1
|
Li Q, Shan X, Yuan Y, Ye W, Fang X. Shegan-Mahuang decoction ameliorates cold-induced asthma via regulating the proliferation and apoptosis of airway smooth muscle cells through TAS2R10: An in vivo and in vitro study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118504. [PMID: 38950796 DOI: 10.1016/j.jep.2024.118504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shegan-Mahuang Decoction (SMD) is a classical formula that has been used to effectively treat cold-induced asthma (CA) for 1800 years. Airway smooth muscle cells (ASMCs) play a crucial role in airway remodeling of CA and can be modulated through bitter taste-sensing type 2 receptors (TAS2Rs). Given that SMD contains numerous bitter herbs and TAS2R10 expression in ASMCs remains consistently high, it is pertinent to explore whether SMD regulates ASMCs via TAS2R10 to exert its CA mechanism. AIM OF THE STUDY This study investigated the efficacy as well as the potential mechanism of SMD in CA. MATERIALS AND METHODS In this study, experiments in vivo were conducted using the CA rat model induced by ovalbumin (OVA) along with cold stimulation. The effects of SMD and TAS2R10 expression in CA rats were evaluated using the following methods: clinical symptoms, weights, pathological staining, immunofluorescence staining (IF), enzyme-linked immunosorbent assay (ELISA), real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB). Assays in vitro including cell counting Kit-8 (CCK-8), ELISA, flow cytometry, TUNEL staining, RT-qPCR and WB were performed to investigate potential mechanism of SMD on the proliferation and apoptosis of ASMCs through upregulation of TAS2R10. RESULTS The administration of SMD resulted in a notable improvement in the symptoms, trends in weight, airway inflammation and airway remodeling observed in CA rats with upregulated TAS2R10. Mechanistically, we furtherly confirmed that SMD inhibits p70S6K/CyclinD1 pathway by upregulating TAS2R10. SMD furthermore blocked the G0/G1 phase, suppressed the proliferation and inducted apoptosis in ASMCs induced by platelet-derived growth factor-BB (PDGF-BB). Erythromycin (EM), a TAS2R10 agonist, can intensify these effects. CONCLUSIONS SMD significantly ameliorates CA by upregulating TAS2R10 and inhibiting the p70S6K/CyclinD1 pathway, thereby modulating ASMCs' proliferation and apoptosis. Inspired by the Five Flavors Theory of Traditional Chinese Medicine, this study provides an updated treatment perspective for treating CA.
Collapse
Affiliation(s)
- Qiuhui Li
- School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Xiaoxiao Shan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Yamei Yuan
- School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Weidong Ye
- School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Xiangming Fang
- School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
2
|
Mahajan M, Sarkar A, Mondal S. Integrative network analysis of transcriptomics data reveals potential prognostic biomarkers for colorectal cancer. Cancer Med 2024; 13:e7391. [PMID: 38872418 PMCID: PMC11176588 DOI: 10.1002/cam4.7391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024] Open
Abstract
INTRODUCTION Cross-talk among biological pathways is essential for normal biological function and plays a significant role in cancer progression. Through integrated network analysis, this study explores the significance of pathway cross-talk in colorectal cancer (CRC) development at both the pathway and gene levels. METHODS In this study, we integrated the gene expression data with domain knowledge to construct state-dependent pathway cross-talk networks. The significance of the genes involved in pathway cross-talk was assessed by analyzing their association with cancer hallmarks, disease-gene relation, genetic alterations, and survival analysis. We also analyzed the gene regulatory network to identify the dysregulated genes and their role in CRC progression. RESULTS Cross-talk was observed between immune-related pathways and pathways associated with cell communication and signaling. The PTPRC gene was identified as a mediator, facilitating interactions within the immune system and other signaling pathways. The rewired interactions of ITGA7 were identified as influential in the epithelial-mesenchymal transition in CRC. This study also highlighted the crucial link between cell communication and vascular smooth muscle contraction pathway in CRC progression. The survival analysis of identified gene clusters showed their significant prognostic value in distinguishing high-risk from low-risk CRC groups, and L1000CDS2 revealed seven potential drug molecules in CRC. Nine dysregulated genes (CTNNB1, EP300, JUN, MYC, NFKB1, RELA, SP1, STAT1, and TP53) emerge as transcription factors acting as common regulators across various pathways. CONCLUSIONS This study highlights the crucial role of pathway cross-talk in CRC progression and identified the potential prognostic biomarkers and potential drug molecules.
Collapse
Affiliation(s)
- Mohita Mahajan
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K.K. Birla Goa campus, Goa, India
| | - Angshuman Sarkar
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K.K. Birla Goa campus, Goa, India
| | - Sukanta Mondal
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K.K. Birla Goa campus, Goa, India
| |
Collapse
|
3
|
Erol ÖD, Şenocak Ş, Aerts-Kaya F. The Role of Rab GTPases in the development of genetic and malignant diseases. Mol Cell Biochem 2024; 479:255-281. [PMID: 37060515 DOI: 10.1007/s11010-023-04727-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
Small GTPases have been shown to play an important role in several cellular functions, including cytoskeletal remodeling, cell polarity, intracellular trafficking, cell-cycle, progression and lipid transformation. The Ras-associated binding (Rab) family of GTPases constitutes the largest family of GTPases and consists of almost 70 known members of small GTPases in humans, which are known to play an important role in the regulation of intracellular membrane trafficking, membrane identity, vesicle budding, uncoating, motility and fusion of membranes. Mutations in Rab genes can cause a wide range of inherited genetic diseases, ranging from neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD) to immune dysregulation/deficiency syndromes, like Griscelli Syndrome Type II (GS-II) and hemophagocytic lymphohistiocytosis (HLH), as well as a variety of cancers. Here, we provide an extended overview of human Rabs, discussing their function and diseases related to Rabs and Rab effectors, as well as focusing on effects of (aberrant) Rab expression. We aim to underline their importance in health and the development of genetic and malignant diseases by assessing their role in cellular structure, regulation, function and biology and discuss the possible use of stem cell gene therapy, as well as targeting of Rabs in order to treat malignancies, but also to monitor recurrence of cancer and metastasis through the use of Rabs as biomarkers. Future research should shed further light on the roles of Rabs in the development of multifactorial diseases, such as diabetes and assess Rabs as a possible treatment target.
Collapse
Affiliation(s)
- Özgür Doğuş Erol
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Şimal Şenocak
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey.
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey.
| |
Collapse
|
4
|
Chang Y, Yang Y, Li C, Chan M, Lu M, Chen M, Chen C, Hsiao M. RAB31 drives extracellular vesicle fusion and cancer-associated fibroblast formation leading to oxaliplatin resistance in colorectal cancer. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e141. [PMID: 38939899 PMCID: PMC11080812 DOI: 10.1002/jex2.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/14/2023] [Accepted: 01/06/2024] [Indexed: 06/29/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is associated with tumorigenesis and drug resistance. The Rab superfamily of small G-proteins plays a role in regulating cell cytoskeleton and vesicle transport. However, it is not yet clear how the Rab family contributes to cancer progression by participating in EMT. By analysing various in silico datasets, we identified a statistically significant increase in RAB31 expression in the oxaliplatin-resistant group compared to that in the parental or other chemotherapy drug groups. Our findings highlight RAB31's powerful effect on colorectal cancer cell lines when compared with other family members. In a study that analysed multiple online meta-databases, RAB31 RNA levels were continually detected in colorectal tissue arrays. Additionally, RAB31 protein levels were correlated with various clinical parameters in clinical databases and were associated with negative prognoses for patients. RAB31 expression levels in all three probes were calculated using a computer algorithm and were found to be positively correlated with EMT scores. The expression of the epithelial-type marker CDH1 was suppressed in RAB31 overexpression models, whereas the expression of the mesenchymal-type markers SNAI1 and SNAI2 increased. Notably, RAB31-induced EMT and drug resistance are dependent on extracellular vesicle (EV) secretion. Interactome analysis confirmed that RAB31/AGR2 axis-mediated exocytosis was responsible for maintaining colorectal cell resistance to oxaliplatin. Our study concluded that RAB31 alters the sensitivity of oxaliplatin, a supplementary chemotherapy approach, and is an independent prognostic factor that can be used in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Yu‐Chan Chang
- Department of Biomedical Imaging and Radiological SciencesNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yi‐Fang Yang
- Department of Medical Education and ResearchKaohsiung Veterans General HospitalKaohsiungTaiwan
| | | | - Ming‐Hsien Chan
- Department of Biomedical Imaging and Radiological SciencesNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Meng‐Lun Lu
- Department of OncologyTaipei Veterans General HospitalTaipeiTaiwan
| | - Ming‐Huang Chen
- Department of OncologyTaipei Veterans General HospitalTaipeiTaiwan
- School of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Center of Immuno‐Oncology, Department of OncologyTaipei Veterans General HospitalTaipeiTaiwan
| | - Chi‐Long Chen
- Department of PathologyTaipei Medical University Hospital, Taipei Medical UniversityTaipeiTaiwan
- Department of Pathology, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | | |
Collapse
|
5
|
Yang G, Li T, Liu J, Quan Z, Liu M, Guo Y, Wu Y, Ou L, Wu X, Zheng Y. lncRNA MAGI2-AS3 suppresses castration-resistant prostate cancer proliferation and migration via the miR-106a-5p/RAB31 axis. Genomics 2023; 115:110599. [PMID: 36889366 DOI: 10.1016/j.ygeno.2023.110599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Prostate cancer (PCa) is a common malignant cancer in elderly males in Western countries. Whole-genome sequencing confirmed that long non-coding RNAs (lncRNAs) are frequently altered in castration-resistant prostate cancer (CRPC) and promote drug resistance to cancer therapy. Therefore, elucidating the prospective role of lncRNAs in PCa oncogenesis and progression is of remarkable clinical significance. In this study, gene expression in prostate tissues was determined using RNA-sequencing datasets, and the gene diagnostic and prognostic values of CRPC were analyzed using bioinformatics. Further, the expression levels and clinical significance of MAGI2 Antisense RNA 3 (MAGI2-AS3) in PCa clinical specimens were evaluated. The tumor-suppressive activity of MAGI2-AS3 was functionally explored in PCa cell lines and animal xenograft models. MAGI2-AS3 was found to be aberrantly decreased in CRPC and was negatively correlated with Gleason score and lymph node status. Notably, low MAGI2-AS3 expression positively correlated with poorer survival in patients with PCa. The overexpression of MAGI2-AS3 significantly inhibited the proliferation and migration of PCa in vitro and in vivo. Mechanistically, MAGI2-AS3 could play a tumor suppressor function in CRPC through a novel miR-106a-5p/RAB31 regulatory network and could be a target for future cancer therapy.
Collapse
Affiliation(s)
- Guo Yang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China
| | - Ting Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, 400016 Chongqing, China
| | - Jiayu Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China
| | - Miao Liu
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, 400030 Chongqing, China
| | - Yuan Guo
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China
| | - Yingying Wu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, 400016 Chongqing, China
| | - Liping Ou
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, 400016 Chongqing, China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China.
| | - Yongbo Zheng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China.
| |
Collapse
|
6
|
Xu A, Xu XN, Luo Z, Huang X, Gong RQ, Fu DY. Identification of prognostic cancer-associated fibroblast markers in luminal breast cancer using weighted gene co-expression network analysis. Front Oncol 2023; 13:1191660. [PMID: 37207166 PMCID: PMC10191114 DOI: 10.3389/fonc.2023.1191660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) play a pivotal role in cancer progression and are known to mediate endocrine and chemotherapy resistance through paracrine signaling. Additionally, they directly influence the expression and growth dependence of ER in Luminal breast cancer (LBC). This study aims to investigate stromal CAF-related factors and develop a CAF-related classifier to predict the prognosis and therapeutic outcomes in LBC. Methods The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized to obtain mRNA expression and clinical information from 694 and 101 LBC samples, respectively. CAF infiltrations were determined by estimating the proportion of immune and cancer cells (EPIC) method, while stromal scores were calculated using the Estimation of STromal and Immune cells in MAlignant Tumors using Expression data (ESTIMATE) algorithm. Weighted gene co-expression network analysis (WGCNA) was used to identify stromal CAF-related genes. A CAF risk signature was developed through univariate and least absolute shrinkage and selection operator method (LASSO) Cox regression model. The Spearman test was used to evaluate the correlation between CAF risk score, CAF markers, and CAF infiltrations estimated through EPIC, xCell, microenvironment cell populations-counter (MCP-counter), and Tumor Immune Dysfunction and Exclusion (TIDE) algorithms. The TIDE algorithm was further utilized to assess the response to immunotherapy. Additionally, Gene set enrichment analysis (GSEA) was applied to elucidate the molecular mechanisms underlying the findings. Results We constructed a 5-gene prognostic model consisting of RIN2, THBS1, IL1R1, RAB31, and COL11A1 for CAF. Using the median CAF risk score as the cutoff, we classified LBC patients into high- and low-CAF-risk groups and found that those in the high-risk group had a significantly worse prognosis. Spearman correlation analyses demonstrated a strong positive correlation between the CAF risk score and stromal and CAF infiltrations, with the five model genes showing positive correlations with CAF markers. In addition, the TIDE analysis revealed that high-CAF-risk patients were less likely to respond to immunotherapy. Gene set enrichment analysis (GSEA) identified significant enrichment of ECM receptor interaction, regulation of actin cytoskeleton, epithelial-mesenchymal transition (EMT), and TGF-β signaling pathway gene sets in the high-CAF-risk group patients. Conclusion The five-gene prognostic CAF signature presented in this study was not only reliable for predicting prognosis in LBC patients, but it was also effective in estimating clinical immunotherapy response. These findings have significant clinical implications, as the signature may guide tailored anti-CAF therapy in combination with immunotherapy for LBC patients.
Collapse
Affiliation(s)
- An Xu
- Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiang-Nan Xu
- Department of Thyroid and Breast Surgery, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
| | - Zhou Luo
- Department of Thyroid and Breast Surgery, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
| | - Xiao Huang
- Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - Rong-Quan Gong
- Medical College of Yangzhou University, Yangzhou, Jiangsu, China
| | - De-Yuan Fu
- Department of Thyroid and Breast Surgery, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu, China
- *Correspondence: De-Yuan Fu,
| |
Collapse
|
7
|
Ho CK, Zheng D, Sun J, Wen D, Wu S, Yu L, Gao Y, Zhang Y, Li Q. LRG-1 promotes fat graft survival through the RAB31-mediated inhibition of hypoxia-induced apoptosis. J Cell Mol Med 2022; 26:3153-3168. [PMID: 35322540 PMCID: PMC9170820 DOI: 10.1111/jcmm.17280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 11/29/2022] Open
Abstract
Autologous adipose tissue is an ideal soft tissue filling material, and its biocompatibility is better than that of artificial tissue substitutes, foreign bodies and heterogeneous materials. Although autologous fat transplantation has many advantages, the low retention rate of adipose tissue limits its clinical application. Here, we identified a secretory glycoprotein, leucine‐rich‐alpha‐2‐glycoprotein 1 (LRG‐1), that could promote fat graft survival through RAB31‐mediated inhibition of hypoxia‐induced apoptosis. We showed that LRG‐1 injection significantly increased the maintenance of fat volume and weight compared with the control. In addition, higher fat integrity, more viable adipocytes and fewer apoptotic cells were observed in the LRG‐1‐treated groups. Furthermore, we discovered that LRG‐1 could reduce the ADSC apoptosis induced by hypoxic conditions. The mechanism underlying the LRG‐1‐mediated suppression of the ADSC apoptosis induced by hypoxia was mediated by the upregulation of RAB31 expression. Using LRG‐1 for fat grafts may prove to be clinically successful for increasing the retention rate of transplanted fat.
Collapse
Affiliation(s)
- Chia-Kang Ho
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Danning Zheng
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaming Sun
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Dongsheng Wen
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Wu
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Li Yu
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ya Gao
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Zhang
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Wang X, Nie P, Zhu D. LncRNA HOXA10-AS Activated by E2F1 Facilitates Proliferation and Migration of Nasopharyngeal Carcinoma Cells Through Sponging miR-582-3p to Upregulate RAB31. Am J Rhinol Allergy 2022; 36:348-359. [PMID: 35072529 DOI: 10.1177/19458924211064400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a kind of head and neck cancer with a characteristic regional distribution. Increasing evidence has illustrated that long noncoding RNAs (lncRNAs) exert the regulatory function in tumor development. Nevertheless, the specific functions of lncRNA HOXA10 antisense RNA (HOXA10-AS) in NPC remain to be clarified. In this research, quantitative reverse transcription polymerase chain reaction detected HOXA10-AS expression in NPC cells. Cell counting kit-8, colony formation, and transwell assays were utilized to measure the proliferation and migration of NPC cells. Moreover, mechanism assays detected the interaction of different genes. Briefly, HOXA10-AS was highly expressed in NPC cells. HOXA10-AS down-regulation restrained NPC cell proliferation and migration. Further, HOXA10-AS could bind to miR-582-3p by acting as a competing endogenous RNA. Besides, Ras-related protein Rab-31 (RAB31) was proven as the target gene of miR-582-3p. Additionally, E2F transcription factor 1 (E2F1) acted as a transcription factor to activate HOXA10-AS expression. In the final rescue assays, we observed that the effect of HOXA10-AS depletion on NPC cell growth could be fully reversed by RAB31 overexpression or miR-582-3p inhibition. In short, our research proved that HOXA10-AS activated by E2F1 facilitated proliferation and migration of NPC cells through sponging miR-582-3p to upregulate RAB31.
Collapse
Affiliation(s)
- Xinyan Wang
- Jinan Fourth People's Hospital, Jinan, China
| | - Peilan Nie
- Jinan Fourth People's Hospital, Jinan, China
| | - Dongmei Zhu
- Jinan Fourth People's Hospital, Jinan, China
| |
Collapse
|
9
|
Rab31 Promotes Activation of Hepatic Stellate Cells by Accelerating TGF-β Receptor II Complex Endocytosis. Int J Biochem Cell Biol 2022; 144:106170. [DOI: 10.1016/j.biocel.2022.106170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/27/2021] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
|
10
|
Jin H, Tang Y, Yang L, Peng X, Li B, Fan Q, Wei S, Yang S, Li X, Wu B, Huang M, Tang S, Liu J, Li H. Rab GTPases: Central Coordinators of Membrane Trafficking in Cancer. Front Cell Dev Biol 2021; 9:648384. [PMID: 34141705 PMCID: PMC8204108 DOI: 10.3389/fcell.2021.648384] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor progression involves invasion, migration, metabolism, autophagy, exosome secretion, and drug resistance. Cargos transported by membrane vesicle trafficking underlie all of these processes. Rab GTPases, which, through coordinated and dynamic intracellular membrane trafficking alongside cytoskeletal pathways, determine the maintenance of homeostasis and a series of cellular functions. The mechanism of vesicle movement regulated by Rab GTPases plays essential roles in cancers. Therefore, targeting Rab GTPases to adjust membrane trafficking has the potential to become a novel way to adjust cancer treatment. In this review, we describe the characteristics of Rab GTPases; in particular, we discuss the role of their activation in the regulation of membrane transport and provide examples of Rab GTPases regulating membrane transport in tumor progression. Finally, we discuss the clinical implications and the potential as a cancer therapeutic target of Rab GTPases.
Collapse
Affiliation(s)
- Hongyuan Jin
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuanxin Tang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Bowen Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Qin Fan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Bo Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Mingyao Huang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shilei Tang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jingang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|