposed to two doses of 5-FU (150 mg/kg, ip) and/or treated with thymol (60 or 120 mg/kg). Oxidative stress and inflammatory markers, as well as pathological changes, were assessed. 5-FU-induced severe intestinal damages as were evidenced by histopathological changes as well as oxidative and inflammatory responses. Thymol pretreatment inhibited 5-FU-induced oxidative stress by reducing lipid peroxidation and increasing intestinal levels of antioxidant systems. Moreover, inflammatory response markers, such as interleukin-6, prostaglandin E2, and COX-2 were also improved. The immunoblotting analysis also showed that thymol significantly inhibited the 5-FU-induced expression of nuclear factor-κB, tumor necrosis factor-α, and transforming growth factor β-1 (TGF-β1), in addition to the suppression of p38 and phosphorylated c-Jun N-terminal kinases (p-JNK) mitogen-activated protein kinase proteins' expressions. Our study is the first to demonstrate the promising protective effect of thymol against 5-FU-induced intestinal mucositis through inhibition of oxidative, inflammatory pathways, and suppression of TGF-β/p38/p-JNK signaling.
Collapse
Affiliation(s)
- Layla A Al-Khrashi
- Department of Pharmacology and Toxicology, College of Pharmacy, KSU, Riyadh, Saudi Arabia
| | - Amira M Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, KSU, Riyadh, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Maha A Al-Amin
- Department of Pharmacology and Toxicology, College of Pharmacy, KSU, Riyadh, Saudi Arabia
| | - Yasmen F Mahran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
21
|
Pei H, Wu S, Zheng L, Wang H, Zhang X. Identification of the active compounds and their mechanisms of medicinal and edible Shanzha based on network pharmacology and molecular docking. J Food Biochem 2021; 46:e14020. [PMID: 34825377 DOI: 10.1111/jfbc.14020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022]
Abstract
Shanzha (Crataegus pinnatifida Bunge), an edible traditional Chinese medicine (TCM), has an effect on dyspepsia. However, the investigations of the pharmacological effects have not been carried out. This study aimed to identify the potential targets and pharmacological mechanisms of Shanzha in the treatment of dyspepsia by network pharmacology and molecular docking. Five active compounds and 13 key targets were obtained by a set of bioinformatics assays. Vitexin 7-glucoside, suchilactone, and 20-hexadecanoylingenol were the main compounds acting on dyspepsia. The key targets were prostaglandin-endoperoxide synthase 2 (PTGS2), serine/threonine-protein kinase mTOR (MTOR), heat shock protein HSP 90-alpha (HSP90AA1), mitogen-activated protein kinase 1 (MAPK1), MAPK3, E3 ubiquitin-protein ligase Mdm2 (MDM2), receptor tyrosine-protein kinase erbB-2 (ERBB2), caspase-3 (CASP3), matrix metalloproteinase-9 (MMP9), estrogen receptor (ESR1), tumor necrosis factor (TNF), phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA), and peroxisome proliferator-activated receptor gamma (PPARG), which played the vital roles in TNF, prostate cancer, thyroid hormone, hepatitis B and estrogen signaling pathway. The molecular mechanisms of Shanzha regulating dyspepsia were mainly related to reduction of inflammatory response, controlling cell proliferation and survival, increasing intestinal moisture, and promoting intestinal motility. PRACTICAL APPLICATIONS: Shanzha has been used as an edible TCM to improve digestion for a long time. However, the ingredients and mechanisms of Shanzha in the treatment of dyspepsia are not clear. In this research, network pharmacological analysis integrated with molecular docking was conducted to investigate the molecular mechanism. The results suggested that the core targets alleviated dyspepsia by reducing the intestinal inflammatory response, increasing intestinal movement, controlling cell physiological activities, and reducing constipation. In summary, this study demonstrated the multiple compounds, targets, and pathways characteristics of Shanzha in the treatment of dyspepsia, which may provide guidance and foundations for further application of edible medicine.
Collapse
Affiliation(s)
- Huimin Pei
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Shaokang Wu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Lijun Zheng
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Hanxun Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiangrong Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
22
|
Zeng B, Wei A, Zhou Q, Yuan M, Lei K, Liu Y, Song J, Guo L, Ye Q. Andrographolide: A review of its pharmacology, pharmacokinetics, toxicity and clinical trials and pharmaceutical researches. Phytother Res 2021; 36:336-364. [PMID: 34818697 DOI: 10.1002/ptr.7324] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022]
Abstract
Andrographis paniculata (Burm. f.) Wall. ex Nees, a renowned herb medicine in China, is broadly utilized in traditional Chinese medicine (TCM) for the treatment of cold and fever, sore throat, sore tongue, snake bite with its excellent functions of clearing heat and toxin, cooling blood and detumescence from times immemorial. Modern pharmacological research corroborates that andrographolide, the major ingredient in this traditional herb, is the fundamental material basis for its efficacy. As the main component of Andrographis paniculata (Burm. f.) Wall. ex Nees, andrographolide reveals numerous therapeutic actions, such as antiinflammatory, antioxidant, anticancer, antimicrobial, antihyperglycemic and so on. However, there are scarcely systematic summaries on the specific mechanism of disease treatment and pharmacokinetics. Moreover, it is also found that it possesses easily ignored security issues in clinical application, such as nephrotoxicity and reproductive toxicity. Thereby it should be kept a lookout over in clinical. Besides, the relationship between the efficacy and security issues of andrographolide should be investigated and evaluated scientifically. In this review, special emphasis is given to andrographolide, a multifunctional natural terpenoids, including its pharmacology, pharmacokinetics, toxicity and pharmaceutical researches. A brief overview of its clinical trials is also presented. This review intends to systematically and comprehensively summarize the current researches of andrographolide, which is of great significance for the development of andrographolide clinical products. Noteworthy, those un-cracked issues such as specific pharmacological mechanisms, security issues, as well as the bottleneck in clinical transformation, which detailed exploration and excavation are still not to be ignored before achieving integration into clinical practice. In addition, given that current extensive clinical data do not have sufficient rigor and documented details, more high-quality investigations in this field are needed to validate the efficacy and/or safety of many herbal products.
Collapse
Affiliation(s)
- Bin Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacology, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Ailing Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Minghao Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kelu Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yushi Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiawen Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
23
|
Knockdown of TRIM9 attenuates irinotecan‑induced intestinal mucositis in IEC‑6 cells by regulating DUSP6 expression via the P38 pathway. Mol Med Rep 2021; 24:867. [PMID: 34676875 PMCID: PMC8554382 DOI: 10.3892/mmr.2021.12507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal mucositis is a common side effect of cancer chemotherapy and it limits the dose of chemotherapy given to a patient. Tripartite motif family (TRIM) proteins have been reported to be implicated in the regulation of cancer chemotherapy. The present study aimed to investigate the effect of TRIM9 on irinotecan-induced intestinal mucositis in the rat intestinal epithelial cell line IEC-6. The expression of several TRIMs, such as TRIM1, TRIM9, TRIM18, TRIM36, TRIM46 and TRIM67, was examined. After TRIM9 knockdown or overexpression by lentivirus infection, cell proliferation and apoptosis, epithelial barrier tight-junction proteins, inflammatory cytokines, transepithelial electrical resistance (TEER) and FITC dextran were measured. Treatment with irinotecan significantly inhibited cell proliferation and induced cell apoptosis, TRIM9 expression, intestinal mucosal barrier impairment, the levels of inflammatory cytokines and P38 phosphorylation in IEC-6 cells, while the expression levels of epithelial barrier tight-junction protein ZO-1 and Claudin-4 were decreased. Knockdown of TRIM9 partly counteracted the effect of irinotecan treatment, and inhibition of P38 potently reversed the effect of TRIM9 overexpression in IEC-6 cells. Moreover, co-immunoprecipitation showed an interaction between TRIM9 and DUSP6 in IEC-6 cells, and overexpression of DUSP6 notably counteracted the effect of TRIM9 overexpression. The results demonstrated that TRIM9 knockdown may benefit patients with intestinal mucositis by inhibiting inflammatory cytokine expression and repairing intestinal barrier functions, which was probably due to inhibition of the activation of the P38 pathway via targeting DUSP6.
Collapse
|
24
|
Wei L, Wen XS, Xian CJ. Chemotherapy-Induced Intestinal Microbiota Dysbiosis Impairs Mucosal Homeostasis by Modulating Toll-like Receptor Signaling Pathways. Int J Mol Sci 2021; 22:ijms22179474. [PMID: 34502383 PMCID: PMC8431669 DOI: 10.3390/ijms22179474] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy-induced intestinal mucositis, a painful debilitating condition affecting up to 40–100% of patients undergoing chemotherapy, can reduce the patients’ quality of life, add health care costs and even postpone cancer treatment. In recent years, the relationships between intestinal microbiota dysbiosis and mucositis have drawn much attention in mucositis research. Chemotherapy can shape intestinal microbiota, which, in turn, can aggravate the mucositis through toll-like receptor (TLR) signaling pathways, leading to an increased expression of inflammatory mediators and elevated epithelial cell apoptosis but decreased epithelial cell differentiation and mucosal regeneration. This review summarizes relevant studies related to the relationships of mucositis with chemotherapy regimens, microbiota, TLRs, inflammatory mediators, and intestinal homeostasis, aiming to explore how gut microbiota affects the pathogenesis of mucositis and provides potential new strategies for mucositis alleviation and treatment and development of new therapies.
Collapse
Affiliation(s)
- Ling Wei
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
| | - Xue-Sen Wen
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
- Correspondence: (X.-S.W.); (C.J.X.); Tel.: +86-531-88382028 (X.-S.W.); +61-88302-1944 (C.J.X.)
| | - Cory J. Xian
- UniSA Clinical & Health Science, City West Campus, University of South Australia, Adelaide, SA 5001, Australia
- Correspondence: (X.-S.W.); (C.J.X.); Tel.: +86-531-88382028 (X.-S.W.); +61-88302-1944 (C.J.X.)
| |
Collapse
|
25
|
Vetvicka V, Vannucci L. Biological properties of andrographolide, an active ingredient of Andrographis Paniculata: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1186. [PMID: 34430627 PMCID: PMC8350652 DOI: 10.21037/atm-20-7830] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/28/2021] [Indexed: 12/20/2022]
Abstract
Andrographolide is a labdane diterpenoid isolated from Andrographis paniculata and traditionally used in Chinese and Indian medicine. Reported effects include anti-bacterial, anti-inflammatory and anti-cancer functions. Most of the studies support the hypothesis that andrographolide supplementation stimulates immune system, so the observed effects migh in fact be secondary to the stimulation of defense reactions. As andrographolide is involved in regulation of inflammation, it is not surprising that it is also evaluated in inflammation-mediated diseases such as ulcerative colitis. Anticancer effects of the andrographolide have been tested on various cancer panels. Colon cancer, breast cancer, and head and neck carcinomas were the most investigated, followed by prostate cancer and glioblastoma. The results looked promising. However, problems with solubility and low level of active substance in natural extract leads to preparation of chemical analogs. Objective of this short review is to summarize current knowledge of the biological effects of andragrapholide. We conclude that despite documented effects and some partly characterized mechanisms of action, more research is clearly needed. At present, the doses, types of treatment and possible negative side effects are not yet established. In addition, various isolations and compound formulas have been used for treatment of various diseases, making final conclusions problematic.
Collapse
Affiliation(s)
- Vaclav Vetvicka
- Department of Pathology, University of Louisville, Louisville, KY, USA
| | - Luca Vannucci
- Department of Immunology, Institute of Microbiology, Prague, Czech Republic
| |
Collapse
|
26
|
Yim SK, Kim SW, Lee ST. Efficient Stool Collection Methods for Evaluating the Diarrhea Score in Mouse Diarrhea Models. In Vivo 2021; 35:2115-2125. [PMID: 34182487 DOI: 10.21873/invivo.12481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM The mouse diarrhea score is usually determined by evaluating stool consistency and shape. Thus, defecated stools should be collected without damage or contamination. The study aimed to develop improved mouse stool collection methods and diarrhea-scoring criteria. MATERIALS AND METHODS We developed improved stool collection methods (paper towel methods) and compared them with previously used ones (stool collection using regular cages containing bedding chips or filter paper and metabolic cages). RESULTS Compared to previously used methods, paper towel methods collected stools without bedding chips-induced contamination, mouse body/foot-induced damage, or sampling errors. When using paper towel methods, wet stools create water marks (diarrhea marks) on paper towels with strong water absorption capacity, by which diarrheal severity can be analyzed semi-quantitatively. To improve the objectivity in determining diarrhea scores, practical diarrhea-scoring criteria were also proposed. CONCLUSION These results would be helpful to researchers facing difficulties in evaluating the mouse diarrhea score.
Collapse
Affiliation(s)
- Sung Kyun Yim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sang Wook Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju, Republic of Korea
| | - Soo Teik Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea; .,Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
27
|
Xu K, Lin C, Ma D, Chen M, Zhou X, He Y, Moqbel SAA, Ma C, Wu L. Spironolactone Ameliorates Senescence and Calcification by Modulating Autophagy in Rat Tendon-Derived Stem Cells via the NF- κB/MAPK Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5519587. [PMID: 34306308 PMCID: PMC8263237 DOI: 10.1155/2021/5519587] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/24/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
Tendinopathy is a disabling musculoskeletal disease, the pathological process of which is tightly associated with inflammation. Spironolactone (SP) has been widely used as a diuretic in clinical practice. Recently, SP has shown anti-inflammatory features in several diseases. Tendon-derived stem cells (TDSCs), a subset cell type from tendon tissue possessing clonogenic capacity, play a vital role in the pathological process of tendinopathy. In the present study, the protective effect of SP on TDSCs was demonstrated under simulated tendinopathy conditions both in vitro and in vivo. SP contributed to the maintenance of TDSC-specific genes or proteins, while suppressing the interleukin- (IL-) 1β-induced overexpression of inflammation-mediated factors. Additionally, IL-1β-induced cellular senescence in TDSCs was inhibited, while autophagy was enhanced, as determined via β-galactosidase activity, western blot (WB), and quantitative real-time polymerase chain reaction analysis. With the aid of several emerging bioinformatics tools, the mitogen-activated protein kinase (MAPK) pathway likely participated in the effect of SP, which was further validated through WB analysis and the use of MAPK agonist. Immunofluorescence analysis and an NF-κB agonist were used to confirm the inhibitory effect of SP on IL-1β-induced activation of the NF-κB pathway. X-ray, immunofluorescence, immunohistochemistry, hematoxylin and eosin staining, histological grades, and Masson staining showed that SP ameliorated tendinopathy in an Achilles tenotomy (AT) rat model in vivo. This work elucidates the protective role of SP on the pathological process of tendinopathy both in vitro and in vivo, indicating a potential therapeutic strategy for tendinopathy treatment.
Collapse
Affiliation(s)
- Kai Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Changjian Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Diana Ma
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Mengyao Chen
- Department of Medical Oncology, The 2nd Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xing Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Yuzhe He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Safwat Adel Abdo Moqbel
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Chiyuan Ma
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Lidong Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| |
Collapse
|
28
|
Dahlgren D, Sjöblom M, Hellström PM, Lennernäs H. Chemotherapeutics-Induced Intestinal Mucositis: Pathophysiology and Potential Treatment Strategies. Front Pharmacol 2021; 12:681417. [PMID: 34017262 PMCID: PMC8129190 DOI: 10.3389/fphar.2021.681417] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal tract is particularly vulnerable to off-target effects of antineoplastic drugs because intestinal epithelial cells proliferate rapidly and have a complex immunological interaction with gut microbiota. As a result, up to 40-100% of all cancer patients dosed with chemotherapeutics experience gut toxicity, called chemotherapeutics-induced intestinal mucositis (CIM). The condition is associated with histological changes and inflammation in the mucosa arising from stem-cell apoptosis and disturbed cellular renewal and maturation processes. In turn, this results in various pathologies, including ulceration, pain, nausea, diarrhea, and bacterial translocation sepsis. In addition to reducing patient quality-of-life, CIM often leads to dose-reduction and subsequent decrease of anticancer effect. Despite decades of experimental and clinical investigations CIM remains an unsolved clinical issue, and there is a strong consensus that effective strategies are needed for preventing and treating CIM. Recent progress in the understanding of the molecular and functional pathology of CIM had provided many new potential targets and opportunities for treatment. This review presents an overview of the functions and physiology of the healthy intestinal barrier followed by a summary of the pathophysiological mechanisms involved in the development of CIM. Finally, we highlight some pharmacological and microbial interventions that have shown potential. Conclusively, one must accept that to date no single treatment has substantially transformed the clinical management of CIM. We therefore believe that the best chance for success is to use combination treatments. An optimal combination treatment will likely include prophylactics (e.g., antibiotics/probiotics) and drugs that impact the acute phase (e.g., anti-oxidants, apoptosis inhibitors, and anti-inflammatory agents) as well as the recovery phase (e.g., stimulation of proliferation and adaptation).
Collapse
Affiliation(s)
- David Dahlgren
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Markus Sjöblom
- Department of Neuroscience, Division of Physiology, Uppsala University, Uppsala, Sweden
| | - Per M Hellström
- Department of Medical Sciences, Gastroenterology/Hepatology, Uppsala University, Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
29
|
Zhao Y, Wang C, Goel A. Andrographis overcomes 5-fluorouracil-associated chemoresistance through inhibition of DKK1 in colorectal cancer. Carcinogenesis 2021; 42:814-825. [PMID: 33822896 DOI: 10.1093/carcin/bgab027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/21/2021] [Accepted: 04/01/2021] [Indexed: 12/25/2022] Open
Abstract
Colorectal cancer (CRC) ranks as the third leading cause of cancer-related deaths in the USA. 5-Fluorouracil (5FU)-based chemotherapeutic drug remains a mainstay of CRC treatment. Unfortunately, ~50-60% of patients eventually develop resistance to 5FU, leading to poor survival outcomes. Our previous work revealed that andrographis enhanced 5FU-induced anti-cancer activity, but the underlying mechanistic understanding largely remains unclear. In this study, we first established 5FU-resistant (5FUR) CRC cells and observed that combined treatment with andrographis-5FU in 5FUR cells exhibited superior effect on cell viability, proliferation, and colony formation capacity compared with individual treatments (P < 0.001). To identify key genes and pathways responsible for 5FU resistance, we analyzed genome-wide transcriptomic profiling data from CRC patients who either responded or did not respond to 5FU. Among a panel of differentially expressed genes, Dickkopf-1 (DKK1) overexpression was a critical event for 5FU resistance. Moreover, andrographis significantly downregulated 5FU-induced DKK1 overexpression, accompanied with enhanced anti-tumor effects by abrogating downstream Akt-phosphorylation. In line with in vitro findings, andrographis enhanced 5FU-induced anti-cancer activity in mice xenografts and patient-derived tumoroids (P < 0.01). In conclusion, our data provide novel evidence for andrographis-mediated reversal of 5FU resistance, highlighting its potential role as an adjunct to conventional chemotherapy in CRC.
Collapse
Affiliation(s)
- Yinghui Zhao
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA.,Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Engineering and Technology Research Center for Tumor Marker Detection, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| |
Collapse
|
30
|
Jiang J, Jin J, Lou J, Li J, Wu H, Cheng S, Dong C, Chen H, Gao W. Positive Effect of Andrographolide Induced Autophagy on Random-Pattern Skin Flaps Survival. Front Pharmacol 2021; 12:653035. [PMID: 33796027 PMCID: PMC8008123 DOI: 10.3389/fphar.2021.653035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/03/2021] [Indexed: 01/18/2023] Open
Abstract
Random-pattern skin flap replantation is generally used in the reconstruction of surgical tissues and covering a series of skin flap defects. However, ischemia often occurs at the flap distal parts, which lead to flap necrosis. Previous studies have shown that andrographolide (Andro) protects against ischemic cardiovascular diseases, but little is known about the effect of Andro on flap viability. Thus, our study aimed to building a model of random-pattern skin flap to understand the mechanism of Andro-induced effects on flap survival. In this study, fifty-four mice were randomly categorized into the control, Andro group, and the Andro+3-methyladenine group. The skin flap samples were obtained on postoperative day 7. Subsequently, the tissue samples were underwent a series of evaluations such as changes in the appearance of flap tissue, the intensity of blood flow, and neovascularization density of skin flap. In our study, the results revealed that Andro enhanced the viability of random skin flaps by enhancing angiogenesis, inhibiting apoptosis, and reducing oxidative stress. Furthermore, our results have also demonstrated that the administration of Andro caused an elevation in the autophagy, and these remarkable impact of Andro were reversed by 3-methyladenine (3-MA), the most common autophagy inhibitor. Together, our data proves novel evidence that Andro is a potent modulator of autophagy capable of significantly increasing random-pattern skin flap survival.
Collapse
Affiliation(s)
- Jingtao Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Jie Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Junsheng Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Jiafeng Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Hongqiang Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Sheng Cheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Chengji Dong
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Hongyu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| |
Collapse
|