1
|
Khalifa M, Fayed RH, Ahmed YH, Abdelhameed MF, Essa AF, Khalil HMA. Ferulic acid ameliorates bisphenol A (BPA)-induced Alzheimer's disease-like pathology through Akt-ERK crosstalk pathway in male rats. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06697-4. [PMID: 39441400 DOI: 10.1007/s00213-024-06697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVES This study investigated the neuroprotective effect of ferulic acid (FA) against bisphenol A (BPA) induced Alzheimer's disease-like pathology in male rats. METHODS Rats were allocated into four groups, control, BPA, BPA + FA, and FA, respectively, for 40 days. Spatial working memory and recognition memory were evaluated. Moreover, the brain levels of oxidative stress biomarkers, proinflammatory cytokines, extracellular signal-regulated kinase (ERK), and phosphorylated serine/threonine protein kinase (p-Akt) were measured. We also determined the brain neuropathological protein levels, including Beta-Amyloid 1-42, total Tau (tTau), and phosphorylated Tau (pTau) proteins. Furthermore, brain levels of Acetylcholinesterase (AChE) and Beta-secretase (BACE) were assessed. Brain histological investigation and immunohistochemistry determination of glial fibrillar acidic protein (GFAP) were also performed. Moreover, docking simulation was adapted to understand the inhibitory role of FA on AChE, BACE-1, and ERK1/2. RESULTS Interestingly, the BPA + FA treated group showed a reversal in the cognitive impairments induced by BPA, which was associated with improved brain redox status. They also exhibited a significant decrease in brain inflammatory cytokines, ERK, and p-Akt levels. Moreover, they revealed a decline in beta-amyloid 1-42 and a significant improvement in tTau expression and pTau protein levels in the brain tissue. Further, the brain levels of AChE and BACE were substantially reduced in BPA + FA rats. The neuroprotective effect of FA was confirmed by restoring the normal architecture of brain tissue, which was associated with decreasing GFAP. CONCLUSION FA could be a potent neuroprotectant agent against AD with a possible prospect for its therapeutic capabilities and nutritional supplement value due to its antioxidant and antiapoptotic properties.
Collapse
Affiliation(s)
- Mhasen Khalifa
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Rabie H Fayed
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Yasmine H Ahmed
- Cytology and Histology Department, Faculty of Vet. Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed F Abdelhameed
- Pharmacology Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Ahmed F Essa
- Department of Natural Compounds Chemistry, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Heba M A Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Faculty of Veterinary medicine, King Salman International University, South sinai, Ras Sudr, Egypt
| |
Collapse
|
2
|
Ricker K, Cheng V, Hsieh CJ, Tsai FC, Osborne G, Li K, Yilmazer-Musa M, Sandy MS, Cogliano VJ, Schmitz R, Sun M. Application of the Key Characteristics of Carcinogens to Bisphenol A. Int J Toxicol 2024; 43:253-290. [PMID: 38204208 DOI: 10.1177/10915818231225161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The ten key characteristics (KCs) of carcinogens are based on characteristics of known human carcinogens and encompass many types of endpoints. We propose that an objective review of the large amount of cancer mechanistic evidence for the chemical bisphenol A (BPA) can be achieved through use of these KCs. A search on metabolic and mechanistic data relevant to the carcinogenicity of BPA was conducted and web-based software tools were used to screen and organize the results. We applied the KCs to systematically identify, organize, and summarize mechanistic information for BPA, and to bring relevant carcinogenic mechanisms into focus. For some KCs with very large data sets, we utilized reviews focused on specific endpoints. Over 3000 studies for BPA from various data streams (exposed humans, animals, in vitro and cell-free systems) were identified. Mechanistic data relevant to each of the ten KCs were identified, with receptor-mediated effects, epigenetic alterations, oxidative stress, and cell proliferation being especially data rich. Reactive and bioactive metabolites are also associated with a number of KCs. This review demonstrates how the KCs can be applied to evaluate mechanistic data, especially for data-rich chemicals. While individual entities may have different approaches for the incorporation of mechanistic data in cancer hazard identification, the KCs provide a practical framework for conducting an objective examination of the available mechanistic data without a priori assumptions on mode of action. This analysis of the mechanistic data available for BPA suggests multiple and inter-connected mechanisms through which this chemical can act.
Collapse
Affiliation(s)
- Karin Ricker
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Vanessa Cheng
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Chingyi Jennifer Hsieh
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| | - Feng C Tsai
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Gwendolyn Osborne
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Kate Li
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Meltem Yilmazer-Musa
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Martha S Sandy
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Vincent J Cogliano
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Rose Schmitz
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Meng Sun
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, CA, USA
| |
Collapse
|
3
|
Charles DA, Prince SE. Deciphering the molecular mechanism of NLRP3 in BPA-mediated toxicity: Implications for targeted therapies. Heliyon 2024; 10:e28917. [PMID: 38596095 PMCID: PMC11002687 DOI: 10.1016/j.heliyon.2024.e28917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Bisphenol-A (BPA), a pervasive industrial chemical used in polymer synthesis, is found in numerous consumer products including food packaging, medical devices, and resins. Detectable in a majority of the global population, BPA exposure occurs via ingestion, inhalation, and dermal routes. Extensive research has demonstrated the adverse health effects of BPA, particularly its disruption of immune and endocrine systems, along with genotoxic potential. This review focuses on the complex relationship between BPA exposure and the NOD-like receptor protein 3 (NLRP3) inflammasome, a multiprotein complex central to inflammatory disease processes. We examine how BPA induces oxidative stress through the generation of intracellular free radicals, subsequently activating NLRP3 signaling. The mechanistic details of this process are explored, including the involvement of signaling cascades such as PI3K/AKT, JAK/STAT, AMPK/mTOR, and ERK/MAPK, which are implicated in NLRP3 inflammasome activation. A key focus of this review is the wide-ranging organ toxicities associated with BPA exposure, including hepatic, renal, gastrointestinal, and cardiovascular dysfunction. We investigate the immunopathogenesis and molecular pathways driving these injuries, highlighting the interplay among BPA, oxidative stress, and the NLRP3 inflammasome. Finally, this review explores the emerging concept of targeting NLRP3 as a potential therapeutic strategy to mitigate the organ toxicities stemming from BPA exposure. This work integrates current knowledge, emphasizes complex molecular mechanisms, and promotes further research into NLRP3-targeted interventions.
Collapse
Affiliation(s)
- Doveit Antony Charles
- Department of Biotechnology, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India
| | - Sabina Evan Prince
- Department of Biotechnology, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India
| |
Collapse
|
4
|
Xu Y, Nie J, Lu C, Hu C, Chen Y, Ma Y, Huang Y, Lu L. Effects and mechanisms of bisphenols exposure on neurodegenerative diseases risk: A systemic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170670. [PMID: 38325473 DOI: 10.1016/j.scitotenv.2024.170670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Environmental bisphenols (BPs) pose a global threat to human health because of their extensive use as additives in plastic products. BP residues are increasing in various environmental media (i.e., water, soil, and indoor dust) and biological and human samples (i.e., serum and brain). Both epidemiological and animal studies have determined an association between exposure to BPs and an increased risk of neurodegenerative diseases (e.g., Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis), including cognitive abnormalities and behavioral disturbances. Hence, understanding the biological responses to different BPs is essential for prevention, and treatment. This study provides an overview of the underlying pathogenic molecular mechanisms as a valuable basis for understanding neurodegenerative disease responses to BPs, including accumulation of misfolded proteins, reduction of tyrosine hydroxylase and dopamine, abnormal hormone signaling, neuronal death, oxidative stress, calcium homeostasis, and inflammation. These findings provide new insights into the neurotoxic potential of BPs and ultimately contribute to a comprehensive health risk evaluation.
Collapse
Affiliation(s)
- Yeqing Xu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jun Nie
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chenghao Lu
- College of Mathematics and Computer Science, Zhejiang A & F University, Hangzhou 311300, China
| | - Chao Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yunlu Chen
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ying Ma
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yuru Huang
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Liping Lu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
5
|
Costa HE, Cairrao E. Effect of bisphenol A on the neurological system: a review update. Arch Toxicol 2024; 98:1-73. [PMID: 37855918 PMCID: PMC10761478 DOI: 10.1007/s00204-023-03614-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) and one of the most produced synthetic compounds worldwide. BPA can be found in epoxy resins and polycarbonate plastics, which are frequently used in food storage and baby bottles. However, BPA can bind mainly to estrogen receptors, interfering with various neurologic functions, its use is a topic of significant concern. Nonetheless, the neurotoxicity of BPA has not been fully understood despite numerous investigations on its disruptive effects. Therefore, this review aims to highlight the most recent studies on the implications of BPA on the neurologic system. Our findings suggest that BPA exposure impairs various structural and molecular brain changes, promoting oxidative stress, changing expression levels of several crucial genes and proteins, destructive effects on neurotransmitters, excitotoxicity and neuroinflammation, damaged blood-brain barrier function, neuronal damage, apoptosis effects, disruption of intracellular Ca2+ homeostasis, increase in reactive oxygen species, promoted apoptosis and intracellular lactate dehydrogenase release, a decrease of axon length, microglial DNA damage, astrogliosis, and significantly reduced myelination. Moreover, BPA exposure increases the risk of developing neurologic diseases, including neurovascular (e.g. stroke) and neurodegenerative (e.g. Alzheimer's and Parkinson's) diseases. Furthermore, epidemiological studies showed that the adverse effects of BPA on neurodevelopment in children contributed to the emergence of serious neurological diseases like attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), depression, emotional problems, anxiety, and cognitive disorders. In summary, BPA exposure compromises human health, promoting the development and progression of neurologic disorders. More research is required to fully understand how BPA-induced neurotoxicity affects human health.
Collapse
Affiliation(s)
- Henrique Eloi Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal.
| |
Collapse
|
6
|
Hassan AA, Abdelgayed SS, Mansour SZ. Liver and ovarian toxicities boosted by bisphenol and gamma radiation in female albino rats. Hum Exp Toxicol 2024; 43:9603271231219264. [PMID: 38263794 DOI: 10.1177/09603271231219264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Bisphenol A (BPA), a carbon-based synthetic polymer compound, was newly classified as an environmental toxicant and an endocrine-disrupting chemical leading to abnormalities in cell proliferation, apoptosis, or migration that contributes to cancer development and progression. This study aims to evaluate the effect of the elevation of γ- radiation dose and BPA on the liver and ovaries of female rats. In this study, eighty female albino rats (130-150 g) were used in this work. Rats in this experiment received BPA in ethanol (50 mg/kg b. wt.) for 30 days, day after day, and in the irradiated groups, animals were administered BPA and then exposed to γ- radiation in doses (2, 4, and 6 Gy) one shot dose. Several members of the cytochrome family were examined. Exposure to γ-radiation and BPA showed an increase in cytochrome P450 and b5 fold change. Further, BPA and γ-radiation activate α and β estrogen receptors and also downregulate aromatase (CYT19) fold change. The current results also revealed that BPA and/or γ-radiation regulate the protein expression of the PI3K/Akt signaling pathway. The steroidogenic acute regulatory protein (StAR) appeared to be targeted by BPA and γ-radiation and its relative expression was elevated significantly by raising the γ-radiation dose. In conclusion, exposure to BPA, an endocrine-disrupting chemical, leads to marked toxicity. Additionally, toxicity is heightened by increasing the γ-radiation dose, either alone or in combination with BPA.
Collapse
Affiliation(s)
- Asmaa A Hassan
- Radiation Biology Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Sherein S Abdelgayed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Somaya Z Mansour
- Radiation Biology Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
7
|
Thabet NM, Abdel-Rafei MK, Amin MM. Fractionated whole body γ-irradiation aggravates arthritic severity via boosting NLRP3 and RANKL expression in adjuvant-induced arthritis model: the mitigative potential of ebselen. Inflammopharmacology 2023:10.1007/s10787-023-01238-5. [PMID: 37131046 DOI: 10.1007/s10787-023-01238-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/16/2023] [Indexed: 05/04/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune chronic inflammatory disease associated with oxidative stress that causes excruciating pain, discomfort, and joint destruction. Ebselen (EB), a synthesized versatile organo-selenium compound, protects cells from reactive oxygen species (ROS)-induced injury by mimicking glutathione peroxidase (GPx) action. This study aimed to investigate the antioxidant and anti-inflammatory effects of EB in an arthritic irradiated model. This goal was achieved by subjecting adjuvant-induced arthritis (AIA) rats to fractionated whole body γ-irradiation (2 Gy/fraction once per week for 3 consecutive weeks, for a total dose of 6 Gy) and treating them with EB (20 mg/kg/day, p.o) or methotrexate (MTX; 0.05 mg/kg; twice/week, i.p) as a reference anti-RA drug. The arthritic clinical signs, oxidative stress and antioxidant biomarkers, inflammatory response, expression of NOD-like receptor protein-3 (NLRP-3) inflammasome, receptor activator of nuclear factor κB ligand (RANKL), nuclear factor-κB (NF-κB), apoptotic indicators (caspase 1 and caspase 3), cartilage integrity marker (collagen-II), and histopathological examination of ankle joints were assessed. EB notably improved the severity of arthritic clinical signs, alleviated joint histopathological lesions, modulated oxidative stress and inflammation in serum and synovium, as well as reduced NLRP-3, RANKL, and caspase3 expression while boosting collagen-II expression in the ankle joints of arthritic and arthritic irradiated rats with comparable potency to MTX. Our findings suggest that EB, through its antioxidant and anti-inflammatory properties, has anti-arthritic and radioprotective properties in an arthritic irradiated model.
Collapse
Affiliation(s)
- Noura M Thabet
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, 3 Ahmed El-Zomor Street, Nasr City, P.O. Box 29, Cairo, 11787, Egypt.
| | - Mohamed K Abdel-Rafei
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, 3 Ahmed El-Zomor Street, Nasr City, P.O. Box 29, Cairo, 11787, Egypt.
| | - Mohamed M Amin
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Egypt
| |
Collapse
|
8
|
Jang JW, Min KE, Kim C, Wern C, Yi S. PCL and DMSO 2 Composites for Bio-Scaffold Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2481. [PMID: 36984361 PMCID: PMC10055993 DOI: 10.3390/ma16062481] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/08/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Polycaprolactone (PCL) has been one of the most popular biomaterials in tissue engineering due to its relatively low melting temperature, excellent thermal stability, and cost-effectiveness. However, its low cell attraction, low elastic modulus, and long-term degradation time have limited its application in a wide range of scaffold studies. Dimethyl sulfone (DMSO2) is a stable and non-hazardous organosulfur compound with low viscosity and high surface tension. PCL and DMSO2 composites may overcome the limitations of PCL as a biomaterial and tailor the properties of biocomposites. In this study, PCL and DMSO2 composites were investigated as a new bio-scaffold material to increase hydrophilicity and mechanical properties and tailor degradation properties in vitro. PCL and DMSO2 were physically mixed with 10, 20, and 30 wt% of DMSO2 to evaluate thermal, hydrophilicity, mechanical, and degradation properties of the composites. The water contact angle of the composites for hydrophilicity decreased by 15.5% compared to pure PCL. The experimental results showed that the mechanical and degradation properties of PCL and DMSO2 were better than those of pure PCL, and the properties can be tuned by regulating DMSO2 concentration in the PCL matrix. The elastic modulus of the composite with 30 wt% of DMSO2 showed 532 MPa, and its degradation time was 18 times faster than that of PCL.
Collapse
Affiliation(s)
- Jae-Won Jang
- Department of Mechanical and Material Engineering, Portland State University, Portland, OR 97201, USA
| | - Kyung-Eun Min
- Department of Mechanical and Material Engineering, Portland State University, Portland, OR 97201, USA
| | - Cheolhee Kim
- Department of Mechanical and Material Engineering, Portland State University, Portland, OR 97201, USA
- Welding and Joining R&D Group, Korea Institute of Industrial Technology, 156, Getbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
| | - Chien Wern
- Department of Mechanical and Material Engineering, Portland State University, Portland, OR 97201, USA
| | - Sung Yi
- Department of Mechanical and Material Engineering, Portland State University, Portland, OR 97201, USA
| |
Collapse
|
9
|
Amirshahrokhi K, Niapour A. Methylsulfonylmethane protects against ethanol-induced brain injury in mice through the inhibition of oxidative stress, proinflammatory mediators and apoptotic cell death. Int Immunopharmacol 2022; 106:108638. [PMID: 35203043 DOI: 10.1016/j.intimp.2022.108638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022]
Abstract
Excessive ethanol consumption causes brain injury through oxidative stress, inflammation and apoptotic cell death. Methylsulfonylmethane (MSM) is a natural compound that has therapeutic effects on oxidative and inflammatory disorders. The aim of this study was to investigate the protective effect and underlying mechanisms of MSM on ethanol-induced brain injury in an experimental model. Male C57BL/6 mice were exposed to binge ethanol (5 g/kg/day, orally) and treated with MSM (200 and 400 mg/kg/day) concomitantly for 12 days. At the end of the experiment brain tissues were removed for histological and biochemical analysis. The results showed that MSM reduced ethanol-mediated oxidative stress by decreasing the levels of malondialdehyde (MDA) and carbonyl protein. The Nrf2/HO-1 pathway and the levels of cytoprotective antioxidants superoxide dismutase (SOD), catalase and glutathione (GSH) were increased by MSM in the brain tissue. MSM treatment reduced the ethanol-induced inflammatory factors including myeloperoxidase (MPO), iNOS/NO, cyclooxygenase (COX)-2, nuclear factor kappa B (NF-κB), NLRP3 inflammasome and proinflammatory cytokines including TNF-α, IL-1β, IL-6 and MCP-1. MSM also decreased the levels of pro-apoptotic caspase-3 and TUNEL positive cells while increased the level of anti-apoptotic Bcl-2 in the brain tissue. Our findings demonstrated that MSM protects against ethanol-induced brain injury by improving anti-oxidant defense mechanism and reducing ethanol-mediated inflammation and apoptosis. Therefore, MSM may be a potential protective approach for brain damage caused by high levels of alcohol.
Collapse
Affiliation(s)
- Keyvan Amirshahrokhi
- Department of Pharmacology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Ali Niapour
- Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
10
|
Engin AB, Engin A. Risk of Alzheimer's disease and environmental bisphenol A exposure. CURRENT OPINION IN TOXICOLOGY 2021. [DOI: 10.1016/j.cotox.2021.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Singh H, Rai V, Nooti SK, Agrawal DK. Novel ligands and modulators of triggering receptor expressed on myeloid cells receptor family: 2015-2020 updates. Expert Opin Ther Pat 2021; 31:549-561. [PMID: 33507843 DOI: 10.1080/13543776.2021.1883587] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Triggering receptors expressed on myeloid cells (TREMs) are inflammatory amplifiers with defined pathophysiological role in various infectious diseases, acute and chronic aseptic inflammations, and a variety of cancers, depicting TREMs as prominent therapeutic targets.Areas covered: Herein, updates from 2015 to 2020 are discussed to divulge the TREM ligands, as well as their peptide blockers, claimed to modulate their expression. The article also presents different strategies employed during the last five years to block interactions between TREMs and their ligands to treat various disease conditions by modulating their expression and activity.Expert opinion: There has been significant progress in the discovery of novel ligands and modulators of TREMs in the last five years that mainly revolved around the function of TREM molecules. A few peptides showed encouraging results to modulate the expression and activity of TREMs in preclinical studies, and these peptides are currently under clinical investigation. Based on the findings so far in several careful studies, we expect novel therapeutics in the near future which could have the ability to treat various disease conditions associated with TREM expression.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, California, USA
| | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, California, USA
| | - Sunil K Nooti
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, California, USA
| |
Collapse
|