1
|
Abdelnaser M, Attya ME, El-Rehany MA, Fathy M. Clemastine mitigates sepsis-induced acute kidney injury in rats; the role of α-Klotho/TLR-4/MYD-88/NF-κB/ Caspase-3/ p-P38 MAPK signaling pathways. Arch Biochem Biophys 2025; 763:110229. [PMID: 39608427 DOI: 10.1016/j.abb.2024.110229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/31/2024] [Accepted: 11/23/2024] [Indexed: 11/30/2024]
Abstract
Sepsis is a fatal condition, with an annual incidence of more than 48 million cases as well as 11 million deaths resulting from it. Moreover, sepsis continues to rank as the fifth most prevalent cause of mortality globally. The objective of this study is to investigate if Clemastine (CLM) pretreatment protects against acute kidney injury (AKI) caused by cecal ligation and puncture (CLP) via modulating Toll-like receptor-4 (TLR-4), Myeloid differentiation primary response 88 (MYD-88), nuclear factor kappa B (NF-κB), Bcl-2-associated X (Bax), B-cell lymphoma-2 (Bcl-2), and caspase-3 signaling pathways. CLM markedly attenuated sepsis-caused molecular, biochemical, and histopathological alterations. CLM downregulated the levels of the proinflammatory markers, suppressed the expression of cleaved caspase-3, TLR-4 and MYD-88 as well as inactivating NF-κB p-P65 and p-P38 proteins, inhibited Bax, NF-κB, and caspase-3 genes expression, and augmented α-Klotho protein expression as well as Bcl-2 gene expression. Finally, CLM pretreatment protected against acute kidney injury by preventing TLR-4/p-P38 pathway-mediated apoptotic cell death in rats.
Collapse
Affiliation(s)
- Mahmoud Abdelnaser
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt.
| | - Mina Ezzat Attya
- Department of Pathology, Faculty of Medicine, Minia University, Minia, 61519, Egypt.
| | - Mahmoud A El-Rehany
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt.
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
2
|
Lim JJ, Choi HS, Kim H. Anti-pneumoconiosis effect of schisantherin A in PMA-induced A549 cells and SiO 2/TiO 2nanoparticles-induced acute pulmonary injury in mice. Eur J Pharmacol 2024; 982:176938. [PMID: 39181224 DOI: 10.1016/j.ejphar.2024.176938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
There has been significant global interest in respiratory health driven by the coronavirus disease (COVID-19) and severe environmental pollution. This study explored the potential of schisantherin A (SchA), a compound derived from Schisandra chinensis, to protect against acute pneumoconiosis. We assessed the effects of SchA on phorbol 12-myristate 13-acetate (PMA)-stimulated A549 alveolar epithelial cells and SiO2/TiO2-induced pulmonary injury in mice. In A549 cells, SchA significantly decreased pro-inflammatory mediators such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and interleukin (IL)-8 levels. SchA-mediated reduction in inflammatory mediators was associated with the downregulation of PMA-stimulated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling activation. In SiO2/TiO2-induced lung-injured mice, SchA administration significantly reduced MUC5AC production in lung tissue. SchA administration significantly downregulated the overexpression of NK-κB and the subsequent production of COX-2, iNOS, and NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasomes. It significantly suppressed expected increases in total cell numbers and pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and IL-1β in the bronchoalveolar lavage fluid (BALF) in SiO2/TiO2-stimulated mice. In contrast, the SiO2/TiO2-mediated decrease in IL-10 levels was significantly improved by SchA treatment. These fundamental results can be used to develop potential treatments involving SchA for acute pneumoconiosis.
Collapse
Affiliation(s)
- Jeong-Ju Lim
- Department of Public Health Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Hyeon-Son Choi
- Department of Food Nutrition, Sangmyung University, Hongjimun 2-gil 20, Jongno-gu, Seoul 03016, Republic of Korea.
| | - Hoon Kim
- Department of Food and Nutrition, Chung Ang University, Seodong-daero 4726, Daedeok-myeon, Anseong 17546, Republic of Korea.
| |
Collapse
|
3
|
Hassanein EHM, Althagafy HS, Baraka MA, Abd-Alhameed EK, Ibrahim IM, Abd El-Maksoud MS, Mohamed NM, Ross SA. The promising antioxidant effects of lignans: Nrf2 activation comes into view. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6439-6458. [PMID: 38695909 PMCID: PMC11422461 DOI: 10.1007/s00210-024-03102-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/11/2024] [Indexed: 09/25/2024]
Abstract
Lignans are biologically active compounds widely distributed, recognized, and identified in seeds, fruits, and vegetables. Lignans have several intriguing bioactivities, including anti-inflammatory, antioxidant, and anticancer activities. Nrf2 controls the expression of many cytoprotective genes. Activation of Nrf2 is a promising therapeutic approach for treating and preventing diseases resulting from oxidative injury and inflammation. Lignans have been demonstrated to stimulate Nrf2 signaling in a variety of in vitro and experimental animal models. The review summarizes the findings of fourteen lignans (Schisandrin A, Schisandrin B, Schisandrian C, Magnolol, Honokiol, Sesamin, Sesamol, Sauchinone, Pinoresinol, Phyllanthin, Nectandrin B, Isoeucommin A, Arctigenin, Lariciresinol) as antioxidative and anti-inflammatory agents, affirming how Nrf2 activation affects their pharmacological effects. Therefore, lignans may offer therapeutic candidates for the treatment and prevention of various diseases and may contribute to the development of effective Nrf2 modulators.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammad A Baraka
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mostafa S Abd El-Maksoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nesma M Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Assiut, Assiut, 77771, Egypt.
| | - Samir A Ross
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
- Department of BioMolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
4
|
Yin H, Yan Q, Li Y, Tang H. Dihydromyricetin Nanoparticles Alleviate Lipopolysaccharide-Induced Acute Kidney Injury by Decreasing Inflammation and Cell Apoptosis via the TLR4/NF-κB Pathway. J Funct Biomater 2024; 15:249. [PMID: 39330225 PMCID: PMC11433252 DOI: 10.3390/jfb15090249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Acute kidney injury (AKI) is the most severe and fatal complication of sepsis resulting from infectious trauma. Currently, effective treatment options are still lacking. Dihydromyricetin is the main component extracted from Vine tea (Ampelopsis megalophylla Diels et Gilg). In our previous research, chitosan-tripolyphosphate-encapsulated nanoparticles of dihydromyricetin (CS-DMY-NPs) have been proven to have potential protective effects against cisplatin-induced AKI. Here, we investigated the protective effects and mechanisms of DMY and its nano-formulations against LPS-induced AKI by assessing pathological and inflammatory changes in mice. In mice with LPS-AKI treated with 300 mg/kg CS-DMY-NPs, the levels of creatinine (Cr), blood urea nitrogen (BUN), and KIM-1 were significantly reduced by 56%, 49%, and 88%, respectively. CS-DMY-NPs can upregulate the levels of GSH, SOD, and CAT by 47%, 7%, and 14%, respectively, to inhibit LPS-induced oxidative stress. Moreover, CS-DMY-NPs decreased the levels of IL-6, IL-1β, and MCP-1 by 31%, 49%, and 35%, respectively, to alleviate the inflammatory response. TUNEL and immunohistochemistry showed that CS-DMY-NPs reduced the number of apoptotic cells, increased the Bcl-2/Bax ratio by 30%, and attenuated renal cell apoptosis. Western blot analysis of renal tissue indicated that CS-DMY-NPs inhibited TLR4 expression and downregulated the phosphorylation of NF-κB p65 and IκBα. In summary, DMY prevented LPS-induced AKI by increasing antioxidant capacity, reducing inflammatory responses, and blocking apoptosis, and DMY nanoparticles were shown to have a better protective effect for future applications.
Collapse
Affiliation(s)
- Hongmei Yin
- School of Animal Science, Xichang University, Xichang 615012, China
- School of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiaohua Yan
- School of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yinglun Li
- School of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Huaqiao Tang
- School of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
5
|
Sai Priya T, Ramalingam V, Suresh Babu K. Natural products: A potential immunomodulators against inflammatory-related diseases. Inflammopharmacology 2024:10.1007/s10787-024-01562-4. [PMID: 39196458 DOI: 10.1007/s10787-024-01562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
The incidence and prevalence of inflammatory-related diseases (IRDs) are increasing worldwide. Current approved treatments for IRDs in the clinic are combat against inhibiting the pro-inflammatory cytokines. Though significant development in the treatment in the IRDs has been achieved, the severe side effects and inefficiency of currently practicing treatments are endless challenge. Drug discovery from natural sources is efficacious over a resurgence and also natural products are leading than the synthetic molecules in both clinical trials and market. The use of natural products against IRDs is a conventional therapeutic approach since it is a reservoir of unique structural chemistry, accessibility and bioactivities with reduced side effects and low toxicity. In this review, we discuss the cause of IRDs, treatment of options for IRDs and the impact and adverse effects of currently practicing clinical drugs. As well, the significant role of natural products against various IRDs, the limitations in the clinical development of natural products and thus pave the way for development of natural products as immunomodulators against IRDs are also discussed.
Collapse
Affiliation(s)
- Telukuntla Sai Priya
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vaikundamoorthy Ramalingam
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Katragadda Suresh Babu
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Zhang K, Yang L, Wu X, Zheng X, Zhao Y. Urea nitrogen-to-albumin ratio predicts ventricular aneurysm formation in ST-segment elevation myocardial infarction. ESC Heart Fail 2024; 11:974-985. [PMID: 38234089 DOI: 10.1002/ehf2.14620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 01/19/2024] Open
Abstract
AIMS Left ventricular aneurysm (LVA) is an important complication of acute myocardial infarction. The aim of this study was to investigate the possible predictive value of blood urea nitrogen-to-albumin ratio (BAR) for the LVA formation in acute ST-segment elevation myocardial infarction (STEMI) patients who underwent primary percutaneous coronary intervention (PCI). METHODS AND RESULTS A total of 1123 consecutive patients with STEMI were prospectively enrolled. The clinical and laboratory data were compared between LVA group and non-LVA group. Multivariable logistic regression analysis was performed to assess the independent risk factors of LVA formation. Predictive power of BAR and composite variable for LVA formation were assessed using receiver operating characteristic curve. LVA was detected in 162 patients (14.4%). The BAR was significantly higher in patients with LVA [0.16 (0.13-0.19) vs. 0.13 (0.10-0.17), P < 0.001]. Multivariable logistic regression analysis revealed that left ventricular ejection fraction (LVEF) [odds ratio (OR) = 0.865, P < 0.001], culprit vessel-left anterior descending artery (LAD) (OR = 4.705, P < 0.001), and BAR (OR = 2.208, P = 0.018) were all independent predictors for LVA formation. The predictive value of BAR remained significant even after cross-validation by splitting population into training set (OR = 1.957, P = 0.034) and validation set (OR = 1.982, P = 0.039). The maximal length and width of LVA were significantly increased in patients with BAR ≥ 0.15 when compared with BAR < 0.15 (3.37 ± 1.09 vs. 2.92 ± 0.93, P = 0.01, for maximal length, and 2.20 ± 0.55 vs. 1.85 ± 0.63, P = 0.001, for maximal width). The discriminant power of BAR for LVA is 0.723, which is superior to both blood urea nitrogen (C statistic = 0.586, P < 0.001) and albumin (C statistic = 0.64, P < 0.001). The combination of BAR, LVEF, and culprit vessel-LAD could significantly increase the predictive ability (C statistic = 0.874, P < 0.001, for vs. BAR). Subgroup analysis of age, sex, hypertension, diabetes, smoking, LVEF, serum albumin, multiple-vessel disease, and Gensini score had no effect on the association between BAR and risk of LVA formation (P < 0.05 for all subgroups). CONCLUSIONS A higher BAR was an independent predictor for LVA formation in STEMI patients with primary PCI.
Collapse
Affiliation(s)
- Kai Zhang
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lihong Yang
- Department of Cardiac Function Evaluation, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoguang Wu
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohui Zheng
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yonghui Zhao
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Liu HL, Huang Z, Li QZ, Cao YZ, Wang HY, Alolgab RN, Deng XY, Zhang ZH. Schisandrin A alleviates renal fibrosis by inhibiting PKCβ and oxidative stress. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155372. [PMID: 38382281 DOI: 10.1016/j.phymed.2024.155372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/01/2024] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Renal fibrosis is a common pathway that drives the advancement of numerous kidney maladies towards end-stage kidney disease (ESKD). Suppressing renal fibrosis holds paramount clinical importance in forestalling or retarding the transition of chronic kidney diseases (CKD) to renal failure. Schisandrin A (Sch A) possesses renoprotective effect in acute kidney injury (AKI), but its effects on renal fibrosis and underlying mechanism(s) have not been studied. STUDY DESIGN Serum biochemical analysis, histological staining, and expression levels of related proteins were used to assess the effect of PKCβ knockdown on renal fibrosis progression. Untargeted metabolomics was used to assess the effect of PKCβ knockdown on serum metabolites. Unilateral Ureteral Obstruction (UUO) model and TGF-β induced HK-2 cells and NIH-3T3 cells were used to evaluate the effect of Schisandrin A (Sch A) on renal fibrosis. PKCβ overexpressed NIH-3T3 cells were used to verify the possible mechanism of Sch A. RESULTS PKCβ was upregulated in the UUO model. Knockdown of PKCβ mitigated the progression of renal fibrosis by ameliorating perturbations in serum metabolites and curbing oxidative stress. Sch A alleviated renal fibrosis by downregulating the expression of PKCβ in kidney. Treatment with Sch A significantly attenuated the upregulated proteins levels of FN, COL-I, PKCβ, Vimentin and α-SMA in UUO mice. Moreover, Sch A exhibited a beneficial impact on markers associated with oxidative stress, including MDA, SOD, and GSH-Px. Overexpression of PKCβ was found to counteract the renoprotective efficacy of Sch A in vitro. CONCLUSION Sch A alleviates renal fibrosis by inhibiting PKCβ and attenuating oxidative stress.
Collapse
Affiliation(s)
- Hui-Ling Liu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhou Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qing-Zhen Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yi-Zhi Cao
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Han-Yu Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Raphael N Alolgab
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xue-Yang Deng
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhi-Hao Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
8
|
Mi X, Zhang Z, Cheng J, Xu Z, Zhu K, Ren Y. Cardioprotective effects of Schisantherin A against isoproterenol-induced acute myocardial infarction through amelioration of oxidative stress and inflammation via modulation of PI3K-AKT/Nrf2/ARE and TLR4/MAPK/NF-κB pathways in rats. BMC Complement Med Ther 2023; 23:277. [PMID: 37542250 PMCID: PMC10401759 DOI: 10.1186/s12906-023-04081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND AND AIMS The scientific community is concerned about cardiovascular disease mortality and morbidity, especially myocardial infarction (MI). Schisantherin A (SCA), a dibenzocyclooctadiene lignan monomer found in S. chinensis fruits has cardiovascular advantages such as increasing NO production in isolated rat thoracic aorta and reducing heart damage caused by ischemia-reperfusion (I/R) through decreasing apoptosis. The present study was undertaken to explore the potential effects of SCA on ISO-induced myocardial infarction in rats. METHODS Rats were randomly allocated to four groups: control; ISO-treated, and two additional groups of ISO + SCA (5 or 10 mg/kg body weight). All SCA-treated groups were administered with SCA for 20 days and all ISO groups were challenged with ISO on days 19 and 20. RESULTS SCA significantly attenuated ISO-induced rise in heart/body weight ratio, myocardial infarct size, and cardiac functional biomarkers (CK-MB, cTnI and BNP). SCA pre- and co-treatment resulted in a significant reduction in oxidative stress (via MDA, NO and GSH and increased activities of SOD, CAT and GPx) and inflammation (via decreased levels of TNF-α, IL-6 and IL-1β) markers when compared to the same levels in cardiac tissue of ISO-treated rats. This study also showed that SCA protects ISO-induced oxidative stress and inflammation by activating the PI3K-AKT/Nrf2/ARE pathway and suppressing TLR4/MAPK/NF-κB pathways. Furthermore, SCA treatment protected histopathological alterations observed in only ISO-treated cardiac transverse sections of rats. CONCLUSION In conclusion, the findings of this study suggest that SCA protects against cardiac injury in the ISO-induced MI model of rats.
Collapse
Affiliation(s)
- Xiaolong Mi
- Department of Cardiovascular Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Department of Cardiovascular Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhijun Zhang
- Department of Cardiovascular Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Department of Cardiovascular Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jinfang Cheng
- Department of Cardiovascular Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Department of Cardiovascular Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zheng Xu
- Department of Cardiovascular Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Department of Cardiovascular Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kaiyi Zhu
- Department of Cardiovascular Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Department of Cardiovascular Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yunxia Ren
- Department of Cardiovascular Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Department of Cardiovascular Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
9
|
You LJ, Li PW, Zhang WW, Feng MF, Zhao WP, Hou HM, Piao XM, Wang LB, Zhang Y. Schisandrin A ameliorates increased pulmonary capillary endothelial permeability accompanied with sepsis through inhibition of RhoA/ROCK1/MLC pathways. Int Immunopharmacol 2023; 118:110124. [PMID: 37028276 DOI: 10.1016/j.intimp.2023.110124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Sepsis is a systemic inflammatory response, and vascular leakage associated with acute lung injury (ALI) is an important pathophysiological process during sepsis. Schisandrin A (SchA) is a bioactive lignan which has been reported to have the anti-inflammatory effects in many studies, while whether SchA can ameliorate ALI-related vascular leakage caused by sepsis is unknown. OBJECTIVE To evaluate the role and the underlying mechanism of SchA in increase of pulmonary vascular permeability induced by sepsis. METHODS The effect of SchA on pulmonary vascular permeability was examined in rat acute lung injury model. The effect of SchA on skin vascular permeability of mice was investigated through Miles assay. MTT assay was performed to detect the cell activity, and transwell assay was used to detect the effect of SchA on cell permeability. The effects of SchA on junction proteins and RhoA/ROCK1/MLC signaling pathway were manifested by immunofluorescence staining and western blot. RESULTS The administration of SchA alleviated rat pulmonary endothelial dysfunction, relieved increased permeability in the mouse skin and HUVECs induced by lipopolysaccharide (LPS). Meanwhile, SchA inhibited the formation of stress fibers, reversed the decrease of expression of ZO-1 and VE-cadherin. Subsequent experiments confirmed that SchA inhibited RhoA/ROCK1/MLC canonical pathway in rat lungs and HUVECs induced by LPS. Moreover, overexpression of RhoA reversed the inhibitory effect of SchA in HUVECs, which suggested that SchA protected the pulmonary endothelial barrier by inhibiting RhoA/ROCK1/MLC pathway. CONCLUSION In summary, our results indicate that SchA ameliorates the increase of pulmonary endothelial permeability induced by sepsis through inhibition of RhoA/ROCK1/MLC pathway, providing a potentially effective therapeutic strategy for sepsis.
Collapse
Affiliation(s)
- Li-Juan You
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Pei-Wei Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Wen-Wen Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Ming-Feng Feng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Wei-Ping Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Hui-Min Hou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Xian-Mei Piao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China.
| | - Li-Bo Wang
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, PR China.
| | - Yan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China.
| |
Collapse
|
10
|
Liu W, Hu C, Zhang B, Li M, Deng F, Zhao S. Exosomal microRNA-342-5p secreted from adipose-derived mesenchymal stem cells mitigates acute kidney injury in sepsis mice by inhibiting TLR9. Biol Proced Online 2023; 25:10. [PMID: 37085762 PMCID: PMC10120132 DOI: 10.1186/s12575-023-00198-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/11/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Sepsis-related acute kidney injury (AKI) is an inflammatory disease associated with extremely high mortality and health burden. This study explored the possibility of exosomes secreted by adipose-derived mesenchymal stem cells (AMSCs) serving as a carrier for microRNA (miR)-342-5p to alleviate sepsis-related AKI and investigated the possible mechanism. METHODS Serum was obtained from 30 patients with sepsis-associated AKI and 30 healthy volunteers for the measurement of miR-342-5p, blood urea nitrogen (BUN), and serum creatinine (SCr) levels. For in vitro experiments, AMSCs were transfected with LV-miR-342-5p or LV-miR-67 to acquire miR-342-5p-modified AMSCs and miR-67-modified AMSCs, from which the exosomes (AMSC-Exo-342 and AMSC-Exo-67) were isolated. The human renal proximal tubular epithelial cell line HK-2 was induced by lipopolysaccharide (LPS) to construct a cellular model of sepsis. The expression of Toll-like receptor 9 (TLR9) was also detected in AKI cells and mouse models. The interaction between miR-342-5p and TLR9 was predicted by dual luciferase reporter gene assay. RESULTS Detection on clinical serum samples showed that BUN, SCr, and TLR9 were elevated and miR-342-5p level was suppressed in the serum of patients with sepsis-associated AKI. Transfection with LV-miR-342-5p reinforced miR-342-5p expression in AMSCs and AMSC-secreted exosomes. miR-342-5p negatively targeted TLR9. LPS treatment enhanced TLR9 expression, reduced miR-342-5p levels, suppressed autophagy, and increased inflammation in HK-2 cells, while the opposite trends were observed in LPS-induced HK-2 cells exposed to AMSC-Exo-342, Rapa, miR-342-5p mimic, or si-TLR9. Additionally, the effects of AMSC-Exo-342 on autophagy and inflammation in LPS-induced cells could be weakened by 3-MA or pcDNA3.1-TLR9 treatment. Injection of AMSC-Exo-342 enhanced autophagy, mitigated kidney injury, suppressed inflammation, and reduced BUN and SCr levels in sepsis-related AKI mouse models. CONCLUSION miR-342-5p transferred by exosomes from miR-342-5p-modified AMSCs ameliorated AKI by inhibiting TLR9 to accelerate autophagy.
Collapse
Affiliation(s)
- Wei Liu
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Chenghuan Hu
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Buyao Zhang
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Mingxia Li
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Fuxing Deng
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Shuangping Zhao
- Department of Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
11
|
Cytoprotective remedies for ameliorating nephrotoxicity induced by renal oxidative stress. Life Sci 2023; 318:121466. [PMID: 36773693 DOI: 10.1016/j.lfs.2023.121466] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
AIMS Nephrotoxicity is the hallmark of anti-neoplastic drug metabolism that causes oxidative stress. External chemical agents and prescription drugs release copious amounts of free radicals originating from molecular oxidation and unless sustainably scavenged, they stimulate membrane lipid peroxidation and disruption of the host antioxidant mechanisms. This review aims to provide a comprehensive collection of potential cytoprotective remedies in surmounting the most difficult aspect of cancer therapy as well as preventing renal oxidative stress by other means. MATERIALS AND METHODS Over 400 published research and review articles spanning several decades were scrutinised to obtain the relevant data which is presented in 3 categories; sources, mechanisms, and mitigation of renal oxidative stress. KEY-FINDINGS Drug and chemical-induced nephrotoxicity commonly manifests as chronic or acute kidney disease, nephritis, nephrotic syndrome, and nephrosis. Renal replacement therapy requirements and mortalities from end-stage renal disease are set to rapidly increase in the next decade for which 43 different cytoprotective compounds which have the capability to suppress experimental nephrotoxicity are described. SIGNIFICANCE The renal system performs essential homeostatic functions that play a significant role in eliminating toxicants, and its accumulation and recurrence in nephric tissues results in tubular degeneration and subsequent renal impairment. Global statistics of the latest chronic kidney disease prevalence is 13.4 % while the end-stage kidney disease requiring renal replacement therapy is 4-7 million per annum. The remedial compounds discussed herein had proven efficacy against nephrotoxicity manifested consequent to impaired antioxidant mechanisms in preclinical models produced by renal oxidative stress activators.
Collapse
|
12
|
Salama AAA, Elgohary R, Fahmy MI. Protocatechuic acid ameliorates lipopolysaccharide-induced kidney damage in mice via downregulation of TLR-4-mediated IKBKB/NF-κB and MAPK/Erk signaling pathways. J Appl Toxicol 2023. [PMID: 36807594 DOI: 10.1002/jat.4447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Acute kidney injury (AKI) is a very critical cause of death in the whole world. Lipopolysaccharide (LPS) induces kidney damage by activating various deleterious inflammatory and oxidative pathways. Protocatechuic acid, a natural phenolic compound, has shown to exert beneficial effects against oxidative and inflammatory responses. The study aimed to clarify the nephroprotective activity of protocatechuic acid in LPS-induced acute kidney damage in mice. Forty male Swiss mice were allocated in four groups as follows: normal control group; LPS (250 μg/kg, ip)-induced kidney injury group; LPS-injected mice treated with protocatechuic acid (15 mg/kg, po), and LPS-injected mice treated with protocatechuic acid (30 mg/kg, po). Significant toll-like receptor 4 (TLR-4)-mediated activation of IKBKB/NF-κB and MAPK/Erk/COX-2 inflammatory pathways has been observed in kidneys of mice treated with LPS. Oxidative stress was revealed by inhibition of total antioxidant capacity, catalase, nuclear factor erythroid 2-related factor 2 (Nrf2), and NAD(P)H quinone oxidoreductase (NQO1) enzyme along with increased nitric oxide level. In parallel, focal inflammatory effects were shown in between the tubules and glomeruli as well as in the perivascular dilated blood vessels at the cortex affecting the normal morphology of the kidney tissues of LPS-treated mice. However, treatment with protocatechuic acid reduced LPS-induced changes in the aforementioned parameters and restored normal histological features of the affected tissues. In conclusion, our study uncovered that protocatechuic acid has nephroprotective effects in mice with AKI through opposing different inflammatory and oxidative cascades.
Collapse
Affiliation(s)
| | - Rania Elgohary
- Narcotics, Ergogenics and Poisons Department, National Research Centre, Cairo, Egypt
| | - Mohamed Ibrahim Fahmy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| |
Collapse
|
13
|
Zhang YZ, Fan ML, Zhang WZ, Liu W, Li HP, Ren S, Jiang S, Song MJ, Wang Z, Li W. Schisandrin ameliorates diabetic nephropathy via regulating of PI3K/Akt/NF-κB-mediated inflammation and TGF-β1-induced fibrosis in HFD/STZ-induced C57BL/6J mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
14
|
Liu J, Mu X, Liang J, Zhang J, Qiang T, Li H, Li B, Liu H, Zhang B. Metabolic profiling on the analysis of different parts of Schisandra chinensis based on UPLC-QTOF-MS with comparative bioactivity assays. FRONTIERS IN PLANT SCIENCE 2022; 13:970535. [PMID: 36518510 PMCID: PMC9742558 DOI: 10.3389/fpls.2022.970535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/31/2022] [Indexed: 06/17/2023]
Abstract
The Schisandra chinensis is an important edible plant, and previous phytochemical research focused on the S. chinensis fruit (SF) due to its long history as traditional Chinese medicine. Schisandra chinensis fruit was used as an astringent tonic to astringe the lungs and the kidneys, replenish energy, promote the production of body fluids, tonify the kidney, and induce sedation. The components of S. chinensis, such as its stems (SS), leaves (SL), and roots (SR), have drawn little attention regarding their metabolites and bioactivities. In this study, a strategy of combining a chemical database with the Progenesis QI informatics platform was applied to characterize the metabolites. A total of 332 compounds were tentatively identified, including lignans, triterpenoids, flavonoids, tannins, and other compound classes. Heatmap and principal component analysis (PCA) showed remarkable differences in different parts of the plants. By multiple orthogonal partial least-squares discriminant analyses (OPLS-DA), 76 compounds were identified as potential marker compounds that differentiate these different plant parts. Based on the variable influence on the projection score from OPLS-DA, the active substances including gomisin D, schisandrol B, schisantherin C, kadsuranin, and kadlongilactone F supported the fact that the biological activity of the roots was higher than that of the fruit. These substances can be used as marker compounds in the plant roots, which likely contribute to their antioxidant and anti-inflammatory activities. The plant roots could be a new medicinal source that exhibits better activity than that of traditional medicinal parts, which makes them worth exploring.
Collapse
Affiliation(s)
- Jiushi Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinlu Mu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinmei Liang
- Department of Pharmacy, Medical Guarantee Center Pla General Hospital, Beijing, China
| | - Jianuo Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tingyan Qiang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongbo Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Bin Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bengang Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Feng F, Pan L, Wu J, Liu M, He L, Yang L, Zhou W. Schisantherin A inhibits cell proliferation by regulating glucose metabolism pathway in hepatocellular carcinoma. Front Pharmacol 2022; 13:1019486. [PMID: 36425581 PMCID: PMC9679220 DOI: 10.3389/fphar.2022.1019486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/26/2022] [Indexed: 08/06/2023] Open
Abstract
Schisantherin A (STA) is a traditional Chinese medicine extracted from the plant Schisandra chinensis, which has a wide range of anti-inflammatory, antioxidant, and other pharmacological effects. This study investigates the anti-hepatocellular carcinoma effects of STA and the underlying mechanisms. STA significantly inhibits the proliferation and migration of Hep3B and HCCLM3 cells in vitro in a concentration-dependent manner. RNA-sequencing showed that 77 genes are upregulated and 136 genes are downregulated in STA-treated cells compared with untreated cells. KEGG pathway analysis showed significant enrichment in galactose metabolism as well as in fructose and mannose metabolism. Further gas chromatography-mass spectrometric analysis (GC-MS) confirmed this, indicating that STA significantly inhibits the glucose metabolism pathway of Hep3B cells. Tumor xenograft in nude mice showed that STA has a significant inhibitory effect on tumor growth in vivo. In conclusion, our results indicate that STA can inhibit cell proliferation by regulating glucose metabolism, with subsequent anti-tumor effects, and has the potential to be a candidate drug for the treatment of liver cancer.
Collapse
Affiliation(s)
- Fan Feng
- National Innovation and Attracting Talents “111” Base, Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, China
| | - Lianhong Pan
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Jiaqin Wu
- National Innovation and Attracting Talents “111” Base, Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, China
| | - Mingying Liu
- School of Comprehensive Health Management, XiHua University, Chengdu, Sichuan, China
| | - Long He
- School of Artificial Intelligence, Chongqing University of Education, Chongqing, China
| | - Li Yang
- National Innovation and Attracting Talents “111” Base, Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, China
| | - Wei Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
16
|
Chen Z, Wang H, Hu B, Chen X, Zheng M, Liang L, Lyu J, Zeng Q. Transcription factor nuclear factor erythroid 2 p45-related factor 2 (NRF2) ameliorates sepsis-associated acute kidney injury by maintaining mitochondrial homeostasis and improving the mitochondrial function. Eur J Histochem 2022; 66:3412. [PMID: 35726572 PMCID: PMC9251609 DOI: 10.4081/ejh.2022.3412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction has a role in sepsis-associated acute kidney injury (S-AKI), so the restoration of normal mitochondrial homeostasis may be an effective treatment strategy. Transcription factor nuclear factor erythroid 2 p45-related factor 2 (NRF2) is a main regulator of cell-redox homeostasis, and recent studies reported that NRF2 activation helped to preserve mitochondrial morphology and function under conditions of stress. However, the role of NRF2 in the process of S-AKI is still not well understood. The present study investigated whether NRF2 regulates mitochondrial homeostasis and influences mitochondrial function in S-AKI. We demonstrated activation of NRF2 in an in vitro model: lipopolysaccharide (LPS) challenge of ductal epithelial cells of rat renal tubules (NRK-52e cells), and an in vivo model: cecal ligation and puncture (CLP) of rats. Over-expression of NRF2 attenuated oxidative stress, apoptosis, and the inflammatory response; enhanced mitophagy and mitochondrial biogenesis; and mitigated mitochondrial damage in the in vitro model. In vivo experiments showed that rats treated with an NRF2 agonist had higher adenosine triphosphate (ATP) levels, lower blood urea nitrogen and creatinine levels, fewer renal histopathological changes, and higher expression of mitophagy-related proteins [PTEN-induced putative kinase 1 (PINK1), parkin RBR E3 ubiquitin protein ligase (PRKN), microtubule-associated protein 1 light chain 3 II (LC3 II)] and mitochondrial biogenesis-related proteins [peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1α) and mitochondrial transcription factor A (TFAM)]. Electron microscopy of kidney tissues showed that mitochondrial damage was alleviated by treatment with an NRF2 agonist, and the opposite response occurred upon treatment with an NRF2 antagonist. Overall, our findings suggest that mitochondria have an important role in the pathogenesis of S-AKI, and that NRF2 activation restored mitochondrial homeostasis and function in the presence of this disease. This mitochondrial pathway has the potential to be a novel therapeutic target for the treatment of S-AKI.
Collapse
Affiliation(s)
- Zhijiang Chen
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong.
| | - Huili Wang
- Department of Laboratory, Guangdong Women and Children Hospital, Guangzhou, Guangdong.
| | - Bin Hu
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong.
| | - Xinxin Chen
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong.
| | - Meiyu Zheng
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong.
| | - Lili Liang
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong.
| | - Juanjuan Lyu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan.
| | - Qiyi Zeng
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong.
| |
Collapse
|
17
|
Zhang Y, Yu C, Feng Y. Pinocembrin ameliorates lipopolysaccharide‑induced HK‑2 cell apoptosis and inflammation by regulating endoplasmic reticulum stress. Exp Ther Med 2022; 24:513. [PMID: 35837041 PMCID: PMC9257947 DOI: 10.3892/etm.2022.11440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/27/2022] [Indexed: 11/28/2022] Open
Abstract
Pinocembrin (PINO) is a natural flavonoid drug that possesses a range of biological activities, including antimicrobial, antioxidant and anti-inflammatory activities. The specific aim of the present study was to examine the pharmacological role of PINO in sepsis-mediated acute kidney injury (AKI), as well as to investigate the potential underlying mechanism. Human renal tubular epithelial cells (of the HK-2 cell line) were stimulated with lipopolysaccharide (LPS) for 24 h to simulate septic AKI in vitro, after which the experiments were repeated and the cells were pretreated with increasing concentrations of PINO (0, 50, 100 and 200 µg/ml). Using an MTT cell viability assay, PINO was revealed to be non-toxic to HK-2 cells. In LPS-treated HK-2 cells, PINO alleviated the loss of cell viability. Western blotting was used to analyze the expression levels of pro-inflammatory cytokines, including IL-1β, IL-6 and TNF-α, and the results revealed that PINO decreased the expression levels of these cytokines in a concentration-dependent manner. Furthermore, malondialdehyde (MDA) and glutathione (GSH) activities were assessed using MDA and GSH assay kits and it was revealed that PINO decreased the significantly increased level of malondialdehyde, while it also decreased the reduction in the level of GSH in LPS-challenged HK-2 cells. In addition, a TUNEL assay and western blotting were performed to examine cell apoptosis, and PINO was identified to significantly inhibit the level of apoptosis in LPS-induced HK-2 cells. Subsequently, the expression levels of endoplasmic reticulum stress (ERS)-associated factors, including activating transcription factor 4, C/EBP homologous protein and phosphorylated/total eukaryotic translation initiation factor 2 subunit 1 were examined by western blotting and it was demonstrated that ERS was triggered in HK-2 cells exposed to LPS, although this was partly circumvented through PINO treatment in a concentration-dependent manner. Furthermore, after the addition of tunicamycin, which acts as an agonist of ERS, the aforementioned experiments were performed again. Tunicamycin led to partial abolition of the protective function of PINO against inflammation, oxidative stress and apoptosis in LPS-challenged HK-2 cells. Overall, the results of the present study demonstrated that PINO was able to ameliorate the injuries sustained by LPS-challenged HK-2 cells via modulating ERS to reduce inflammation, oxidative stress and apoptosis; therefore, PINO may be a novel candidate drug for treating septic AKI.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200082, P.R. China
| | - Chenxi Yu
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200082, P.R. China
| | - Yi Feng
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200082, P.R. China
| |
Collapse
|
18
|
Osmakov DI, Kalinovskii AP, Belozerova OA, Andreev YA, Kozlov SA. Lignans as Pharmacological Agents in Disorders Related to Oxidative Stress and Inflammation: Chemical Synthesis Approaches and Biological Activities. Int J Mol Sci 2022; 23:6031. [PMID: 35682715 PMCID: PMC9181380 DOI: 10.3390/ijms23116031] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Plant lignans exhibit a wide range of biological activities, which makes them the research objects of potential use as therapeutic agents. They provide diverse naturally-occurring pharmacophores and are available for production by chemical synthesis. A large amount of accumulated data indicates that lignans of different structural groups are apt to demonstrate both anti-inflammatory and antioxidant effects, in many cases, simultaneously. In this review, we summarize the comprehensive knowledge about lignan use as a bioactive agent in disorders associated with oxidative stress and inflammation, pharmacological effects in vitro and in vivo, molecular mechanisms underlying these effects, and chemical synthesis approaches. This article provides an up-to-date overview of the current data in this area, available in PubMed, Scopus, and Web of Science databases, screened from 2000 to 2022.
Collapse
Affiliation(s)
- Dmitry I. Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Aleksandr P. Kalinovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| | - Olga A. Belozerova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| | - Yaroslav A. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey A. Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| |
Collapse
|
19
|
Yang Y, Ge FL, Zhan XY, Mu WQ, Li ZY, Lin L, Wei ZY, Bai ZF, Sun Q, Xiao XH. Schisandra chinensis Oil Attenuates Aristolochic Acid I-Induced Nephrotoxicity in vivo and in vitro. Chin J Integr Med 2022; 28:603-611. [PMID: 35391592 DOI: 10.1007/s11655-022-3574-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To investigate the protective effects of Schisandra chinensis oil (SCEO) against aristolochic acid I (AA I)-induced nephrotoxicity in vivo and in vitro and elucidate the underlying mechanism. METHODS C57BL/6 mice were randomly divided into 5 groups according to a random number table, including control group, AA I group, and AA I +SCEO (0.25, 0.5 and 1 g/kg) groups (n=5 per group). Pretreatment with SCEO was done for 2 days by oral administration, while the control and AA I groups were treated with sodium carboxymethyl cellulose. Mice of all groups except for the control group were injected intraperitoneally with AA I (5 mg/kg) from day 3 until day 7. Histopathological examination and apoptosis of kidney tissue were observed by hematoxylin and eosin and TdT-mediated dUTP nick-end labeling (TUNEL) staining, respectively. The levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and serum creatinine (SCr), as well as renal malondialdehyde (MDA), glutathione, r-glutamyl cysteingl+glycine (GSH), and superoxide dismutase (SOD) were analyzed using enzyme-linked immunosorbent assay (ELISA). Expressions of hepatic cytochrome P450 1A1 (CYP1A1), CYP1A2, and nad(p)hquinonedehydrogenase1 (NQO1) were analyzed using ELISA, quantitative real-time polymerase chain reaction (qPCR) and Western blot, respectively. In vitro, SCEO (40 µ g/mL) was added 12 h before treatment with AA I (40 µ mol/mL for 48 h) in human renal proximal tubule cell line (HK-2), then apoptosis and reactive oxygen species (ROS) were analyzed by flow cytometry. RESULTS SCEO 0.5 and 1 g/kg ameliorated histopathological changes and TUNEL+ staining in the kidney tissues of mice with AA I-induced nephrotoxicity, and reduced serum levels of ALT, AST, BUN and SCr (P<0.01 or P<0.05). SCEO 0.5 and 1 g/kg alleviated the ROS generation in kidney, containing MDA, GSH and SOD (P<0.01 or P<0.05). SCEO 1 g/kg increased the expressions of CYP1A1 and CYP1A2 and decreased NQO1 level in the liver tissues (P<0.01 or P<0.05). Besides, in vitro studies also demonstrated that SCEO 40 µ g/mL inhibited apoptosis and ROS generation (P<0.05 or P<0.01). CONCLUSIONS SCEO can alleviate AA I-induced kidney damage both in vivo and in vitro. The protective mechanism may be closely related to the regulation of metabolic enzymes, thereby inhibiting apoptosis and ROS production.
Collapse
Affiliation(s)
- Yan Yang
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan Province, 646000, China.,Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.,China Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Fei-Lin Ge
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.,China Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Xiao-Yan Zhan
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.,China Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Wen-Qing Mu
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Zhi-Yong Li
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Li Lin
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Zi-Ying Wei
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Zhao-Fang Bai
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.,China Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Qin Sun
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan Province, 646000, China.
| | - Xiao-He Xiao
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.,China Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| |
Collapse
|
20
|
Zhang B, Zeng M, Wang Y, Li M, Wu Y, Xu R, Zhang Q, Jia J, Huang Y, Zheng X, Feng W. Oleic acid alleviates LPS-induced acute kidney injury by restraining inflammation and oxidative stress via the Ras/MAPKs/PPAR-γ signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153818. [PMID: 34798521 DOI: 10.1016/j.phymed.2021.153818] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/27/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Rehmannia Glutinosa Libosch. is applied for the treatment of renal and inflammatory-related diseases, and oleic acid (OA) is a compound isolated from Rehmannia Glutinosa Libosch.. Unfortunately, the pharmacological activity of OA on LPS treated acute kidney injury (AKI) has not been investigated. AIMS The research is aiming to probe the activities of OA on LPS-induced AKI. METHODS Information of OA effect on AKI were from network pharmacology. H&E staining, creatinine (CRE) and urea nitrogen (UN) were performed to evaluate the activities of OA on kidney function. Inflammatory factors in serum were measured by cytometric bead array. Increased ratio of reactive oxygen species (ROS) in kidney and immune cells in the peripheral blood were determined by flow cytometry (FCM). PPAR-γ, MAPK and apoptotic signaling pathways were measured by Western blot. Then, a metabolomics approach was utilized to investigate OA's response to AKI. The role of salirasib (FTS, Ras inhibitor) in OA acted on ROS, Ca2+, MMP and Ras signaling pathway in LPS treated NRK-52e cells were investigated by FCM and In-cell western. RESULTS It is proved that OA effetively ameliorated renal function, alleviated inflammatory response and oxidative stress, and transformed apoptotic, MAPK and PPAR-γ signaling pathways in mice with AKI, regulated phenylalanine metabolism, purine metabolism, sphingolipid metabolism, taurine and hypotaurine metabolism, moreover, the role of OA in injury of NRK-52e was blocked by FTS. CONCLUSION In a word, OA could alleviate AKI by restraining inflammation and oxidative stress via regulating the Ras/MAPKs/PPAR-γ signaling pathway, phenylalanine metabolism, purine metabolism, sphingolipid metabolism and taurine and hypotaurine metabolism, which might be a useful strategy for treating AKI.
Collapse
Affiliation(s)
- Beibei Zhang
- 156 Jinshui East Road, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Mengnan Zeng
- 156 Jinshui East Road, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Yangyang Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meng Li
- 156 Jinshui East Road, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Yuanyuan Wu
- 156 Jinshui East Road, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Ruiqi Xu
- 156 Jinshui East Road, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Qinqin Zhang
- 156 Jinshui East Road, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Jufang Jia
- 156 Jinshui East Road, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Yanjie Huang
- 156 Jinshui East Road, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xiaoke Zheng
- 156 Jinshui East Road, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China.
| | - Weisheng Feng
- 156 Jinshui East Road, Henan University of Chinese Medicine, Zhengzhou 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China.
| |
Collapse
|
21
|
Chen L, Ren LQ, Liu Z, Liu X, Tu H, Huang XY. Bio-informatics and in Vitro Experiments Reveal the Mechanism of Schisandrin A Against MDA-MB-231 cells. Bioengineered 2021; 12:7678-7693. [PMID: 34550868 PMCID: PMC8806699 DOI: 10.1080/21655979.2021.1982307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Schisandrin A (SchA) has been reported to have good anti-cancer effects. However, its anti-cancer mechanism in breast cancer remains unknown. This study aimed to explore the mechanism of SchA in breast cancer treatment using bio-informatics analysis and in vitro experiments. The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Gene Cards, and PharmMapper databases were used to screen the candidate targets of SchA against MDA-MB-231 cells selected as the tested cell line through MTT analysis. The functions and pathways of the targets were identified using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and further analyzed using DAVID 6.8.1 database. Network pharmacology analysis revealed 77 candidate targets, 31 signal pathways, and 208 GO entries (P < 0.05). The targets regulated serine-type endopeptidase and protein tyrosine kinase activities, thereby promoting the migration and inhibiting the apoptosis of MDA-MB-231 cells. Comprehensive analysis of the ‘Protein–Protein Interaction’ (PPI) and ‘Component-Targets-Pathways’ (C-T-P) networks constructed using Cytoscape 3.7.1 software revealed four core targets: EGFR, PIK3R1, MMP9 and Caspase 3. Their docking scores with SchA were subsequently investigated through molecular docking. The wound healing, Hoechst 33342/PI, and western blot assays confirmed that SchA significantly down-regulated EGFR, PIK3R1, and MMP9, but up-regulated cleaved-caspase 3, thus inhibiting the migration and promoting the apoptosis of MDA-MB-231 cells. Reckoning the findings of the study, SchA is a potential adjuvant treatment for breast cancer.
Collapse
Affiliation(s)
- Ling Chen
- Medical Department, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li-Quan Ren
- Medical Department, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Zhong Liu
- Department of Pharmacy, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xin Liu
- Department of Pharmacy, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Han Tu
- Department of Pharmacy, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xu-Ying Huang
- Department of Pharmacy, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| |
Collapse
|
22
|
Wang Z, Wang L, Luo J, Zhang J. Protection against acute renal injury by naturally occurring medicines which act through Nrf2 signaling pathway. J Food Biochem 2020; 45:e13556. [PMID: 33152804 DOI: 10.1111/jfbc.13556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/26/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
The cellular defense pathway plays a key role in maintaining the homeostasis, tissues and organisms. Nuclear factor E2-related factor 2 (Nrf2), as a key cell signaling pathway, plays an important role in encoding detoxification enzymes and other stress response mediators. Recent studies have shown that it is closely related to the prevention and treatment of acute kidney injury (AKI). Therefore, this article reviews the protective effects of Nrf2-related signaling pathways on acute kidney injury, and summarizes the strategies of natural pharmaceutical ingredients such as flavonoids, alkaloids, terpenes, phenylpropionic acid, polyphenols, and polysaccharides to prevent and treat acute kidney injury. It is of great significance to further study the relationship between Nrf2 regulated signal pathway and kidney disease and the development of new medicines for acute kidney injury treatment. It can also provide new ideas and treatment strategies for clinical treatment of acute kidney injury. PRACTICAL APPLICATIONS: This article reviewed the mechanisms by which the active ingredients of natural medicines slow down acute kidney injury through the Nrf2 pathway. It will help us to understand the regulatory role of the Nrf2 pathway in AKI more comprehensively, and provide a theoretical basis for further exploring the mechanism of more natural drugs to reduce acute kidney injury.
Collapse
Affiliation(s)
- Zhenyi Wang
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Lulu Wang
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China.,Changchun Institute of Technology School of Medicine, Changchun, China
| | - Jiacheng Luo
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China
| | - Jing Zhang
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, China.,Changchun Institute of Technology School of Medicine, Changchun, China
| |
Collapse
|