1
|
Elshebiney SA, Elgohary RA, El-Shamarka ME, Mabrouk M, Beheri HH. A novel tramadol-polycaprolactone implant could palliate heroin conditioned place preference and withdrawal in rats: behavioral and neurochemical study. Behav Pharmacol 2024; 35:280-292. [PMID: 38900102 DOI: 10.1097/fbp.0000000000000778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Drug dependence is a chronic brain disease characterized by craving and recurrent episodes of relapse. Tramadol HCl is a promising agent for withdrawal symptoms management, considering its relatively low abuse potential and safety. Oral administration, however, is not preferred in abstinence maintenance programs. Introducing an implantable, long-lasting formula is suggested to help outpatient abstinence programs achieve higher rates of treatment continuation. Tramadol implants (T350 and T650) were prepared on polycaprolactone polymer ribbons by the wet method. Male Wistar rats were adapted to heroin-conditioned place preference (CPP) at escalating doses (3-30 mg/kg, intraperitoneally, for 14 days). Implants were surgically implanted in the back skin of rats. After 14 days, the CPP score was recorded. Naloxone (1 mg/kg, intraperitoneally) was used to induce withdrawal on day 15, and symptoms were scored. Elevated plus maze and open field tests were performed for anxiety-related symptoms. Striata were analyzed for neurochemical changes reflected in dopamine, 3,4-dihydroxyphenyl acetic acid, gamma-aminobutyric acid, and serotonin levels. Brain oxidative changes including glutathione and lipid peroxides were assessed. The tramadol implants (T350 and T650) reduced heroin CPP and limited naloxone-induced withdrawal symptoms. The striata showed increased levels of 3,4-dihydroxyphenyl acetic acid, and serotonin and decreased levels of gamma-aminobutyric acid and dopamine after heroin withdrawal induction, which were reversed after implanting T350 and T650. Implants restore the brain oxidative state. Nonsignificant low naloxone-induced withdrawal score after the implant was used in naive subjects indicating low abuse potential of the implants. The presented tramadol implants were effective at diminishing heroin CPP and withdrawal in rats, suggesting further investigations for application in the management of opioid withdrawal.
Collapse
Affiliation(s)
- Shaimaa A Elshebiney
- Narcotics, Ergogenics, and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre (NRC)
| | - Rania A Elgohary
- Narcotics, Ergogenics, and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre (NRC)
| | - Marwa E El-Shamarka
- Narcotics, Ergogenics, and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre (NRC)
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre (NRC), Giza, Egypt
| | - Hanan H Beheri
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre (NRC), Giza, Egypt
| |
Collapse
|
2
|
Hakami AY, Alghamdi BS, Alshehri FS. Exploring the potential use of melatonin as a modulator of tramadol-induced rewarding effects in rats. Front Pharmacol 2024; 15:1373746. [PMID: 38738177 PMCID: PMC11082292 DOI: 10.3389/fphar.2024.1373746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
Background Melatonin is responsible for regulating the sleep-wake cycle and circadian rhythms in mammals. Tramadol, a synthetic opioid analgesic, is used to manage moderate to severe pain but has a high potential for abuse and dependence. Studies have shown that melatonin could be a potential modulator to reduce tramadol addiction. Methods Male Wistar rats were used to investigate the effect of melatonin on tramadol-induced place preference. The rats were divided into four groups: control, tramadol, tramadol + melatonin (single dose), and tramadol + melatonin (repeated doses). Tramadol was administered intraperitoneally at 40 mg/kg, while melatonin was administered at 50 mg/kg for both the single dose and repeated-dose groups. The study consisted of two phases: habituation and acquisition. Results Tramadol administration produced conditioned place preference (CPP) in rats, indicating rewarding effects. However, melatonin administration blocked tramadol-induced CPP. Surprisingly, repeated doses of melatonin were ineffective and did not reduce the expression of CPP compared to that of the single dose administration. Conclusion The study suggests that melatonin may be a potential therapeutic option for treating tramadol addiction. The results indicate that melatonin attenuates the expression of tramadol-induced CPP, supporting its uses as an adjunct therapy for managing tramadol addiction. However, further studies are needed to investigate its effectiveness in humans.
Collapse
Affiliation(s)
- Alqassem Y. Hakami
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad S. Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
3
|
Hajikarim-Hamedani A, Heidari A, Sadat-Shirazi MS, Mahboubi S, Raminfard S, Khalifeh S, Zarrindast MR. The role of lateral habenula NMDA receptors in tramadol-induced conditioning. Behav Pharmacol 2023:00008877-990000000-00048. [PMID: 37401401 DOI: 10.1097/fbp.0000000000000730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
The role of the lateral habenula (LHb) as a hub for receiving and relaying signals from the limbic system to serotonergic, dopaminergic, and norepinephrinergic regions in the brainstem makes this area a critical region in the control of reward and addiction. Behavioral evidence reveals the vital role of the LHb in negative symptoms during withdrawal. In this investigation, we study the role of the LHb N-Methyl D-Aspartate receptor (NMDAR) in the modulation of tramadol reward. Male adult Wistar rats were used in this study. The effect of intra-LHb micro-injection of NMDAR agonist (NMDA, 0.1, 0.5, 2 µg/rat) and antagonist (D-AP5, 0.1, 0.5, 1 µg/rat) was evaluated in conditioned place preference (CPP) paradigm. The obtained results showed that intra-LHb administration of NMDA induced place aversion dose-dependently, while blockade of NMDAR in the LHb using D-AP5 micro-injection led to an increased preference score in the CPP task. Co-administration of NMDA (0.5 µg/rat) with tramadol (4 mg/kg) reduced preference score, while co-administration of D-AP5 (0.5 µg/rat) with a non-effective dose of tramadol (1 mg/kg) potentiate the rewarding effect of tramadol. LHb receives inputs from the limbic system and projects to the monoaminergic nuclei in the brainstem. It has been declared that NMDAR is expressed in LHb, and as obtained data revealed, these receptors could modulate the rewarding effect of tramadol. Therefore, NMDA receptors in the LHb might be a new target for modulating tramadol abuse.
Collapse
Affiliation(s)
| | | | | | - Sarah Mahboubi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences
| | - Samira Raminfard
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences
| | - Solmaz Khalifeh
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Amir-Almomenin Hospital, Islamic Azad University
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Amir-Almomenin Hospital, Islamic Azad University
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Barbosa J, Leal S, Pereira FC, Dinis-Oliveira RJ, Faria J. Tramadol and Tapentadol Induce Conditioned Place Preference with a Differential Impact on Rewarding Memory and Incubation of Craving. Pharmaceuticals (Basel) 2023; 16:ph16010086. [PMID: 36678582 PMCID: PMC9864601 DOI: 10.3390/ph16010086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Tramadol and tapentadol, synthetic opioids commonly prescribed for moderate-to-severe pain, have a unique pharmacology that optimizes their analgesia and safety. However, they are not devoid of risks, presenting addictive, abuse, and dependence potential. While tramadol-reinforcing properties have been documented by various studies with human and animal models, including conditioned place preference (CPP) assays, no similar studies have been performed with tapentadol. In the present study, we performed CPP assays by intraperitoneally administering Wistar rats with a tramadol/tapentadol therapeutic dose. Animal permanence and the number of entries in the CPP compartments were recorded in the preconditioning phase and then 1 (T1), 7 (T7), and 14 (T14) days after conditioning. Both opioids induced a change in place preference (T1), suggesting that they have short-term reinforcing properties. However, only tramadol was associated with place preference retention (T7 and T14), with an increase in the number of entries in the opioid-paired compartment (T1 and T7), showing that it causes rewarding memory and incubation of craving. The results indicate that at therapeutic doses: (1) both drugs cause short-term rewarding effects and (2) as opposed to tramadol, tapentadol does not cause CPP retention, despite its higher central nervous system activity and stricter scheduling.
Collapse
Affiliation(s)
- Joana Barbosa
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences—CESPU (IUCS-CESPU), 4585-116 Gandra, PRD, Portugal
- UCIBIO-REQUIMTE—Applied Molecular Biosciences Unit-Network of Chemistry and Technology, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (J.B.); (J.F.)
| | - Sandra Leal
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences—CESPU (IUCS-CESPU), 4585-116 Gandra, PRD, Portugal
- CINTESIS@RISE—Center for Health Technology and Services Research of the Health Research Network, MEDCIDS—Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
| | - Frederico C. Pereira
- Institute of Pharmacology and Experimental Therapeutics/iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences—CESPU (IUCS-CESPU), 4585-116 Gandra, PRD, Portugal
- UCIBIO-REQUIMTE—Applied Molecular Biosciences Unit-Network of Chemistry and Technology, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal
- MTG Research and Development Lab, 4200-604 Porto, Portugal
| | - Juliana Faria
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences—CESPU (IUCS-CESPU), 4585-116 Gandra, PRD, Portugal
- UCIBIO-REQUIMTE—Applied Molecular Biosciences Unit-Network of Chemistry and Technology, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (J.B.); (J.F.)
| |
Collapse
|
5
|
Şorodoc V, Rusu-Zota G, Nechita P, Moraru C, Manole OM. Effects of imidazoline agents in a rat conditioned place preference model of addiction. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:365-376. [PMID: 34997272 PMCID: PMC8816376 DOI: 10.1007/s00210-021-02194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022]
Abstract
Agmatine (AG), idazoxan (IDZ), and efaroxan (EFR) are imidazoline receptor ligands with beneficial effects in central nervous system disorders. The present study aimed to evaluate the interaction between AG, IDZ, and EFR with an opiate, tramadol (TR), in a conditioned place preference (CPP) paradigm. In the experiment, we used five groups with 8 adult male Wistar rats each. During the condition session, on days 2, 4, 6, and 8, the rats received the drugs (saline, or TR, or IDZ and TR, or EFR and TR, or AG and TR) and were placed in their least preferred compartment. On days 1, 3, 5, and 7, the rats received saline in the preferred compartment. In the preconditioning, the preferred compartment was determined. In the postconditioning, the preference for one of the compartments was reevaluated. TR increased the time spent in the non-preferred compartment. AG decreased time spent in the TR-paired compartment. EFR, more than IDZ, reduced the time spent in the TR-paired compartment, but without statistical significance. AG reversed the TR-induced CPP, while EFR and IDZ only decreased the time spent in the TR-paired compartment, without statistical significance.
Collapse
Affiliation(s)
- V Şorodoc
- Department of Internal Medicine (Toxicology), University of Medicine and Pharmacy, "Grigore T. Popa", 700115, Iasi, Romania
| | - G Rusu-Zota
- Department of Pharmacology, Clinical Pharmacology and Algesiology, University of Medicine and Pharmacy, "Grigore T. Popa", 700115, Iasi, Romania.
| | - P Nechita
- "Socola" Psychiatric Institute, 700282, Iasi, Romania
| | - C Moraru
- "Socola" Psychiatric Institute, 700282, Iasi, Romania
| | - O M Manole
- University of Medicine and Pharmacy, "Grigore T. Popa", 700115, Iasi, Romania
| |
Collapse
|
6
|
Reisi P, Imanpour V. The effect of orexin-2 and endocannabinoid-1 antagonists on neuronal activity of hippocampal CA1 pyramidal neurons in response to tramadol in rats. Adv Biomed Res 2022; 11:26. [PMID: 35720213 PMCID: PMC9201222 DOI: 10.4103/abr.abr_65_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/03/2021] [Accepted: 06/26/2021] [Indexed: 11/17/2022] Open
Abstract
Background: CA1, as a major structure involved in learning and memory, has been shown to be affected by tramadol addiction. Both orexin and endocannabinoid receptors express in CA1 and play an important role in drug dependency. The aim of this study was to evaluate the modulatory effects of orexin-2 (OX2R) and endocannabinoid-1 (CB1R) receptors on neuronal activity in CA1, in response to tramadol in rats. Materials and Methods: Male Wistar rats were divided into 8 groups (n = 6–7); saline-dimethyl sulfoxide (DMSO), tramadol-DMSO, saline-TCS-OX2-29, saline-AM251, tramadol-TCS-OX2-29, tramadol-AM251, saline-TCS-OX2-29-AM251, tramadol-TCS-OX2-29-AM251. Tramadol was injected intraperitoneally, and then, AM251 (1 nmol/0.3 μL), CB1R antagonist and TCS-OX2-29 (1 nmol/0.3 μL), OX2R antagonist, were microinjected individually or concurrently into the CA1. Using in vivo extracellular single-unit recording, the firing of CA1 pyramidal neurons was investigated. Results: Tramadol decreased neuronal activity in CA1 (P < 0.01) but increased it after micro-injection of DMSO. TCS-OX2-29 increased neuronal activity in saline group (P < 0.05) but decreased it in tramadol group. AM251 had no effect on saline group but decreased neuronal activity in tramadol group (P < 0.05). Concurrent micro-injection of TCS-OX2-29 and AM251 had no effect on saline group but decreased neuronal activity in tramadol group (P < 0.05). Conclusions: Our findings suggest that neural activity in CA1 is rapidly affected by acute use of tramadol, and some of these effects may be induced through the endocannabinoid and orexin systems. Thus, the function of endocannabinoid and orexin systems in CA1 may play a role in tramadol addiction.
Collapse
|