1
|
Charrier D, Cerullo G, Carpenito R, Vindigni V, Bassetto F, Simoni L, Moro T, Paoli A. Metabolic and Biochemical Effects of Pyrroloquinoline Quinone (PQQ) on Inflammation and Mitochondrial Dysfunction: Potential Health Benefits in Obesity and Future Perspectives. Antioxidants (Basel) 2024; 13:1027. [PMID: 39334686 PMCID: PMC11429417 DOI: 10.3390/antiox13091027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity is defined as a complex, systemic disease characterized by excessive and dysfunctional adipose tissue, leading to adverse health effects. This condition is marked by low-grade inflammation, oxidative stress, and metabolic abnormalities, including mitochondrial dysfunction. These factors promote energy dysregulation and impact body composition not only by increasing body fat but also by promoting skeletal muscle mass atrophy. The decline in muscle mass is associated with an increased risk of all-cause mortality in individuals with this disease. The European Food Safety Authority approved pyrroloquinoline quinone (PQQ), a natural compound, as a dietary supplement in 2018. This narrative review aims to provide a comprehensive overview of the potential role of PQQ, based on its anti-inflammatory and antioxidant properties, in addressing dysfunctional adipose tissue metabolism and related disorders.
Collapse
Affiliation(s)
- Davide Charrier
- Department of Biomedical Sciences, University of Padova, 35122 Padua, Italy; (D.C.); (L.S.); (T.M.); (A.P.)
| | - Giuseppe Cerullo
- Department of Biomedical Sciences, University of Padova, 35122 Padua, Italy; (D.C.); (L.S.); (T.M.); (A.P.)
| | - Roberta Carpenito
- Plastic and Reconstructive Surgery Unit, Department of Neurosciences, University of Padua, 35122 Padua, Italy (V.V.); (F.B.)
| | - Vincenzo Vindigni
- Plastic and Reconstructive Surgery Unit, Department of Neurosciences, University of Padua, 35122 Padua, Italy (V.V.); (F.B.)
| | - Franco Bassetto
- Plastic and Reconstructive Surgery Unit, Department of Neurosciences, University of Padua, 35122 Padua, Italy (V.V.); (F.B.)
| | - Luca Simoni
- Department of Biomedical Sciences, University of Padova, 35122 Padua, Italy; (D.C.); (L.S.); (T.M.); (A.P.)
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padova, 35122 Padua, Italy; (D.C.); (L.S.); (T.M.); (A.P.)
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, 35122 Padua, Italy; (D.C.); (L.S.); (T.M.); (A.P.)
- Research Center for High Performance Sport, UCAM Catholic University of Murcia, 30107 Murcia, Spain
| |
Collapse
|
2
|
Labib MM, Alqahtani AM, Abo Nahas HH, Aldossari RM, Almiman BF, Ayman Alnumaani S, El-Nablaway M, Al-Olayan E, Alsunbul M, Saied EM. Novel Insights into the Antimicrobial and Antibiofilm Activity of Pyrroloquinoline Quinone (PQQ); In Vitro, In Silico, and Shotgun Proteomic Studies. Biomolecules 2024; 14:1018. [PMID: 39199405 PMCID: PMC11352295 DOI: 10.3390/biom14081018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Microbial infections pose a significant global health threat, affecting millions of individuals and leading to substantial mortality rates. The increasing resistance of microorganisms to conventional treatments requires the development of novel antimicrobial agents. Pyrroloquinoline quinone (PQQ), a natural medicinal drug involved in various cellular processes, holds promise as a potential antimicrobial agent. In the present study, our aim was, for the first time, to explore the antimicrobial activity of PQQ against 29 pathogenic microbes, including 13 fungal strains, 8 Gram-positive bacteria, and 8 Gram-negative bacteria. Our findings revealed potent antifungal properties of PQQ, particularly against Syncephalastrum racemosum, Talaromyces marneffei, Candida lipolytica, and Trichophyton rubrum. The MIC values varied between fungal strains, and T. marneffei exhibited a lower MIC, indicating a greater susceptibility to PQQ. In addition, PQQ exhibited notable antibacterial activity against Gram-positive and -negative bacteria, with a prominent inhibition observed against Staphylococcus epidermidis, Proteus vulgaris, and MRSA strains. Remarkably, PQQ demonstrated considerable biofilm inhibition against the MRSA, S. epidermidis, and P. vulgaris strains. Transmission electron microscopy (TEM) studies revealed that PQQ caused structural damage and disrupted cell metabolism in bacterial cells, leading to aberrant morphology, compromised cell membrane integrity, and leakage of cytoplasmic contents. These findings were further affirmed by shotgun proteomic analysis, which revealed that PQQ targets several important cellular processes in bacteria, including membrane proteins, ATP metabolic processes, DNA repair processes, metal-binding proteins, and stress response. Finally, detailed molecular modeling investigations indicated that PQQ exhibits a substantial binding affinity score for key microbial targets, including the mannoprotein Mp1P, the transcriptional regulator TcaR, and the endonuclease PvuRTs1I. Taken together, our study underscores the effectiveness of PQQ as a broad-spectrum antimicrobial agent capable of combating pathogenic fungi and bacteria, while also inhibiting biofilm formation and targeting several critical biological processes, making it a promising therapeutic option for biofilm-related infections.
Collapse
Affiliation(s)
- Mai M. Labib
- Department of Bioinformatics, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Centre (ARC), Cairo 12619, Egypt;
| | - Alaa M. Alqahtani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | | | - Rana M. Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Bandar Fahad Almiman
- Biology Department, College of Science, Al-Baha University, Al Bahah 65779, Saudi Arabia;
| | - Sarah Ayman Alnumaani
- Department of Medical Microbiology, Faculty of Medicine, University of Jeddah, Jeddah 23218, Saudi Arabia;
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia;
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ebtesam Al-Olayan
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Maha Alsunbul
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, 12489 Berlin, Germany
| |
Collapse
|
3
|
Berköz M, Çiftçi O. Boswellic Acid and Betulinic Acid Pre-treatments Can Prevent the Nephrotoxicity Caused by Cyclophosphamide Induction. DOKL BIOCHEM BIOPHYS 2024; 517:115-126. [PMID: 38744737 DOI: 10.1134/s1607672924600234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 05/16/2024]
Abstract
Cyclophosphamide (CYP) is a chemotherapeutic drug used to treat various cancers. However, its clinical use is limited due to severe organ damage, particularly to the kidneys. While several phytochemicals have been identified as potential therapeutic targets for CYP nephrotoxicity, the nephroprotective effects of boswellic acid (BOSW) and betulinic acid (BET) have not yet been investigated. Our study used 42 rats divided into six equal groups. The study included six groups: control, CYP (200 mg/kg), CYP+BOSW20 (20 mg/kg), CYP+BOSW40 (40 mg/kg), CYP+BET20 (20 mg/kg), and CYP+BET40 (40 mg/kg). The pre-treatments with BOSW and BET lasted for 14 days, while the application of cyclophosphamide was performed intraperitoneally only on the 4th day of the study. After the experimental protocol, the animals were sacrificed, and their kidney tissues were isolated. Renal function parameters, histological examination, oxidative stress, and inflammation parameters were assessed both biochemically and at the molecular level in kidney tissue. The results showed that oxidative stress and inflammatory response were increased in the kidney tissue of rats treated with CYP, leading to impaired renal histology and function parameters (p < 0.05). Oral administration of both doses of BET and especially high doses of BOSW improved biochemical, oxidative, and inflammatory parameters significantly (p < 0.05). Histological studies also showed the restoration of normal kidney tissue architecture. BOSW and BET have promising biological activity against CYP-induced nephrotoxicity by attenuating inflammation and oxidative stress and enhancing antioxidant status.
Collapse
Affiliation(s)
- Mehmet Berköz
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey.
| | - Oğuzhan Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
4
|
Mohsin N, Akhtar MS, Alkahtani SA, Walbi IA, Alhazmi Y, Alam MN, Bhardwaj A. Nephroprotective Effect of Bergapten Against Cyclophosphamide-Mediated Renal Stress, Inflammation, and Fibrosis in Wistar Rats: Probable Role of NF-kB and TGF-β1 Signaling Molecules. ACS OMEGA 2024; 9:18296-18303. [PMID: 38680299 PMCID: PMC11044238 DOI: 10.1021/acsomega.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/07/2024] [Accepted: 03/27/2024] [Indexed: 05/01/2024]
Abstract
Cyclophosphamide (CPM) is a well-established antineoplastic drug with marked clinical outcomes in various types of cancers. Despite being a promising drug, its use is associated with significant renal toxicity and often limits its use, leading to compromised clinical outcomes. Therefore, this study explored the renal protective effect of bergapten (BGP), a natural bioactive compound that showed marked antioxidant, anti-inflammatory, anticancer, and neuroprotective effects. Till now, BGP has not been studied for its renal protective effect in an in vivo model. Animals were divided into control, toxic, BGP-3, BGP-10, and BGP Per se. The control group was treated with normal saline for 2 weeks. To the toxic group, CPM 200 mg/kg was given on day 7 as i.p. To BGP-3, 10, and Per se, BGP-3 and 10 mg/kg, ip was given 2 weeks with a single shot of CPM 200 day 7. To the Per se group, only BGP 10 mg/kg, ip was given from day 1 to day 14. After 14 days, animals were sacrificed, and kidneys were removed and studied for the markers of oxidative stress, inflammation, renal injury, renal fibrosis, and renal damage using biochemical, histopathological, and immunohistochemical studies. We found that BGP-10 effectively reversed the damage toward normal, whereas BGP-3 failed to exhibit a significant renal protective effect. We conclude that bergapten could be a potential renal protective drug, and hence, more detailed cellular molecular-based studies are needed to bring this drug from the bench to the bedside.
Collapse
Affiliation(s)
- Nehal Mohsin
- Department
of Clinical Pharmacy, College of Pharmacy, Najran University, P.O. Box 1988, Najran 1644, Kingdom of Saudi Arabia
| | - Mohammad Shabib Akhtar
- Department
of Clinical Pharmacy, College of Pharmacy, Najran University, P.O. Box 1988, Najran 1644, Kingdom of Saudi Arabia
| | - Saad A Alkahtani
- Department
of Clinical Pharmacy, College of Pharmacy, Najran University, P.O. Box 1988, Najran 1644, Kingdom of Saudi Arabia
| | - Ismail A Walbi
- Department
of Clinical Pharmacy, College of Pharmacy, Najran University, P.O. Box 1988, Najran 1644, Kingdom of Saudi Arabia
| | - Yasir Alhazmi
- Department
of Clinical Pharmacy, College of Pharmacy, Najran University, P.O. Box 1988, Najran 1644, Kingdom of Saudi Arabia
| | - Md. Niyaz Alam
- Ram-Esh
Institute of Vocational & Technical Education, Greater Noida, Uttar Pradesh 201306, India
| | - Alok Bhardwaj
- Lloyd
Institute of Management & Technology, Greater Noida, Uttar Pradesh 201306, India
| |
Collapse
|
5
|
Wu K, Wang B, Cao B, Ma W, Zhang Y, Cheng Y, Hu J, Gao Y. Protective role of pyrroloquinoline quinone against gentamicin induced cochlear hair cell ototoxicity. J Appl Toxicol 2024; 44:235-244. [PMID: 37650462 DOI: 10.1002/jat.4535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Gentamicin (GM) is one of the commonly used antibiotics in the aminoglycoside class but is ototoxic, which constantly impacts the quality of human life. Pyrroloquinoline quinone (PQQ) as a redox cofactor produced by bacteria was found in soil and foods that exert an antioxidant and redox modulator. It is well documented that the PQQ can alleviate inflammatory responses and cytotoxicity. However, our understanding of PQQ in ototoxicity remains unclear. We reported that PQQ could protect against GM-induced ototoxicity in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells in vitro. To evaluate reactive oxygen species (ROS) production and mitochondrial function, ROS and JC-1 staining, oxygen consumption rate (OCR), and extracellular acidification rate (ECAR) measurements in living cells, mitochondrial dynamics analysis was performed. GM-mediated damage was performed by reducing the production of ROS and inhibiting mitochondria biogenesis and dynamics. PQQ ameliorated the cellular oxidative stress and recovered mitochondrial membrane potential, facilitating the recovery of mitochondrial biogenesis and dynamics. Our in vitro findings improve our understanding of the GM-induced ototoxicity with therapeutic implications for PQQ.
Collapse
Affiliation(s)
- Kunyi Wu
- Core Research Laboratory, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Botao Wang
- Department of Otolaryngology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bo Cao
- Core Research Laboratory, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Weijun Ma
- Department of Otolaryngology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yan Zhang
- Department of Otolaryngology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ying Cheng
- Department of Otolaryngology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Juan Hu
- Department of Otolaryngology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ying Gao
- Department of Otolaryngology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Iqubal A, Najmi AK, Md S, Alkreathy HM, Ali J, Syed MA, Haque SE. Oral delivery of nerolidol alleviates cyclophosphamide-induced renal inflammation, apoptosis, and fibrosis via modulation of NF-κB/cleaved caspase-3/TGF-β signaling molecules. Drug Deliv 2023; 30:2241661. [PMID: 37559381 PMCID: PMC10946274 DOI: 10.1080/10717544.2023.2241661] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/29/2023] [Accepted: 07/09/2023] [Indexed: 08/11/2023] Open
Abstract
Cyclophosphamide (CP) is one of the most extensively used antineoplastic drug, but the nephrotoxicity caused by this drug is a major limiting factor for its use. Nerolidol (NERO) is a natural bioactive compound with diverse pharmacological actions. In Vitro and in vivo study was performed using HK-2 renal cells and Swiss Albino mice. Cell lines and animals were treated with NERO 25 and 50 µM + 30 µM CP (in vitro), 200 and 400 mg/kg, p.o. NERO from day 1 to day 15 + 200 mg/kg, i.p. CP on day 17 as single intraperitoneal injection (in vivo). The makers of oxidative stress, renal-specific injury markers, inflammation, apoptosis, fibrosis, and histopathological changes were studied. The study's outcome showed a significant reduction in the level of malonaldehyde and interleukin-6 (p < 0.01), tumor necrosis factor-α, IL-1β (p < 0.001), and an increase in the superoxide dismutase, catalase, glutathione and interleukin-10 level (p < 0.01), in the in vivo study when treated with NERO 400 and compared with CP 200. In Vitro study showed reduced expression of nuclear factor kappa light chain enhancer of activated B cells, cleaved caspase-3, kidney injury molecule-1 and transforming growth factor-β-1 (p < 0.001), when treated with NERO 50 µM whereas NERO 25 µM only reduced the level of cleaved caspase-3 (p < 0.05) when compared with 30 µM. NERO 400 also reduced uric acid (p < 0.05), urea (p < 0.01), blood urea nitrogen, and serum creatinine levels (p < 0.001) and increased the level of blood-urea-nitrogen/creatinine ratio (p < 0.001). Additionally, the level of fibrosis-specific markers such as transforming growth factor-β1, hyaluronic acid (p < 0.01), 4-hydroxyproline, a collagen-rich area in Masson's' trichome stain, and Smad3 expression was also significantly reduced (p < 0.001). Furthermore, the outcome of multiple renal staining showed structural reversal aberrations, reduction of the thick basement membrane, and glycogen level toward normal when treated with NERO 400. Thus, the study showed a novel mechanistic modality of NERO against cyclophosphamide-induced renal toxicity. The outcome of this study can be considered a step closer to the development of an adjuvant to mitigate cyclophosphamide-induced renal toxicity among patients treated with cyclophosphamide.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, New Delhi, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huda Mohammed Alkreathy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, New Delhi, India
| |
Collapse
|
7
|
Ramalingam V. NLRP3 inhibitors: Unleashing their therapeutic potential against inflammatory diseases. Biochem Pharmacol 2023; 218:115915. [PMID: 37949323 DOI: 10.1016/j.bcp.2023.115915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome has been linked to the release of pro-inflammatory cytokines and is essential for innate defence against infection and danger signals. These secreted cytokines improve the inflammatory response caused by tissue damage and associated inflammation. Consequently, the development of NLRP3 inflammasome inhibitors are viable option for the treatment of diverse inflammatory disorders. The significant anti-inflammatory effects of the NLRP3 inhibitors have severe side effects. Hence, the application of NLRP3 inhibitors against inflammatory disease has not yet been understood and most of the developed inhibitors are unsuccessful in clinical trials. The processes behind the NLRP3 complex, priming, and activation are the main emphasis of this review, which also covers therapeutical inhibitors of the NLRP3 inflammasome and potential therapeutic strategies for directing the NLRP3 inflammasome towards clinical development.
Collapse
Affiliation(s)
- Vaikundamoorthy Ramalingam
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Wang J, Zhang S, Hu L, Wang Y, Liu K, Le J, Tan Y, Li T, Xue H, Wei Y, Zhong O, He J, Zi D, Lei X, Deng R, Luo Y, Tang M, Su M, Cao Y, Liu Q, Tang Z, Lei X. Pyrroloquinoline quinone inhibits PCSK9-NLRP3 mediated pyroptosis of Leydig cells in obese mice. Cell Death Dis 2023; 14:723. [PMID: 37935689 PMCID: PMC10630350 DOI: 10.1038/s41419-023-06162-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 11/09/2023]
Abstract
Abnormal lipid metabolism and chronic low-grade inflammation are the main traits of obesity. Especially, the molecular mechanism of concomitant deficiency in steroidogenesis-associated enzymes related to testosterone (T) synthesis of obesity dominated a decline in male fertility is still poorly understood. Here, we found that in vivo, supplementation of pyrroloquinoline quinone (PQQ) efficaciously ameliorated the abnormal lipid metabolism and testicular spermatogenic function from high-fat-diet (HFD)-induced obese mice. Moreover, the transcriptome analysis of the liver and testicular showed that PQQ supplementation not only inhibited the high expression of proprotein convertase subtilisin/Kexin type 9 (PCSK9) but also weakened the NOD-like receptor family pyrin domain containing 3 (NLRP3)-mediated pyroptosis, which both played a negative role in T synthesis of Leydig Cells (LCs). Eventually, the function and the pyroptosis of LCs cultured with palmitic acid in vitro were simultaneously benefited by suppressing the expression of NLRP3 or PCSK9 respectively, as well the parallel effects of PQQ were affirmed. Collectively, our data revealed that PQQ supplementation is a feasible approach to protect T synthesis from PCSK9-NLRP3 crosstalk-induced LCs' pyroptosis in obese men.
Collapse
Affiliation(s)
- Jinyuan Wang
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Linlin Hu
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Yan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Ke Liu
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jianghua Le
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Yongpeng Tan
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Tianlong Li
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Haoxuan Xue
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yanhong Wei
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Ou Zhong
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Junhui He
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Dan Zi
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xin Lei
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Renhe Deng
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yafei Luo
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Masong Tang
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Mingxuan Su
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yichang Cao
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, China
| | - Zhihan Tang
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Xiaocan Lei
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
9
|
Mohamad Ishak NS, Ikemoto K. Pyrroloquinoline-quinone to reduce fat accumulation and ameliorate obesity progression. Front Mol Biosci 2023; 10:1200025. [PMID: 37214340 PMCID: PMC10196175 DOI: 10.3389/fmolb.2023.1200025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Obesity is a major health concern worldwide, and its prevalence continues to increase in several countries. Pyrroloquinoline quinone (PQQ) is naturally found in some foods and is available as a dietary supplement in its disodium crystal form. The potential health benefits of PQQ have been studied, considering its antioxidant and anti-inflammatory properties. Furthermore, PQQ has been demonstrated to significantly influence the functions of mitochondria, the organelles responsible for energy production within cells, and their dysfunction is associated with various health conditions, including obesity complications. Here, we explore PQQ properties that can be exploited in obesity treatment and highlight the underlying molecular mechanisms. We review animal and cell culture studies demonstrating that PQQ is beneficial for reducing the accumulation of visceral and hepatic fat. In addition to inhibiting lipogenesis, PQQ can increase mitochondria number and function, leading to improved lipid metabolism. Besides diet-induced obesity, PQQ ameliorates programing obesity of the offspring through maternal supplementation and alters gut microbiota, which reduces obesity risk. In obesity progression, PQQ mitigates mitochondrial dysfunction and obesity-associated inflammation, resulting in the amelioration of the progression of obesity co-morbidities, including non-alcoholic fatty liver disease, chronic kidney disease, and Type 2 diabetes. Overall, PQQ has great potential as an anti-obesity and preventive agent for obesity-related complications. Although human studies are still lacking, further investigations to address obesity and associated disorders are still warranted.
Collapse
|
10
|
Zhao P, Li H, Wang Z, Min W, Gao Y. Athelia rolfsii Exopolysaccharide Protection Against Kidney Injury in Lead-Exposed Mice via Nrf2 Signaling Pathway. Biol Trace Elem Res 2023; 201:1864-1877. [PMID: 35588039 DOI: 10.1007/s12011-022-03287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/06/2022] [Indexed: 11/02/2022]
Abstract
This study aimed to explore protective efficacy of Athelia rolfsii exopolysaccharides (AEPS) to mice kidney against lead-exposed injury with a focus on the role of nuclear factor erythroid-2-related factor 2 (Nrf2) signaling pathway. Lead accumulation in the kidney induces oxidative stress which causes low antioxidant activity, abnormal pathological changes, and apoptosis. Here, the changes in lead levels in the kidney and whole blood proved that AEPS inhibited lead accumulation. It might be related to AEPS enhancing glutathione (GSH) levels and glutathione-s-transferase (GST) activities, as well as the protein abundances of multidrug resistance-associated protein 1 (MRP1) and multidrug resistance-associated protein 2 (MRP2). Moreover, AEPS increased antioxidant activity by upregulating superoxide dismutase (SOD), catalase (CAT) activities, downregulating malondialdehyde (MDA) levels. It also restored kidney function by decreasing blood urea nitrogen (BUN) and creatinine (CRE) levels in the serum. Histopathologic analysis showed that AEPS alleviated the kidney injury induced by lead, too. AEPS also showed anti-apoptosis effect by downregulating caspase-3 and bax expression and upregulating bcl-2 expression. Importantly, AEPS activated Nrf2 signaling pathway by promoting nuclear translocation of Nrf2. However, all-trans-retinoic acid (ATRA), an Nrf2 inhibitor, reversed the effects on AEPS to activation of Nrf2, enhancement of antioxidant, alleviation of kidney injury, restoration of kidney function, prevention of apoptotic, and facilitation of lead exclusion. In brief, AEPS showed kidney protective effect and facilitated lead-expulsion in an Nrf2-dependent manner.
Collapse
Affiliation(s)
- Pan Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Hongmei Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
| | - ZhiChao Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| | - Yawen Gao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, People's Republic of China
| |
Collapse
|
11
|
Famurewa AC, Asogwa NT, Ezea SC. Antidiabetic drug sitagliptin blocks cyclophosphamide cerebral neurotoxicity by activating Nrf2 and suppressing redox cycle imbalance, inflammatory iNOS/NO/NF-κB response and caspase-3/Bax activation in rats. Int Immunopharmacol 2023; 116:109816. [PMID: 36774854 DOI: 10.1016/j.intimp.2023.109816] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/28/2023] [Indexed: 02/12/2023]
Abstract
Cyclophosphamide (CYP) is a classic DNA-interacting anticancer agent with broad application in chemotherapy. However, CYP cerebral neurotoxicity is a worrisome side effect for clinicians and patients. Strategies to mitigate the underlying oxidative inflammatory cascades and neuroapoptosis induced by CYP are urgently needed. Herein, we have repurposed an antidiabetic drug, sitagliptin (STG), for a possible abrogation of CYP-induced cerebral neurotoxicity in rats. Healthy rats were administered STG (20 mg/kg body weight) for 5 days prior to neurotoxicity induced by CYP (200 mg/kg body weight, ip) on day 5 only, and rats were sacrificed after 24 h post-CYP injection. CYP caused profound increases in the cerebral levels of nitric oxide (NO), acetylcholinesterase (AChE), malondialdehyde (MDA), interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), nuclear factor-kappaB (NF-κB), inducible nitric oxide synthase (iNOS), caspase-3 and Bax protein compared to the control. Furthermore, CYP markedly depressed the activities of glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD), along with levels of reduced glutathione (GSH) and nuclear factor erythroid 2-related factor2 (Nrf2) compared to the control (p < 0.05). Interestingly, STG pretreatment inhibited the CYP-induced alterations in caspase-3, Bax, pro-inflammatory cytokines, NO, iNOS, AChE, NF-κB, and restored the cerebral antioxidant apparatus, including the Nrf2 and histopathological abrasions. Therefore, these findings show that STG could be repurposed to prevent CYP-induced cerebral toxicity in the brain.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria; Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal University, Karnataka State, India.
| | - Nnaemeka T Asogwa
- Central Research and Diagnostic Laboratory, Tanke, Ilorin, Kwara State, Nigeria
| | - Samson C Ezea
- Department of Pharmacognosy and Environmental Medicine, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
12
|
Yin Y, Li H, Qin Y, Chen T, Zhang Z, Lu G, Shen J, Shen M. Moxibustion mitigates mitochondrial dysfunction and NLRP3 inflammatory activation in cyclophosphamide-induced premature ovarian insufficiency rats. Life Sci 2023; 314:121283. [PMID: 36528078 DOI: 10.1016/j.lfs.2022.121283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
AIMS This study aimed to investigate the protective effects of moxibustion on ovarian dysfunction in rats with cyclophosphamide (Cy)-induced premature ovarian insufficiency (POI). It also aimed at revealing its potential mechanisms and emphasizing its role in mitigating the mitochondrial dysfunction and NLRP3 inflammatory activation. MATERIALS AND METHODS POI models were established by the intraperitoneal administration of Cy using female Sprague-Dawley rats. Moxibustion (BL23 or CV4, CV8) was used to treat POI models for fifteen days. Vaginal smears, enzyme-linked immunosorbent assay, hematoxylin-eosin, tunnel staining, flow cytometry analysis, immunohistochemistry staining, qRT-PCR, and western blotting were conducted to evaluate the ovarian function, mitochondrial dysfunction, and NLRP3 inflammatory activation in this study. KEY FINDINGS Moxibustion could improve the disorder of the estrous cycles and reproductive hormone levels, promote follicular growth, reduce the number of atresia follicles, and alleviate the apoptosis of ovarian granulosa cells (GCs) in rats with POI. Furthermore, moxibustion mitigated the mitochondrial damage, reversed the elevated serum levels of IL-18 and IL-1β, and decreased their protein expression in the ovaries of rats with POI. Moxibustion significantly inhibited the expression of the mRNAs and proteins of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), caspase 1, and gasdermin D (GSDMD) in the ovaries of rats with POI. SIGNIFICANCE These results supported that moxibustion may ameliorate Cy-induced POI by mitigating the mitochondrial dysfunction and NLRP3 inflammatory activation. Targeted treatment of mitochondrial damage and NLRP3 inflammatory activation may be a novel therapeutic strategy for POI.
Collapse
Affiliation(s)
- Yaoli Yin
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongxiao Li
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yantong Qin
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ting Chen
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhizi Zhang
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ge Lu
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Shen
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Meihong Shen
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, China.
| |
Collapse
|
13
|
Uyumlu AB, Satılmış B, Atıcı B, Taşlıdere A. Phenethyl isothiocyanate protects against cyclophosphamide-induced nephrotoxicity via nuclear factor E2-related factor 2 pathway in rats. Exp Biol Med (Maywood) 2023; 248:157-164. [PMID: 36598044 PMCID: PMC10041055 DOI: 10.1177/15353702221139206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/06/2022] [Indexed: 01/05/2023] Open
Abstract
Phenethyl isothiocyanate (PEITC), a secondary metabolite in Cruciferous plants, exerts chemopreventive and antioxidant effects. However, its therapeutic potential in cyclophosphamide (CP)-induced nephrotoxicity is not clear. So, we focused to research on the effect of PEITC against renal toxicity caused by CP and its relationship to the Nrf2 signaling mechanism. Thirty female Wistar albino rats were allocated to three groups: control (n = 10), CP (n = 10), and PEITC-pretreated group (150 µmol/kg b.w. orally; n = 10). The antioxidant enzyme activities and levels of malondialdehyde (MDA), sirtuin 1 (SIRT1), glutathione-S-transferase (GST), nuclear factor E2-related factor 2 (Nrf2), nuclear factor kappa B (NF-κB), serum urea, and creatinine (Cr) were measured. In the CP group, serum urea and Cr, MDA, and NF-κB levels have risen, and the activities of antioxidant enzymes and SIRT1, Nrf2, and GST levels have reduced significantly (P < 0.05). PEITC diminished levels of Cr, urea, MDA, and NF-κB while it enhanced antioxidant enzyme activities and GST, Nrf2, and SIRT1 levels significantly (P < 0.05). Pretreatment with PEITC ameliorated kidney tissue injury. The renal protective effect of the PEITC was supported by the histological analysis of the kidney. PEITC prevented CP-induced nephrotoxicity by decreasing oxidative damage through Nrf2 and SIRT1 activation and NF-κB inhibition. Therefore, we have suggested that PEITC may be a useful agent for protection against CP-induced renal injury.
Collapse
Affiliation(s)
| | - Basri Satılmış
- Hepatology Research Laboratory, Liver Transplantation Institute, İnönü University, 44280 Malatya, Turkey
| | - Buğrahan Atıcı
- Department of Biochemistry, İnönü University, 44280 Malatya, Turkey
| | - Aslı Taşlıdere
- Department of Histology and Embryology, İnönü University, 44280 Malatya, Turkey
| |
Collapse
|
14
|
Ren Z, Yang F, Yao S, Bi L, Jiang G, Huang J, Tang Y. Effects of low molecular weight peptides from monkfish (Lophius litulon) roe on immune response in immunosuppressed mice. Front Nutr 2022; 9:929105. [PMID: 36211506 PMCID: PMC9532971 DOI: 10.3389/fnut.2022.929105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the immunomodulatory activation of low-molecular-weight peptides from monkfish (Lophius litulon) roe (named MRP) on cyclophosphamide (CTX)-induced immunosuppressed mice. Our results indicated that MRP (100 mg/kg/d BW) could significantly increase the body weight and immune organ index, and improve the morphological changes in the spleen and thymus of mice. These effects subsequently enhance the serum levels of interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, and immunoglobulin (Ig) A, IgM, and IgG. Furthermore, MRP could also improve CTX-induced oxidative stress, and activate the NF-κB and MAPK pathways in the spleen tissues. The findings reported herein indicate that MRP has a good immunomodulatory activation toward immunosuppressed mice, hence can potentially be developed as an immune adjuvant or functional food.
Collapse
Affiliation(s)
- Zhexin Ren
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Fei Yang
- Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Neonatal Intensive Care Unit, Hangzhou, China
| | - Sijia Yao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Lijun Bi
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Guanqin Jiang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Ju Huang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhejiang Ocean University, Zhoushan, China
- *Correspondence: Ju Huang
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
- Yunping Tang
| |
Collapse
|
15
|
Qu X, Zhai B, Liu Y, Chen Y, Xie Z, Wang Q, Wu Y, Liu Z, Chen J, Mei S, Wu J, You Z, Yu Y, Wang Y. Pyrroloquinoline quinone ameliorates renal fibrosis in diabetic nephropathy by inhibiting the pyroptosis pathway in C57BL/6 mice and human kidney 2 cells. Biomed Pharmacother 2022; 150:112998. [PMID: 35489281 DOI: 10.1016/j.biopha.2022.112998] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022] Open
Abstract
Diabetic nephropathy (DN), which is characterized by renal fibrosis, is a major complication of diabetes, a disease that afflicted more than 460 million people worldwide in 2019. Pyroptosis is an essential signaling pathway in DN-related injuries, such as renal fibrosis. Pyrroloquinoline quinone (PQQ) is a naturally occurring bioactive compound that protects human kidney 2 (HK-2) cells from oxidative stress-induced damage caused by high glucose concentrations. However, the nature and underlying mechanism of the effect of PQQ on DN-related renal fibrosis remains unclear. In this study, we evaluated whether PQQ has potential protective effects against renal fibrosis due to DN by establishing type 1 diabetes in mice via streptozotocin treatment and then inhibiting their pyroptosis signaling pathway. We found that compared to control mice, the area of renal fibrosis and injury were significantly increased in diabetic mice, and this was accompanied by increased levels of expression of collagen Ⅰ and transforming growth factor-β1; increased concentrations of the inflammatory cytokines, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α; and activation of the pyroptosis pathway components nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3), caspase-1, IL-1β, and IL-18. All of these changes were reversed by PQQ treatment. Analogously, we treated cultured HK-2 cells with a high concentration of glucose (35 mmol/L), which caused these cells to exhibit significantly increased concentrations of reactive oxygen species (ROS), phosphorylated (p)-nuclear factor kappa B (NF-κB), p-IkappaB, NLRP3, caspase-1, IL-1β, and IL-18, and the loss of mitochondrial transmembrane potential. However, PQQ treatment significantly blunted these effects. In conclusion, in this study we demonstrated that PQQ attenuates renal fibrosis by alleviating mitochondrial dysfunction, reducing ROS production, and inhibiting the activation of the NF-κB/pyroptosis pathway under conditions of DN and hyperglycemia.
Collapse
Affiliation(s)
- Xuefeng Qu
- Institute of Food Science and Engineering, Hangzhou Medical College, Tianmushan Road 182th, Hangzhou, Zhejiang, PR China
| | - Bingzhong Zhai
- Institute of Food Science and Engineering, Hangzhou Medical College, Tianmushan Road 182th, Hangzhou, Zhejiang, PR China
| | - Yifeng Liu
- Institute of Food Science and Engineering, Hangzhou Medical College, Tianmushan Road 182th, Hangzhou, Zhejiang, PR China
| | - Yihao Chen
- Institute of Food Science and Engineering, Hangzhou Medical College, Tianmushan Road 182th, Hangzhou, Zhejiang, PR China
| | - Zemi Xie
- Institute of Food Science and Engineering, Hangzhou Medical College, Tianmushan Road 182th, Hangzhou, Zhejiang, PR China
| | - Qinxi Wang
- Institute of Food Science and Engineering, Hangzhou Medical College, Tianmushan Road 182th, Hangzhou, Zhejiang, PR China
| | - Yuejin Wu
- Institute of Food Science and Engineering, Hangzhou Medical College, Tianmushan Road 182th, Hangzhou, Zhejiang, PR China
| | - Zhen Liu
- Institute of Food Science and Engineering, Hangzhou Medical College, Tianmushan Road 182th, Hangzhou, Zhejiang, PR China
| | - Jianguo Chen
- Institute of Food Science and Engineering, Hangzhou Medical College, Tianmushan Road 182th, Hangzhou, Zhejiang, PR China
| | - Song Mei
- Institute of Food Science and Engineering, Hangzhou Medical College, Tianmushan Road 182th, Hangzhou, Zhejiang, PR China
| | - Jie Wu
- Institute of Food Science and Engineering, Hangzhou Medical College, Tianmushan Road 182th, Hangzhou, Zhejiang, PR China
| | - Zhenqiang You
- Institute of Food Science and Engineering, Hangzhou Medical College, Tianmushan Road 182th, Hangzhou, Zhejiang, PR China
| | - Yongjie Yu
- Hangzhou Red Cross Hospital, Chengdong Road 208th, Hangzhou, Zhejiang, PR China.
| | - Yin Wang
- Institute of Food Science and Engineering, Hangzhou Medical College, Tianmushan Road 182th, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
16
|
Hu J, Tong C, Zhou J, Gao C, Olatunji OJ. Protective Effects of Shorea roxburghii Phenolic Extract on Nephrotoxicity Induced by Cyclophosphamide: Impact on Oxidative Stress, Biochemical and Histopathological Alterations. Chem Biodivers 2022; 19:e202200053. [PMID: 35352457 DOI: 10.1002/cbdv.202200053] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 11/09/2022]
Abstract
Cyclophosphamide (CTX) is one of the most commonly used alkylating agents for the treatment of various cancers; however, CTX-induced nephrotoxicity is one of the most prevailing side effects of the drug. Shorea roxburghii is a plant with diverse bioactivities including antioxidant, anti-inflammatory and renoprotective effects. This study investigated the nephroprotective effect of Shorea roxburghii phenolic extract (SRPF) against CTX-induced nephrotoxicity in rats. The rats were treated with SRPF (100 and 400 mg/kg) for 5 weeks and were concomitantly administered with CTX. The results indicated that treatment with SRPF significantly decreased serum creatinine, blood urea nitrogen (BUN), uric acid as well as renal MDA, IL-6, TNF-α, IL-1β, NF-kB and caspase-3 levels. Furthermore, SRPF augmented the activities of renal SOD, CAT, GSH and GPx. SRPF also improved renal histopathological damages caused by CTX administration. In conclusion, these results suggested that SRPF showed substantial protective effects against CTX-mediated renal toxicity via its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Jun Hu
- Blood Purification Center, Wannan Medical College Affiliated Yijishan Hospital, Wuhu, 241001, Anhui, China
| | - Changjun Tong
- Blood Purification Center, Wannan Medical College Affiliated Yijishan Hospital, Wuhu, 241001, Anhui, China
| | - Jiajun Zhou
- Blood Purification Center, Wannan Medical College Affiliated Yijishan Hospital, Wuhu, 241001, Anhui, China
| | - Chaoqing Gao
- Blood Purification Center, Wannan Medical College Affiliated Yijishan Hospital, Wuhu, 241001, Anhui, China
| | - Opeyemi Joshua Olatunji
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand
| |
Collapse
|
17
|
Engin S, Barut EN, Yaşar YK, Soysal AÇ, Arıcı T, Kerimoğlu G, Kadıoğlu M, Sezen SF. Trimetazidine attenuates cyclophosphamide-induced cystitis by inhibiting TLR4-mediated NFκB signaling in mice. Life Sci 2022; 301:120590. [PMID: 35504331 DOI: 10.1016/j.lfs.2022.120590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022]
Abstract
AIM Cyclophosphamide (CP)-induced cystitis is a challenging clinical problem involving inflammation and dysfunction of bladder. Trimetazidine (TMZ) is an anti-anginal drug with anti-oxidant and anti-inflammatory properties. We aimed to investigate the protective effects of TMZ in CP-induced cystitis via inhibiting TLR4/NFκB signaling. MAIN METHODS Balb/c mice were administrated TMZ (10 or 20 mg/kg/day) intraperitoneally (i.p.) for 5 consecutive days before CP. On day 6, cystitis was induced by a single dose of CP (300 mg/kg, i.p.). Mesna (2-mercaptoethane sulfonate sodium; 30 mg/kg, i.p.) was administered 20 min before and at 4 and 8 h after the CP injection. After 24 h of cystitis induction, the bladders were removed for histopathological evaluation, contractility studies, biochemical analysis and western blotting. MTT assay was performed in a cancer cell line (MDA-MB-231) to evaluate the effect of TMZ on the cytotoxicity of CP. KEY FINDINGS CP-induced severe cystitis was confirmed by histological disturbances and the decrease in carbachol-evoked contractions of detrusor strips, which was partially improved by TMZ (20 mg/kg/day). SOD activity and GSH content were decreased whereas TNF-α and IL-1β levels were increased in the bladders of CP-treated mice, which were restored by TMZ or mesna. TMZ reduced the CP-induced increase in the protein expressions of caspase-3, TLR4 and phosphorylated-NFκB in bladder tissues. TMZ alone decreased the cell viability and TMZ also enhanced the cytotoxicity of CP. SIGNIFICANCE Our study provides the first preclinical evidence that TMZ attenuates CP-induced urotoxicity by enhancing anti-oxidant capacity and suppressing inflammation possibly via downregulating TLR4-mediated NFκB signaling while augmenting the cytotoxicity of CP.
Collapse
Affiliation(s)
- Seçkin Engin
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkiye.
| | - Elif Nur Barut
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkiye
| | - Yeşim Kaya Yaşar
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkiye; Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkiye
| | - Aysun Çelik Soysal
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Bülent Ecevit University, Zonguldak, Turkiye
| | - Tuğba Arıcı
- Başaksehir Cam and Sakura City Hospital, İstanbul, Turkiye
| | - Gökçen Kerimoğlu
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye
| | - Mine Kadıoğlu
- Department of Medical Pharmacology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye
| | - Sena F Sezen
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkiye; Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkiye
| |
Collapse
|
18
|
Xiang X, Wang R, Chen L, Chen Y, Zheng B, Deng S, Liu S, Sun P, Shen G. Immunomodulatory activity of a water-soluble polysaccharide extracted from mussel on cyclophosphamide-induced immunosuppressive mice models. NPJ Sci Food 2022; 6:26. [PMID: 35478196 PMCID: PMC9046246 DOI: 10.1038/s41538-022-00140-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/25/2022] [Indexed: 12/22/2022] Open
Abstract
This study aimed to investigate the protective effect of mussel polysaccharide (MP) on cyclophosphamide (Cy)-induced intestinal mucosal immunosuppression and microbial dysbiosis in mice. MP was shown to stimulate secretion of cytokines (SIgA, IL-2, IF-γ, IL-4, IL-10) and production of transcription factors (occludin, claudin-1, ZO-1, mucin-2, IL-2, IF-γ, IL-4, IL-10). Key proteins (p-IκB-α, p-p65) of the NF-κB pathway were upregulated after MP administration. SCFAs levels, which were decreased after the Cy treatment, were improved after treatment with MP. Furthermore, 16 S rRNA sequencing data of fecal samples revealed, through α-diversity and β-diversity analysis, that MP improved microbial community diversity and modulate the overall composition of gut microbiota. Taxonomic composition analysis showed that MP increased the abundance of probiotics species (Lactobacillus) and decreased the proportion of pathogenic species (Desulfovibrio). These findings suggested that MP has a potential immunomodulatory activity on the immunosuppressive mice.
Collapse
Affiliation(s)
- Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Rui Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Lin Chen
- Sericultural and Tea Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Yufeng Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Bin Zheng
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316000, People's Republic of China
| | - Shanggui Deng
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316000, People's Republic of China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China. .,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, China. .,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, China. .,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People's Republic of China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, 310014, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Guoxin Shen
- Sericultural and Tea Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
19
|
Potential Protective Effects of Antioxidants against Cyclophosphamide-Induced Nephrotoxicity. Int J Nephrol 2022; 2022:5096825. [PMID: 35469319 PMCID: PMC9034963 DOI: 10.1155/2022/5096825] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/11/2022] [Accepted: 03/24/2022] [Indexed: 11/18/2022] Open
Abstract
Cyclophosphamide is an alkylating antineoplastic agent, and it is one of the most successful drugs with wide arrays of clinical activity. It has been in use for several types of cancer treatments and as an immunosuppressive agent for the management of autoimmune and immune-mediated diseases. Nowadays, its clinical use is limited due to various toxicities, including nephrotoxicity. Even though the mechanisms are not well understood, cyclophosphamide-induced nephrotoxicity is reported to be mediated through oxidative stress. This review focuses on the potential role of natural and plant-derived antioxidants in preventing cyclophosphamide-induced nephrotoxicity.
Collapse
|
20
|
Tian S, Jiang X, Tang Y, Han T. Laminaria japonica fucoidan ameliorates cyclophosphamide-induced liver and kidney injury possibly by regulating Nrf2/HO-1 and TLR4/NF-κB signaling pathways. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2604-2612. [PMID: 34689333 DOI: 10.1002/jsfa.11602] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/08/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND During clinical practice, cyclophosphamide (CTX) can lead to liver and kidney injury in vivo. In this study, we established a liver and kidney injury model by injecting CTX (80 mg kg-1 d-1 ) into male ICR mice, and then mice were treated with saline and fucoidan (20 or 40 mg kg-1 ), respectively. Subsequently, the liver and kidney toxicity indices, the expression levels of malonic dialdehyde (MDA), inflammatory factors, and the main protein levels of the Nrf2/HO-1 and TLR4/NF-κB pathways were determined. RESULTS Our results indicated that fucoidan could significantly decrease serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine (CRE), and urea (BUN) in the test group compared to the model group. Fucoidan administration caused reductions in MDA, interleukin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNF-α) levels and improved superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities in the liver and kidney of CTX-induced mice. Fucoidan up-regulated the Nrf2/HO-1 pathway and enhanced the protein levels of Nrf2, HO-1, GCLM, and NQO1. Moreover, fucoidan down-regulated the TLR4/NF-κB pathway, as indicated by decreased levels of TLR4, NF-κB p65, NF-κB p50, and increased IκBα level in liver and kidney tissues. CONCLUSION Our studies suggest that fucoidan can ameliorate CTX-induced liver and kidney injury, potentially via up-regulating the Nrf2/HO-1 pathway and inhibiting the TLR4/NF-κB pathway. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shanshan Tian
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xiaoxia Jiang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
21
|
Qian L, Yang F, Lin X, Jiang S, Zhang Y, Tang Y. Pyrroloquinoline quinone ameliorates liver injury in mice induced by cyclophosphamide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30383-30393. [PMID: 34997497 DOI: 10.1007/s11356-021-17990-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The current study aimed to investigate the potential ameliorative effects of pyrroloquinoline quinone (PQQ) on cyclophosphamide (CTX)-induced liver injury in mice. The liver injury model was established by injecting mice with CTX (80 mg/kg/day). Liver function indices, antioxidant enzyme activities, and inflammatory cytokines were evaluated. In addition, protein expression levels of the nuclear factor E2-related factor 2 (Nrf2) and nuclear factor kappa-B (NF-κB) pathways in the liver tissues were determined using western blot. The results indicated that PQQ decreased the serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and the malondialdehyde (MDA), interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α) levels in the liver tissues. Moreover, PQQ enhanced the activities of oxidative stress markers to alleviate CTX induced oxidative stress. Furthermore, the expression levels of heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H quinone oxidoreductase 1 (NQO1) were significantly increased, and the expression levels of NF-κB p50, NF-κB p65, and inhibitor of NF-κB kinase alpha (IKKα) were significantly decreased after PQQ administration, suggesting that PQQ alleviated CTX-induced liver injury via activating the Nrf2-mediated antioxidant response pathway, and inhibiting the NF-κB-mediated inflammation pathway. Therefore, PQQ can be potentially used as a dietary supplement or functional foods for alleviating the CTX-induced liver injury.
Collapse
Affiliation(s)
- Li Qian
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Fei Yang
- Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Neonatal Intensive Care Unit, Hangzhou, 310008, People's Republic of China
| | - Xinhui Lin
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Su Jiang
- ECA Healthcare Inc, Shanghai, 201101, People's Republic of China
| | - Yun Zhang
- Qianjiang College, Hangzhou Normal University, Hangzhou, 310012, People's Republic of China.
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China.
| |
Collapse
|
22
|
Abstract
The widely distributed, essential redox factor pyrroloquinoline quinone (PQQ, methoxatin) (1) was discovered in the mid-1960s. The breadth and depth of its biological effects are steadily being revealed, and understanding its biosynthesis at the genomic level is a continuing process. In this review, aspects of the chemistry, biology, biosynthesis, and commercial production of 1 at the gene level, and some applications, are presented from discovery through to mid-2021.
Collapse
Affiliation(s)
- Geoffrey A Cordell
- Natural Products Inc., Evanston, Illinois 60202, United States.,Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | | |
Collapse
|
23
|
Liang Q, Zhao Q, Hao X, Wang J, Ma C, Xi X, Kang W. The Effect of Flammulina velutipes Polysaccharide on Immunization Analyzed by Intestinal Flora and Proteomics. Front Nutr 2022; 9:841230. [PMID: 35155543 PMCID: PMC8832141 DOI: 10.3389/fnut.2022.841230] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
Proteomics and intestinal flora were used to determine the mechanism of immune modulatory effects of Flammulina velutipes polysaccharide on immunosuppressed mice. The results showed that compared with the model group, F. velutipes polysaccharide could increase thymus and spleen indices and improve thymus tissue structure in mice; IL-2 and IL-4 contents were significantly increased and IL-6 and TNF-α contents were significantly decreased; serum acid phosphatase (ACP), lactate dehydrogenase (LDH) and total antioxidant capacity (T-AOC) activities were increased (P < 0.05); in the liver, superoxide dismutase (SOD) and catalase (CAT) activities were increased (P < 0.001), while malondialdehyde (MDA) content was decreased (P < 0.001). Proteomics discovered that F. velutipes polysaccharides may exert immune modulatory effects by participating in signaling pathways such as immune diseases, transport and catabolism, phagosomes and influenza A, regulating the immune-related proteins Transferrin receptor protein 1 (TFRC) and Radical S-adenosyl methionine domain-containing protein 2 (RSAD2), etc. Gut microbial studies showed that F. velutipes polysaccharides could increase the abundance of intestinal flora and improve the flora structure. Compared to the model group, the content of short-chain fatty acids (SCFAs) and the relative abundance of SCFA-producers Bacteroides and Alloprevotella were increased in the F. velutipes polysaccharide administration group, while Lachnospiraceae_NK4A136_group and f_Lachnospiraceae_Unclassified decreased in relative abundance. Thus, F. velutipes polysaccharide may play an immunomodulatory role by regulating the intestinal environment and improving the balance of flora.
Collapse
Affiliation(s)
- Qiongxin Liang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Functional Food Engineering Technology Research Center, Kaifeng, China
| | - Qingchun Zhao
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Functional Food Engineering Technology Research Center, Kaifeng, China
| | - Xuting Hao
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Jinmei Wang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Functional Food Engineering Technology Research Center, Kaifeng, China
| | - Changyang Ma
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Functional Food Engineering Technology Research Center, Kaifeng, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng, China
- *Correspondence: Changyang Ma
| | - Xuefeng Xi
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- College of Physical Education, Henan University, Kaifeng, China
- Xuefeng Xi
| | - Wenyi Kang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Functional Food Engineering Technology Research Center, Kaifeng, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng, China
- Wenyi Kang
| |
Collapse
|
24
|
Qian L, Tian S, Jiang S, Tang Y, Han T. DHA-enriched phosphatidylcholine from Clupea harengus roes regulates the gut–liver axis to ameliorate high-fat diet-induced non-alcoholic fatty liver disease. Food Funct 2022; 13:11555-11567. [DOI: 10.1039/d2fo02672d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DHA-enriched phosphatidylcholine from Clupea harengus roes could likely be used as a functional food supplement for the prevention of high-fat diet-induced non-alcoholic fatty liver disease via the gut–liver axis.
Collapse
Affiliation(s)
- Li Qian
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shanshan Tian
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Su Jiang
- ECA Healthcare Inc, Shanghai 201101, China
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| |
Collapse
|
25
|
Zhang Y, Chang J, Gao H, Qu X, Zhai J, Tao L, Sun J, Song Y. Huaiqihuang (HQH) granule alleviates cyclophosphamide-induced nephrotoxicity via suppressing the MAPK/NF-κB pathway and NLRP3 inflammasome activation. PHARMACEUTICAL BIOLOGY 2021; 59:1425-1431. [PMID: 34693876 PMCID: PMC8547856 DOI: 10.1080/13880209.2021.1990356] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
CONTEXT Severe nephrotoxicity greatly limits the clinical use of the common effective chemotherapeutic agent cyclophosphamide (CYP). Huaiqihuang (HQH) is a Chinese herbal complex with various pharmacological activities, widely used for treating kidney disease. OBJECTIVE This study estimates the protective effect of HQH against CYP-induced nephrotoxicity in rats. MATERIALS AND METHODS Four groups of 10 Sprague-Dawley rats were pre-treated with once-daily oral gavage of 3 and 6 mg/kg HQH for 5 days before receiving a single dose of CYP (200 mg/kg i.p.) on the 5th day; the control group received equivalent dose of saline. Renal function indices, morphological changes, oxidative stress, apoptosis and inflammatory mediators were measured. In addition, phosphorylation of the NF-κB/MAPK pathway and the activation of the NLRP3 inflammasome were analysed. RESULTS Both doses of HQH reduced the levels of serum creatinine (31.27%, 43.61%), urea nitrogen (22.66%, 32.27%) and urine protein (12.87%, 15.98%) in the CYP-treated rats, and improved histopathological aberrations. Additionally, HQH decreased the production of MDA (37.02%, 46.18%) and increased the activities of antioxidant enzyme CAT (59.18%, 112.25%) and SOD (67.10%, 308.34%) after CYP treatment. HQH protected against CYP-induced nephrotoxicity by modulating apoptosis-related protein and suppressing the inflammatory responses. Furthermore, the phosphorylation of the NF-κB/MAPK pathway and the activation of the NLRP3 inflammasome were significantly boosted in CYP-treated rats, which was also abrogated by HQH treatment. CONCLUSIONS HQH effectively protected against CYP-induced nephrotoxicity, which was associated with regulating oxidative stress, apoptosis and inflammation, and so HQH may be a useful agent for treating nephrotoxicity caused by CYP.
Collapse
Affiliation(s)
- Yueming Zhang
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, China
| | - Jian Chang
- Department of Pediatric Oncology, the First Hospital of Jilin University, Changchun, China
| | - Huan Gao
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, China
| | - Xiaoyu Qu
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, China
| | - Jinghui Zhai
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, China
| | - Lina Tao
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, China
| | - Jingmeng Sun
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, China
| | - Yanqing Song
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, China
- CONTACT Yanqing Song Department of Pharmacy, the First Hospital of Jilin University, Changchun130021, China
| |
Collapse
|
26
|
Pyrroloquinoline-Quinone Is More Than an Antioxidant: A Vitamin-like Accessory Factor Important in Health and Disease Prevention. Biomolecules 2021; 11:biom11101441. [PMID: 34680074 PMCID: PMC8533503 DOI: 10.3390/biom11101441] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Pyrroloquinoline quinone (PQQ) is associated with biological processes such as mitochondriogenesis, reproduction, growth, and aging. In addition, PQQ attenuates clinically relevant dysfunctions (e.g., those associated with ischemia, inflammation and lipotoxicity). PQQ is novel among biofactors that are not currently accepted as vitamins or conditional vitamins. For example, the absence of PQQ in diets produces a response like a vitamin-related deficiency with recovery upon PQQ repletion in a dose-dependent manner. Moreover, potential health benefits, such as improved metabolic flexibility and immuno-and neuroprotection, are associated with PQQ supplementation. Here, we address PQQ's role as an enzymatic cofactor or accessory factor and highlight mechanisms underlying PQQ's actions. We review both large scale and targeted datasets demonstrating that a neonatal or perinatal PQQ deficiency reduces mitochondria content and mitochondrial-related gene expression. Data are reviewed that suggest PQQ's modulation of lactate acid and perhaps other dehydrogenases enhance NAD+-dependent sirtuin activity, along with the sirtuin targets, such as PGC-1α, NRF-1, NRF-2 and TFAM; thus, mediating mitochondrial functions. Taken together, current observations suggest vitamin-like PQQ has strong potential as a potent therapeutic nutraceutical.
Collapse
|
27
|
Zhang J, Zhou HC, He SB, Zhang XF, Ling YH, Li XY, Zhang H, Hou DD. The immunoenhancement effects of sea buckthorn pulp oil in cyclophosphamide-induced immunosuppressed mice. Food Funct 2021; 12:7954-7963. [PMID: 34251375 DOI: 10.1039/d1fo01257f] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, the immunomodulatory effect of sea buckthorn (SBT) pulp oil was elucidated in immunosuppressed Balb/c mice induced by cyclophosphamide (CTX). The results showed that SBT pulp oil could reverse the decreasing trend of body weight, thymus/spleen index and hematological parameters induced by CTX. Compared with immunosuppressive mice induced by CTX, SBT pulp oil could enhance NK cytotoxicity, macrophage phagocytosis, and T lymphocyte proliferation, and regulate the proportion of T cell subsets in mesenteric lymph nodes (MLN), and promote the production of secretory immunoglobulin A (sIgA), IFN-γ, IL-2, IL-4, IL-12 and TNF-α in the intestines. In addition, SBT pulp oil can promote the production of short fatty acids (SCFAs), increase the diversity of gut microbiota, improve the composition of intestinal flora, increase the abundance of Alistipes, Bacteroides, Anaerotruncus, Lactobacillus, ASF356, and Roseburia, while decreasing the abundance of Mucispirillum, Anaeroplasma, Pelagibacterium, Brevundimonas, Ochrobactrum, Acinetobacter, Ruminiclostridium, Blautia, Ruminiclostridium, Oscillibacter, and Faecalibaculum. This study shows that SBT pulp oil can regulate the diversity and composition of intestinal microflora in CTX-induced immunosuppressive Balb/c mice, thus enhancing the intestinal mucosa and systemic immune response. The results can provide a basis for understanding the function of SBT pulp oil and its application as a new probiotic and immunomodulator.
Collapse
Affiliation(s)
- Jin Zhang
- Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, 313000, China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wei S, Ma W, Zhang B, Li W. NLRP3 Inflammasome: A Promising Therapeutic Target for Drug-Induced Toxicity. Front Cell Dev Biol 2021; 9:634607. [PMID: 33912556 PMCID: PMC8072389 DOI: 10.3389/fcell.2021.634607] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
Drug-induced toxicity, which impairs human organ function, is a serious problem during drug development that hinders the clinical use of many marketed drugs, and the underlying mechanisms are complicated. As a sensor of infections and external stimuli, nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome plays a key role in the pathological process of various diseases. In this review, we specifically focused on the role of NLRP3 inflammasome in drug-induced diverse organ toxicities, especially the hepatotoxicity, nephrotoxicity, and cardiotoxicity. NLRP3 inflammasome is involved in the initiation and deterioration of drug-induced toxicity through multiple signaling pathways. Therapeutic strategies via inhibiting NLRP3 inflammasome for drug-induced toxicity have made significant progress, especially in the protective effects of the phytochemicals. Growing evidence collected in this review indicates that NLRP3 is a promising therapeutic target for drug-induced toxicity.
Collapse
Affiliation(s)
- Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wanjun Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
29
|
Zhang Z, Pan T, Liu C, Shan X, Xu Z, Hong H, Lin H, Chen J, Sun H. Cyclophosphamide induced physiological and biochemical changes in mice with an emphasis on sensitivity analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111889. [PMID: 33461014 DOI: 10.1016/j.ecoenv.2020.111889] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/21/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
The widespread use of cyclophosphamide (CP) in medical treatment had caused ubiquitous contamination in the environment. To data, many studies have been carried out on the toxic effect of CP. However, among these toxic effects of CP, which are the most sensitive remains unclear. Present study aimed to investigate the toxicity of CP on mice and evaluate the sensitivity of physiological-biochemical parameters upon exposure of mice to CP. Results showed that as compared with the control group, CP caused significant reduction in body weight (p < 0.01), spleen coefficient (p < 0.01), leukocyte density (p < 0.01) and alanine transaminase (ALT) in kidney (p < 0.01); However superoxide dismutase (SOD), malondialdehyde (MDA), ALT in liver and creatinine (Cr) in kidney significantly (p < 0.05) increased. Among the suppressed physiological and biochemical parameters, the sensitivity to CP toxicity was generally ranked as body weight > leukocyte density > ALT in kidney > spleen coefficient; while among the stimulated parameters, the sensitivity was ranked as MDA (liver) > Cr (kidney) > ALT (liver). Overall, the most sensitive parameters to CP toxicity may be associated with growth, immune system and the normal function of liver and kidney.
Collapse
Affiliation(s)
- Zhiying Zhang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China
| | - Ting Pan
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China
| | - Chunrong Liu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China
| | - Xiaoyun Shan
- Jinhua Municipal Central Hospital, Jinhua, China
| | - Zeqiong Xu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China
| | - Huachang Hong
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China.
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China
| | - Jianrong Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China; Jinhua Municipal Central Hospital, Jinhua, China
| | - Hongjie Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China.
| |
Collapse
|
30
|
Arruri VK, Gundu C, Kalvala AK, Sherkhane B, Khatri DK, Singh SB. Carvacrol abates NLRP3 inflammasome activation by augmenting Keap1/Nrf-2/p62 directed autophagy and mitochondrial quality control in neuropathic pain. Nutr Neurosci 2021; 25:1731-1746. [PMID: 33641628 DOI: 10.1080/1028415x.2021.1892985] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Objectives: We aimed to evaluate the effect of carvacrol (CRC), a phenolic monoterpene with high nutritional value on NLRP3 activation against chronic constriction injury (CCI) of sciatic nerve induced neuropathic pain (NP) in rats and in lipopolysacharide (LPS) induced neuroinflammation in neuro2a (N2A) cells. Methods: NP was induced in male SD rats by performing CCI and CRC (30 and 60 mg/kg, p.o) was administered for 14 days. Behavioural and functional parameters were evaluated using standard procedures. Various molecular experimentations were conducted to evaluate the efficacy of CRC against CCI induced neuropathy and in LPS (1 μg/ml) primed and ATP (5 μM) treated N2A cells.Results: CCI resulted in marked development of hyperalgesia and allodynia. Further, CCI rats, LPS and ATP treated N2A cells showed enhanced expression of NLRP3, ASC, Caspase-1 and IL-1β. In addition, CCI rats exhibited diminished levels of Nrf-2 with an increase in Keap1 expression. Also, CCI animals manifested with compromised mitochondrial function along with decreased autophagy markers and enhanced p62 levels when compared to sham rats. However, CRC administration significantly ameliorated these changes suggesting NLRP3 inhibition by CRC may be attributed to activation of autophagy via Keap1/Nrf-2/p62 forward feedback loop and augmentation of mitochondrial quality control. Intriguingly, pretreatment of CRC (50 and 100 μM) to LPS and ATP treated N2A cells resulted in decreased colocalization of NLRP3 and ASC.Discussion: These findings revealed the neuroprotective potential of CRC against CCI induced NP and delineate the critical role of autophagy and mitochondrial quality control in NLRP3 regulation.
Collapse
Affiliation(s)
- Vijay Kumar Arruri
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, India
| | - Chayanika Gundu
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, India
| | - Anil Kumar Kalvala
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, India
| | - Bhoomika Sherkhane
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, India
| | - Dharmendra Kumar Khatri
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, India
| | - Shashi Bala Singh
- Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, India
| |
Collapse
|
31
|
Effects of Diet Supplemented with Excess Pyrroloquinoline Quinone Disodium on Growth Performance, Blood Parameters and Redox Status in Weaned Pigs. Animals (Basel) 2021; 11:ani11020359. [PMID: 33535427 PMCID: PMC7912013 DOI: 10.3390/ani11020359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Weaning is a vital process for weaned pigs since piglets are exposed to psychologic and environmental stresses. These stresses converge on the pig to cause low feed consumption and weight gain meanwhile increased risk of diarrhea and mortality during the early postweaning period. The use of antibiotic growth promoters to help prevent weaning stress in weaned pigs has been forbidden in the European Union, Korea, Japan and China. Pyrroloquinoline quinone disodium (PQQ·Na2) is increasing interest in use of alternatives to in-feed antibiotics. In this study, we found PQQ·Na2 can improve growth performance meanwhile improves antioxidant status of weaned pigs. A high oral dose of PQQ·Na2 does not appear to have harmful effects on weaned pigs. Abstract The research was implemented to assess the safety of feeding excess of pyrroloquinoline quinone disodium (PQQ·Na2) to 108 Duroc × Landrace × Large White weaned pigs (BW = 8.38 ± 0.47 kg). Pigs were weaned at 28 d and randomly distributed to one of three diets with six replicates and six pigs per replicate (three males and three females). Pigs in the control group were fed a corn-soybean meal-based diet (without growth promoter) while the two experimental diets were supplied with 7.5 and 75.0 mg/kg PQQ·Na2, respectively. Average daily gain (ADG), average daily feed intake (ADFI), feed conversion (F:G), diarrhea incidence, hematology, serum biochemistry, organ index and general health were determined. Diets supplementation with 7.5 mg/kg PQQ·Na2 in weaned pigs could increase ADG during the entire experimental period (p < 0.05). And there was a tendency to decrease F:G (p = 0.063). The F:G of weaned pigs fed 7.5 and 75.0 mg/kg PQQ·Na2 supplemented diets was decreased by 9.83% and 8.67%, respectively, compared to the control group. Moreover, pigs had reduced diarrhea incidence (p < 0.01) when supplemented with PQQ·Na2. No differences were observed between pigs supplemented with 0.0, 7.5 and 75.0 mg/kg PQQ·Na2 diets on hematological and serum biochemical parameters as well as histological assessment of heart, liver, spleen, lung and kidney. At day 14, pigs had increased activity of glutathione peroxidase (GSH-Px) (p < 0.05), catalase (CAT) (p < 0.05) and total antioxidant capacity (T-AOC) (p < 0.05), and the serum concentration of malondialdehyde (MDA) was decreased (p < 0.01) with PQQ·Na2 supplementation. At day 28, pigs had increased activities of total superoxide dismutase (T-SOD) (p < 0.01), GSH-Px (p < 0.01), CAT (p < 0.05) and T-AOC (p < 0.01), and serum concentration of MDA was lower (p < 0.01) with PQQ·Na2 supplementation. In conclusion, PQQ·Na2 can improve weaned pigs growth performance and serum antioxidant status. Meanwhile high PQQ·Na2 inclusion of 75.0 mg/kg does not appear to result in harmful effects on growth performance of pigs.
Collapse
|
32
|
Wang X, Fan L, Yin H, Zhou Y, Tang X, Fei X, Tang H, Peng J, Ren X, Xue Y, Zhu C, Luo J, Jin Q, Jin Q. Protective effect of Aster tataricus extract on NLRP3-mediated pyroptosis of bladder urothelial cells. J Cell Mol Med 2020; 24:13336-13345. [PMID: 33030301 PMCID: PMC7701514 DOI: 10.1111/jcmm.15952] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/17/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022] Open
Abstract
Aster tataricus L.f. is a traditional Eastern Asian herbal medicine used for the relief of uroschesis‐related illnesses and has been demonstrated clinically to exert satisfied effects. However, the mechanism of its therapeutic action remains unclear. The present study aimed to evaluate the protective mechanism of Aster tataricus extract (ATE) on CYP or LPS + ATP‐induced interstitial cystitis (IC), we successfully constructed the induced IC Sprague‐Dawley (SD) rat model and IC human urothelium cell (SV‐HUC‐1) model. The main compounds of ATE were determined by LC‐MS. After intervention, the changes on the bladder wall morphology and inflammation were observed in each group. SV‐HUC1 cell viability was measured by MTT and double stained with Hoechst 33342 and propidium iodide (PI). The expression levels of NLRP3, Pro‐caspase‐1, Caspsae‐1 p20, GSDMD, GSDMD‐N and Cleave‐IL‐1β in vivo and in vitro in different groups were detected by Western blotting. ATE significantly alleviated oedema and haemorrhage and reduced the inflammation index and histopathological score in SD rat bladder. The results of cell revealed that ATE could improve cell viability and decrease pyroptosis ratio. The expression of NLRP3 and other pyroptosis‐related protein was remarkably decreased by ATE both in vivo and in vitro. ATE may be used as an inhibitor of NLRP3 in treating IC. The discovery of NLRP3/Caspase‐1/GSDMD‐N as a new protective pathway provides a new direction for protecting cell against IC.
Collapse
Affiliation(s)
- Xin Wang
- Department of Nephrology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China.,Li Shicai School Inheritance Studio, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Ling Fan
- Department of Pharmacy, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Hao Yin
- Department of Nephrology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China.,Li Shicai School Inheritance Studio, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Yiqun Zhou
- Li Shicai School Inheritance Studio, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Xiaolong Tang
- Li Shicai School Inheritance Studio, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Xiaojun Fei
- Li Shicai School Inheritance Studio, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Hailin Tang
- Li Shicai School Inheritance Studio, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Juan Peng
- Li Shicai School Inheritance Studio, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Xiaoqin Ren
- Li Shicai School Inheritance Studio, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Yi Xue
- Department of Nephrology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Chunli Zhu
- Department of Nephrology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Jianping Luo
- Department of Nephrology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Qinglei Jin
- Li Shicai School Inheritance Studio, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Qingjiang Jin
- Li Shicai School Inheritance Studio, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| |
Collapse
|
33
|
Pyrroloquinoline Quinone Inhibits Rotenone-Induced Microglia Inflammation by Enhancing Autophagy. Molecules 2020; 25:molecules25194359. [PMID: 32977419 PMCID: PMC7582530 DOI: 10.3390/molecules25194359] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation is a feature common to neurodegenerative diseases, such as Parkinson’s disease (PD), which might be responsive to therapeutic intervention. Rotenone has been widely used to establish PD models by inducing mitochondrial dysfunction and inflammation. Our previous studies have reported that pyrroloquinoline quinone (PQQ), a naturally occurring redox cofactor, could prevent mitochondrial dysfunction in rotenone induced PD models by regulating mitochondrial functions. In the present study, we aimed to investigate the effect of PQQ on neuroinflammation and the mechanism involved. BV2 microglia cells were pre-treated with PQQ followed by rotenone incubation. The data showed that PQQ did not affect the cell viability of BV2 cells treated with rotenone, while the conditioned medium (CM) of BV2 cells pre-treated with PQQ significantly increased cell viability of SH-SY5Y cells. In rotenone-treated BV2 cells, PQQ dose-dependently decreased lactate dehydrogenase (LDH) release and suppressed the up-regulation of pro-inflammation factors, such as interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) in the cultured media, as well as nitric oxide (NO) release induced by rotenone. PQQ pretreatment also increased the ratio of LC3-II/LC3-I and expression of Atg5 in BV2 cells stimulated with rotenone. Additionally, the autophagosome observed by transmission electron microscopy (TEM) and co-localization of mitochondria with lysosomes indicated that mitophagy was induced by PQQ in rotenone-injured BV2 cells, and the PINK1/parkin mediated mitophagy pathway was regulated by PQQ. Further, autophagy inhibitor, 3-methyladenine (3-MA), partially abolished the neuroprotective effect of PQQ and attenuated the inhibition of inflammation with PQQ pretreatment. Taken together, our data extend our understanding of the neuroprotective effect of PQQ against rotenone-induced injury and provide evidence that autophagy enhancement might be a novel therapeutic strategy for PD treatment.
Collapse
|
34
|
Jiang X, Ren Z, Zhao B, Zhou S, Ying X, Tang Y. Ameliorating Effect of Pentadecapeptide Derived from Cyclina sinensis on Cyclophosphamide-Induced Nephrotoxicity. Mar Drugs 2020; 18:md18090462. [PMID: 32916975 PMCID: PMC7551019 DOI: 10.3390/md18090462] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 01/18/2023] Open
Abstract
Cyclophosphamide (CTX) is a widely used anticancer drug with severe nephrotoxicity. The pentadecapeptide (RVAPEEHPVEGRYLV) from Cyclina sinensis (SCSP) has been shown to affect immunity and to protect the liver. Hence, the purpose of this study was to investigate the ameliorating effect of SCSP on CTX-induced nephrotoxicity in mice. We injected male ICR mice with CTX (80 mg/kg·day) and measured the nephrotoxicity indices, levels of antioxidant enzymes, malondialdehyde (MDA), inflammatory factors, as well as the major proteins of the NF-κB and apoptotic pathways. Cyclophosphamide induced kidney injury; the levels of kidney-injury indicators and cytokines recovered remarkably in mice after receiving SCSP. The activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) increased, while there was a significant decrease in MDA levels. The kidney tissue damage induced by CTX was also repaired to a certain extent. In addition, SCSP significantly inhibited inflammatory factors and apoptosis by regulating the NF-κB and apoptotic pathways. Our study shows that SCSP has the potential to ameliorate CTX-induced nephrotoxicity and may be used as a therapeutic adjuvant to ameliorate CTX-induced nephrotoxicity.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoguo Ying
- Correspondence: (X.Y.); (Y.T.); Tel.: +86-0580-226-0600 (Y.T.); Fax: +86-0580-254-781 (Y.T.)
| | - Yunping Tang
- Correspondence: (X.Y.); (Y.T.); Tel.: +86-0580-226-0600 (Y.T.); Fax: +86-0580-254-781 (Y.T.)
| |
Collapse
|