1
|
Zhao R, Han F, Yu Q, Zhu Z, Tu Z, Xia T, Li B. A multifunctional scaffold that promotes the scaffold-tissue interface integration and rescues the ROS microenvironment for repair of annulus fibrosus defects. Bioact Mater 2024; 41:257-270. [PMID: 39149595 PMCID: PMC11325007 DOI: 10.1016/j.bioactmat.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 08/17/2024] Open
Abstract
Due to the limited self-repair ability of the annulus fibrosus (AF), current tissue engineering strategies tend to use structurally biomimetic scaffolds for AF defect repair. However, the poor integration between implanted scaffolds and tissue severely affects their therapeutic effects. To solve this issue, we prepared a multifunctional scaffold containing loaded lysyl oxidase (LOX) plasmid DNA exosomes and manganese dioxide nanoparticles (MnO2 NPs). LOX facilitates extracellular matrix (ECM) cross-linking, while MnO2 NPs inhibit excessive reactive oxygen species (ROS)-induced ECM degradation at the injury site, enhancing the crosslinking effect of LOX. Our results revealed that this multifunctional scaffold significantly facilitated the integration between the scaffold and AF tissue. Cells were able to migrate into the scaffold, indicating that the scaffold was not encapsulated as a foreign body by fibrous tissue. The functional scaffold was closely integrated with the tissue, effectively enhancing the mechanical properties, and preventing vascular invasion, which emphasized the importance of scaffold-tissue integration in AF repair.
Collapse
Affiliation(s)
- Runze Zhao
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
- Center of Translational Medicine and Clinical Laboratory, The Fourth Affiliated Hospital to Soochow University, Suzhou, 215028, China
| | - Feng Han
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Qifan Yu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Zhuang Zhu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Zhengdong Tu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
- Second Department of Orthopaedics, Suzhou Kowloon Hospital, Shanghai Jiaotong University Medical School, Suzhou, 215127, China
| | - Tingting Xia
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| | - Bin Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215000, China
| |
Collapse
|
2
|
Li JQ, Li B, Fei ZQ, Lei SS. Understanding the relationship between inflammation, apoptosis, and diabetes osteoporosis: A bioinformatics approach and experimental verification. FASEB J 2024; 38:e70074. [PMID: 39340228 DOI: 10.1096/fj.202401452r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/01/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Diabetes osteoporosis (DOP) is a chronic metabolic bone disease. This study aimed to identify potential biomarkers of DOP and explore their underlying mechanisms through bioinformatics methods and experimental verification. Bioinformatics methods were used to identify differentially expressed genes (DEGs) for DOP based on GEO data and the GeneCards database. GO and KEGG enrichment analyses were used to search the key pathways. The STRING website was used to construct a protein-protein interaction (PPI) network and identify key genes. Then, 50 mg/mL glucose was used to interveneosteoblasts (OBs).CCK-8 and Alizarin Red staining were used to investigate the proliferation and differentiation changes in OBs. Flowcytometry was used to investigate apoptosis. The membrane protein chip, WB, and RT-PCR were used to verify the expression of key targets or pathways about DOP. Forty-two common genes were screened between DOP-related targets and DEGs. GO and KEGG enrichment analysis showed that DOP was mainly associated with cytokine-cytokine receptor interactions, and apoptosis. PPI network analysis showed that TNF, IL1A, IL6, IL1B, IL2RA, Fas ligand (FASLG), and Fas cell surface death receptor (FAS) were key up-regulated genes in the occurrence of DOP. The experiment results show that 50 mg/mL glucose significantly inhibited OBs proliferation but presented an increase in apoptosis. Membrane protein chip, WB, and RT-PCR-verified a significantly active in the expression of TNF/FASLG/FAS pathway. High glucose activated the TNF-α/FAS/FASLG pathway and induced the inflammatory microenvironment and apoptosis, then impaired osteogenic differentiation of OBs. These may be an important mechanism for the occurrence and development of DOP.
Collapse
Affiliation(s)
- Jun Quan Li
- Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, People's Republic of China
| | - Bo Li
- Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zhang Qing Fei
- University of California, Los Angeles, Los Angeles, California, USA
| | - Shan Shan Lei
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
3
|
Gualdi F, Oliva B, Piñero J. Predicting gene disease associations with knowledge graph embeddings for diseases with curtailed information. NAR Genom Bioinform 2024; 6:lqae049. [PMID: 38745993 PMCID: PMC11091931 DOI: 10.1093/nargab/lqae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/08/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Knowledge graph embeddings (KGE) are a powerful technique used in the biomedical domain to represent biological knowledge in a low dimensional space. However, a deep understanding of these methods is still missing, and, in particular, regarding their applications to prioritize genes associated with complex diseases with reduced genetic information. In this contribution, we built a knowledge graph (KG) by integrating heterogeneous biomedical data and generated KGE by implementing state-of-the-art methods, and two novel algorithms: Dlemb and BioKG2vec. Extensive testing of the embeddings with unsupervised clustering and supervised methods showed that KGE can be successfully implemented to predict genes associated with diseases and that our novel approaches outperform most existing algorithms in both scenarios. Our findings underscore the significance of data quality, preprocessing, and integration in achieving accurate predictions. Additionally, we applied KGE to predict genes linked to Intervertebral Disc Degeneration (IDD) and illustrated that functions pertinent to the disease are enriched within the prioritized gene set.
Collapse
Affiliation(s)
- Francesco Gualdi
- Integrative Biomedical Informatics, Research Programme on Biomedical Informatics (IBI-GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Dr Aiguader 88, E-08003 Barcelona, Spain
- Structural Bioinformatics Lab, Research Programme on Biomedical Informatics (SBI-GRIB), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Dr Aiguader 88, E-08003 Barcelona, Spain
| | - Baldomero Oliva
- Structural Bioinformatics Lab, Research Programme on Biomedical Informatics (SBI-GRIB), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Dr Aiguader 88, E-08003 Barcelona, Spain
| | - Janet Piñero
- Integrative Biomedical Informatics, Research Programme on Biomedical Informatics (IBI-GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, C/Dr Aiguader 88, E-08003 Barcelona, Spain
- Medbioinformatics Solutions SL, Barcelona, Spain
| |
Collapse
|
4
|
Šiklová M, Šrámková V, Koc M, Krauzová E, Čížková T, Ondrůjová B, Wilhelm M, Varaliová Z, Kuda O, Neubert J, Lambert L, Elkalaf M, Gojda J, Rossmeislová L. The role of adipogenic capacity and dysfunctional subcutaneous adipose tissue in the inheritance of type 2 diabetes mellitus: cross-sectional study. Obesity (Silver Spring) 2024; 32:547-559. [PMID: 38221680 DOI: 10.1002/oby.23969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/13/2023] [Accepted: 11/09/2023] [Indexed: 01/16/2024]
Abstract
OBJECTIVE This study tested the hypothesis that limited subcutaneous adipose tissue (SAT) expansion represents a primary predisposition to the development of type 2 diabetes mellitus (T2DM), independent of obesity, and identified novel markers of SAT dysfunction in the inheritance of T2DM. METHODS First-degree relatives (FDR) of T2DM patients (n = 19) and control individuals (n = 19) without obesity (fat mass < 25%) were cross-sectionally compared. Body composition (bioimpedance, computed tomography) and insulin sensitivity (IS; oral glucose tolerance test, clamp) were measured. SAT obtained by needle biopsy was used to analyze adipocyte size, lipidome, mRNA expression, and inflammatory markers. Primary cultures of adipose precursors were analyzed for adipogenic capacity and metabolism. RESULTS Compared with control individuals, FDR individuals had lower IS and a higher amount of visceral fat. However, SAT-derived adipose precursors did not differ in their ability to proliferate and differentiate or in metabolic parameters (lipolysis, mitochondrial oxidation). In SAT of FDR individuals, lipidomic and mRNA expression analysis revealed accumulation of triglycerides containing polyunsaturated fatty acids and increased mRNA expression of lysyl oxidase (LOX). These parameters correlated with IS, visceral fat accumulation, and mRNA expression of inflammatory and cellular stress genes. CONCLUSIONS The intrinsic adipogenic potential of SAT is not affected by a family history of T2DM. However, alterations in LOX mRNA and polyunsaturated fatty acids in triacylglycerols are likely related to the risk of developing T2DM independent of obesity.
Collapse
Affiliation(s)
- Michaela Šiklová
- Department of Pathophysiology, Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Šrámková
- Department of Pathophysiology, Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michal Koc
- Department of Pathophysiology, Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Krauzová
- Department of Pathophysiology, Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Internal Medicine, Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Terezie Čížková
- Department of Pathophysiology, Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbora Ondrůjová
- Department of Pathophysiology, Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marek Wilhelm
- Department of Pathophysiology, Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zuzana Varaliová
- Department of Pathophysiology, Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ondrej Kuda
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Neubert
- Department of Pathophysiology, Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lukáš Lambert
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Moustafa Elkalaf
- Department of Pathophysiology, Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Gojda
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Internal Medicine, Královské Vinohrady University Hospital, Prague, Czech Republic
| | - Lenka Rossmeislová
- Department of Pathophysiology, Center for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
5
|
Wang Y, Hu S, Zhang W, Zhang B, Yang Z. Emerging role and therapeutic implications of p53 in intervertebral disc degeneration. Cell Death Discov 2023; 9:433. [PMID: 38040675 PMCID: PMC10692240 DOI: 10.1038/s41420-023-01730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
Lower back pain (LBP) is a common degenerative musculoskeletal disease that imposes a huge economic burden on both individuals and society. With the aggravation of social aging, the incidence of LBP has increased globally. Intervertebral disc degeneration (IDD) is the primary cause of LBP. Currently, IDD treatment strategies include physiotherapy, medication, and surgery; however, none can address the root cause by ending the degeneration of intervertebral discs (IVDs). However, in recent years, targeted therapy based on specific molecules has brought hope for treating IDD. The tumor suppressor gene p53 produces a transcription factor that regulates cell metabolism and survival. Recently, p53 was shown to play an important role in maintaining IVD microenvironment homeostasis by regulating IVD cell senescence, apoptosis, and metabolism by activating downstream target genes. This study reviews research progress regarding the potential role of p53 in IDD and discusses the challenges of targeting p53 in the treatment of IDD. This review will help to elucidate the pathogenesis of IDD and provide insights for the future development of precision treatments.
Collapse
Affiliation(s)
- Yidian Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Shouye Hu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Weisong Zhang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Binfei Zhang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhi Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
6
|
Kang H, Feng J, Peng Y, Liu Y, Yang Y, Wu Y, Huang J, Jie Y, Chen B, He Y. Human mesenchymal stem cells derived from adipose tissue showed a more robust effect than those from the umbilical cord in promoting corneal graft survival by suppressing lymphangiogenesis. Stem Cell Res Ther 2023; 14:328. [PMID: 37957770 PMCID: PMC10644560 DOI: 10.1186/s13287-023-03559-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have shown promising potential in allograft survival. However, few reports have focused on comparing the immunosuppressive capacity of MSCs from different sources and administered via different routes in inhibiting transplant rejection. Moreover, virtually nothing is known about the role of MSCs in the regulation of graft neovascularization and lymphangiogenesis. In this study, we compared the efficacy of human adipose MSCs (hAD-MSCs) and human umbilical cord MSCs (hUC-MSCs) in vitro and in corneal transplantation models to explore the underlying molecular mechanisms and provide a powerful strategy for future clinical applications. METHODS hAD-MSCs and hUC-MSCs were generated, and their self-renewal and multi-differentiation abilities were evaluated. The inhibitory effect of human MSCs (hMSCs) was examined by T-cell proliferation assays with or without transwell in vitro. Two MSCs from different sources were separately adoptively transferred in mice corneal transplantation (5 × 105 or 1 × 106/mouse) via topical subconjunctival or intravenous (IV) routes. Allograft survival was evaluated every other day, and angiogenesis and lymphomagenesis were quantitatively analyzed by immunofluorescence staining. The RNA expression profiles of hMSCs were revealed by RNA sequencing (RNA-seq) and verified by quantitative real-time PCR (qRT‒PCR), western blotting or ELISA. The function of the differentially expressed gene FAS was verified by a T-cell apoptosis assay. RESULTS hAD-MSCs induced stronger immunosuppression in vitro than hUC-MSCs. The inhibitory effect of hUC-MSCs but not hAD-MSCs was mediated by cell-cell contact-dependent mechanisms. Systemic administration of a lower dose of hAD-MSCs showed better performance in prolonging corneal allograft survival than hUC-MSCs, while subconjunctival administration of hMSCs was safer and further prolonged corneal allograft survival. Both types of hMSCs could inhibit corneal neovascularization, while hAD-MSCs showed greater superiority in suppressing graft lymphangiogenesis. RNA-seq analysis and confirmation experiments revealed the superior performance of hAD-MSCs in allografts based on the lower expression of vascular endothelial growth factor C (VEGF-C) and higher expression of FAS. CONCLUSIONS The remarkable inhibitory effects on angiogenesis/lymphangiogenesis and immunological transplantation effects support the development of hAD-MSCs as a cell therapy against corneal transplant rejection. Topical administration of hMSCs was a safer and more effective route for application than systemic administration.
Collapse
Affiliation(s)
- Huanmin Kang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Jianing Feng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
- Shanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, China
| | - Yingqian Peng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Yingyi Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Yalei Yang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Ying Wu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Jian Huang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Ying Jie
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Yan He
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
He S, Fu X, Wang L, Xue Y, Zhou L, Qiao S, An J, Xia T. Self-Assemble Silk Fibroin Microcapsules for Cartilage Regeneration through Gene Delivery and Immune Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302799. [PMID: 37264755 DOI: 10.1002/smll.202302799] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Effective treatments for cartilage defects are currently lacking. Gene delivery using proper delivery systems has shown great potential in cartilage regeneration. However, the inflammatory microenvironment generated by the defected cartilage severely affects the system's delivery efficiency. Therefore, this study reports a silk fibroin microcapsule (SFM) structure based on layer-by-layer self-assembly, in which interleukin-4 (IL-4) is modified on silk by click chemistry and loaded with lysyl oxidase plasmid DNA (LOX pDNA). The silk microcapsules display good biocompatibility and the release rate of genes can be adjusted by controlling the number of self-assembled layers. Moreover, the functionalized SFMs mixed with methacrylated gelatin (GelMA) exhibit good injectability. The IL-4 on the outer layer of the SFM can regulate macrophages to polarize toward the M2 type, thereby promoting cartilage matrix repair and inhibiting inflammation. The LOX pDNA loaded inside can be effectively delivered into cells to promote extracellular matrix generation, significantly promoting cartilage regeneration. The results of this study provide a promising biomaterial for cartilage repair, and this novel silk-based microcapsule delivery system can also provide strategies for the treatment of other diseases.
Collapse
Affiliation(s)
- Shuangjian He
- Department of orthopedics, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215000, China
| | - Xuejie Fu
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215000, China
| | - Liang Wang
- Department of orthopedics, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215000, China
| | - Yangyang Xue
- Department of orthopedics, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215000, China
| | - Long Zhou
- Department of orthopedics, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215000, China
| | - Shigang Qiao
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215000, China
| | - Jianzhong An
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215000, China
| | - Tingting Xia
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215000, China
| |
Collapse
|
8
|
Joselevitch JA, Vargas THM, Pulz LH, Cadrobbi KG, Huete GC, Nishiya AT, Kleeb SR, Xavier JG, Strefezzi RDF. High lysyl oxidase expression is an indicator of poor prognosis in dogs with cutaneous mast cell tumours. Vet Comp Oncol 2023; 21:401-405. [PMID: 37186079 DOI: 10.1111/vco.12898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/19/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
Mast cell tumour (MCT) is one of the most frequent skin tumours in dogs. Due to their unpredictable biological behaviour, MCTs often cause several therapeutic frustrations, leading to investigation regarding prognostic markers. Lysyl oxidase (LOX) is an enzyme that promotes extracellular matrix stability and contributes to cell migration, angiogenesis and epithelial-mesenchymal transition. Its expression positively correlates with poor prognoses in several human and canine mammary cancers. The aim of this study was to characterise the immunohistochemical expression of LOX in MCT samples and compare it with histological grading and post-surgical survival. Twenty-six tumours were submitted to immunohistochemistry for LOX expression evaluation. All samples were positive for LOX, with variable percentages of cytoplasmic and nuclear positivity. Cytoplasmic positivity was significantly higher in high-grade MCTs (P = .0297). Our results indicate that high expression of cytoplasmic LOX in neoplastic mast cells is an indicator of poor prognosis for canine cutaneous MCTs.
Collapse
Affiliation(s)
- Julia Antongiovanni Joselevitch
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
- Faculdade de Medicina Veterinária e Zootecnia, Departamento de Patologia, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago Henrique Moroni Vargas
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Lidia Hildebrand Pulz
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
- Faculdade de Medicina Veterinária e Zootecnia, Departamento de Patologia, Universidade de São Paulo, São Paulo, Brazil
| | - Karine Germano Cadrobbi
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
- Clínica E+ Especialidades, São Paulo, Brazil
| | - Greice Cestari Huete
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
- Clínica E+ Especialidades, São Paulo, Brazil
| | | | - Silvia Regina Kleeb
- Universidade Anhembi Morumbi, São Paulo, Brazil
- Universidade Metodista de São Paulo, São Bernardo do Campo, Brazil
| | | | - Ricardo De Francisco Strefezzi
- Laboratório de Oncologia Comparada e Translacional, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| |
Collapse
|
9
|
Shnayder NA, Ashhotov AV, Trefilova VV, Novitsky MA, Medvedev GV, Petrova MM, Narodova EA, Kaskaeva DS, Chumakova GA, Garganeeva NP, Lareva NV, Al-Zamil M, Asadullin AR, Nasyrova RF. High-Tech Methods of Cytokine Imbalance Correction in Intervertebral Disc Degeneration. Int J Mol Sci 2023; 24:13333. [PMID: 37686139 PMCID: PMC10487844 DOI: 10.3390/ijms241713333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
An important mechanism for the development of intervertebral disc degeneration (IDD) is an imbalance between anti-inflammatory and pro-inflammatory cytokines. Therapeutic and non-therapeutic approaches for cytokine imbalance correction in IDD either do not give the expected result, or give a short period of time. This explains the relevance of high-tech medical care, which is part of specialized care and includes the use of new resource-intensive methods of treatment with proven effectiveness. The aim of the review is to update knowledge about new high-tech methods based on cytokine imbalance correction in IDD. It demonstrates promise of new approaches to IDD management in patients resistant to previously used therapies, including: cell therapy (stem cell implantation, implantation of autologous cultured cells, and tissue engineering); genetic technologies (gene modifications, microRNA, and molecular inducers of IDD); technologies for influencing the inflammatory cascade in intervertebral discs mediated by abnormal activation of inflammasomes; senolytics; exosomal therapy; and other factors (hypoxia-induced factors; lysyl oxidase; corticostatin; etc.).
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (A.V.A.); (V.V.T.)
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (D.S.K.)
| | - Azamat V. Ashhotov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (A.V.A.); (V.V.T.)
| | - Vera V. Trefilova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (A.V.A.); (V.V.T.)
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia;
| | - Maxim A. Novitsky
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia;
| | - German V. Medvedev
- R.R. Vreden National Medical Research Center for Traumatology and Orthopedics, 195427 Saint-Petersburg, Russia;
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (D.S.K.)
| | - Ekaterina A. Narodova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (D.S.K.)
| | - Daria S. Kaskaeva
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (M.M.P.); (E.A.N.); (D.S.K.)
| | - Galina A. Chumakova
- Department of Therapy and General Medical Practice with a Course of Postgraduate Professional Education, Altai State Medical University, 656038 Barnaul, Russia;
| | - Natalia P. Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Natalia V. Lareva
- Department of Therapy of Faculty of Postgraduate Education, Chita State Medical Academy, 672000 Chita, Russia;
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Azat R. Asadullin
- Department of Psychiatry and Addiction, Bashkir State Medical University, 450008 Ufa, Russia;
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia; (A.V.A.); (V.V.T.)
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| |
Collapse
|
10
|
Pan H, Li H, Guo S, Wang C, Long L, Wang X, Shi H, Zhang K, Chen H, Li S. The mechanisms and functions of TNF-α in intervertebral disc degeneration. Exp Gerontol 2023; 174:112119. [PMID: 36758650 DOI: 10.1016/j.exger.2023.112119] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Low back pain (LBP) is one of the most common health problems in people's lives, which brings a massive burden to clinicians, and the leading cause of LBP is intervertebral disc degeneration (IDD). IDD is mainly caused by factors such as aging, mechanical stress, and lack of nutrition. The pathological mechanism of IDD is very complex, involving inflammatory response, cell metabolism disorder, and so on. Unfortunately, in the current treatment of IDD, only relieving symptoms as the primary means of relieving a patient's pain cannot effectively inhibit or reverse the progression of IDD. Tumor necrosis factor-α (TNF-α) is a multifunctional pro-inflammatory factor involved in many diseases' pathological processes. With the in-depth study of the pathological mechanism of IDD, more and more evidence has shown that TNF-α is an essential activator of IDD, which is related to the metabolic disorder, inflammatory responses, apoptosis, and other pathological processes of extracellular dissociation in the intervertebral disc. Therefore, anti-TNF-α therapy is an effective therapeutic target for alleviating IDD, especially in inhibiting extracellular matrix degradation and reducing inflammatory responses. This article reviews the pathological role of TNF-α in IDD and the latest research progress of TNF-α inhibitors in treating IDD.
Collapse
Affiliation(s)
- Hongyu Pan
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hongtao Li
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Sheng Guo
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Chenglong Wang
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Longhai Long
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoqiang Wang
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Houyin Shi
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Kaiquan Zhang
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hui Chen
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Sen Li
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
11
|
Zhang Q, Wen XH, Tang SL, Zhao ZW, Tang CK. Role and therapeutic potential of gelsolin in atherosclerosis. J Mol Cell Cardiol 2023; 178:59-67. [PMID: 36967105 DOI: 10.1016/j.yjmcc.2023.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Atherosclerosis is the major pathophysiological basis of a variety of cardiovascular diseases and has been recognized as a lipid-driven chronic inflammatory disease. Gelsolin (GSN) is a member of the GSN family. The main function of GSN is to cut and seal actin filaments to regulate the cytoskeleton and participate in a variety of biological functions, such as cell movement, morphological changes, metabolism, apoptosis and phagocytosis. Recently, more and more evidences have demonstrated that GSN is Closely related to atherosclerosis, involving lipid metabolism, inflammation, cell proliferation, migration and thrombosis. This article reviews the role of GSN in atherosclerosis from inflammation, apoptosis, angiogenesis and thrombosis.
Collapse
Affiliation(s)
- Qiang Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Department of Intensive Care Unit, the First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hui Wen
- School of Nursing, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shi-Lin Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Department of Intensive Care Unit, the First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhen-Wang Zhao
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Department of Intensive Care Unit, the First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
12
|
Bai X, Yao M, Zhu X, Lian Y, Zhang M. Baicalin suppresses interleukin-1β-induced apoptosis, inflammatory response, oxidative stress, and extracellular matrix degradation in human nucleus pulposus cells. Immunopharmacol Immunotoxicol 2023:1-10. [PMID: 36617937 DOI: 10.1080/08923973.2023.2165942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To explore the effect of baicalin on human nucleus pulposus cells (NPCs) in response to interleukin (IL)-1β stimulation. METHODS Viability of NPCs was measured by cell counting kit-8 (CCK-8) assay. TUNEL staining assay and flow cytometry were performed to detect apoptotic cell death of NPCs. Western blot analysis was conducted to detect the expression levels of proteins. Enzyme-linked immunosorbent assay (ELISA) was applied for the determination of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α), and IL-6. Oxidative stress indicators including reactive oxygen species (ROS) production, malondialdehyde (MDA) level, and superoxide dismutase (SOD) activity were measured. RESULTS Baicalin attenuated IL-1β-caused cell viability reduction and apoptosis in NPCs. IL-1β-induced increase in Bax expression and decrease in Bcl-2 expression were attenuated by baicalin treatment. IL-1β-induced production of iNOS, COX-2, IL-6, and TNF-α in NPCs was inhibited by baicalin treatment. Baicalin treatment reversed IL-1β-induced increase in ROS production and MDA level, as well as decrease in SOD activity. Furthermore, baicalin treatment elevated the expression levels of Col II and Aggrecan and downregulated the expression levels of MMP3, MMP13, and ADAMTS5 in IL-1β-induced NPCs. A total of 402 related targets of baicalin and 134 related targets of intervertebral disk degeneration were found, and nine intersection targets were screened out. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that mitogen-activated protein kinase (MAPK) pathway was found to be involved in the effects of baicalin. CONCLUSIONS Baicalin exhibited protective effects on IL-1β-caused cell viability reduction, apoptosis, oxidative stress, inflammation, and extracellular matrix degradation in NPCs. In addition, we found c-Jun N-terminal kinase (JNK) and p38 MAPK pathways as targets of baicalin through bioinformatic analysis.
Collapse
Affiliation(s)
- Xiaoliang Bai
- The Fifth Department of Orthopedics, Baoding No.1 Central Hospital, Baoding, China
| | - Mingyan Yao
- Department of Endocrinology, Baoding No.1 Central Hospital, Baoding, China
| | - Xiaojuan Zhu
- Department of Geriatrics, Baoding No.1 Central Hospital, Baoding, China
| | - Yong Lian
- The Fifth Department of Orthopedics, Baoding No.1 Central Hospital, Baoding, China
| | - Mingyuan Zhang
- Department of Rehabilitation, Laishui County TCM Hospital, Baoding, China
| |
Collapse
|
13
|
Zhu X, Guo S, Zhang M, Bai X. Emodin protects against apoptosis and inflammation by regulating reactive oxygen species-mediated NF- κB signaling in interleukin-1 β-stimulated human nucleus pulposus cells. Hum Exp Toxicol 2023; 42:9603271221138552. [PMID: 36598795 DOI: 10.1177/09603271221138552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Intervertebral disc degeneration (IDD) is a complex degradative disorder associated with inflammation. Emodin, an anthraquinone derivative, possesses strong anti-inflammatory activity. This study focused on the in vitro therapeutic action of emodin in a cellular model of IDD. Human nucleus pulposus cells (NPCs) were stimulated with interleukin-1β (IL-1β) to induce inflammation. Cell Counting Kit-8 and terminal deoxynucleotidyl transferase dUTP nick end labeling staining assays were performed to evaluate the viability and apoptosis of NPCs, respectively. Caspase-3 activity was measured to indirectly assess cell apoptosis. Western blot analysis was performed to detect protein expression levels. Reverse transcription-polymerase chain reaction was performed for the detection of relative mRNA levels of tumor necrosis factor-α (TNF-α) and IL-6. Enzyme-linked immunosorbent assay was performed to analyze TNF-α and IL-6 secretion. Our results showed that emodin treatment mitigated IL-1β-induced reduction of cell viability in NPCs. Moreover, the increase in reactive oxygen species (ROS) production, apoptotic rate, and caspase-3 activity in IL-1β-stimulated NPCs was reduced by emodin treatment. Treatment with emodin also abolished IL-1β-induced inflammation in NPCs, as indicated by reduced secretion of IL-6 and TNF-α. Besides, the increase in expression levels of phosphorylated p65 and nuclear p65 in IL-1β-stimulated NPCs was suppressed by emodin treatment. Furthermore, inhibition of nuclear factor kappa B (NF-κB) activation with pyrrolidine dithiocarbamate aggravated the protective effects of emodin. These results suggested that emodin protected NPCs against IL-1β-induced apoptosis and inflammation via inhibiting ROS-mediated activation of NF-κB.
Collapse
Affiliation(s)
- Xiaojuan Zhu
- Department of Geriatrics, Baoding No.1 Central Hospital, Baoding, Hebei 071000, China
| | - Shuqin Guo
- Department of Endocrinology, Baoding No.1 Central Hospital, Baoding, Hebei 071000, China
| | - Mingyuan Zhang
- Department of Rehabilitation, Laishui County TCM Hospital, Baoding, Hebei 074199, China
| | - Xiaoliang Bai
- The Fifth Department of Orthopedics, Baoding No.1 Central Hospital, Baoding, Hebei 071000, China
| |
Collapse
|
14
|
Chen P, Chen Y, Yan ZQ, Ding SY, Liu HP, Tu JQ, Zhang XW. Protective Effect of the Polysaccharides from Taraxacum mongolicum Leaf by Modulating the p53 Signaling Pathway in H22 Tumor-Bearing Mice. Foods 2022; 11:3340. [PMID: 36359953 PMCID: PMC9656931 DOI: 10.3390/foods11213340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 09/14/2023] Open
Abstract
Dandelion is an edible plant with a variety of bioactive components. This paper mainly reports the antitumor activity of dandelion polysaccharide DLP120 on H22 tumor-bearing mice. DLP120 is an acidic polysaccharide composed of pectin and arabinogalactan. The results indicate that DLP120 markedly inhibited tumor growth in a dose-dependent manner and attenuated and regulated negative effects on organs. In addition, DLP120 not only increased the viability of spleen lymphocytes and natural killer (NK) cells, but also increased the proportion of lymphocyte subsets in peripheral blood. Furthermore, Hematoxylin-Eosin (HE) staining showed that tumor tissues and cells exhibited typical pathology features. Annexin V FITC/PI staining and cell cycle distribution results further confirmed apoptosis and cell cycle arrest in S and G2 phases. Notably, there was a significant accumulation of reactive oxygen species. Western blotting results demonstrated that the expression of p53 was up-regulated in the DLP120 group. Moreover, the pro-apoptotic protein Bax was up-regulated while the inhibitory-apoptotic protein Bcl-2 was down-regulated. In addition, the expression of Fas and FasL, associated with the death receptor pathway, were also up-regulated. Overall, administration of DLP120 in H22 tumor-bearing mice can not only enhance immunity but also directly induce tumor cell apoptosis.
Collapse
Affiliation(s)
| | | | | | | | - Hui-Ping Liu
- State Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China
| | | | | |
Collapse
|
15
|
Zhao R, Yang L, He S, Xia T. Nucleus pulposus cell senescence is regulated by substrate stiffness and is alleviated by LOX possibly through the integrin β1-p38 MAPK signaling pathway. Exp Cell Res 2022; 417:113230. [PMID: 35667466 DOI: 10.1016/j.yexcr.2022.113230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 05/01/2022] [Accepted: 05/27/2022] [Indexed: 11/04/2022]
Abstract
Intervertebral disc degeneration (IVDD) is a main contributor to induce low back pain, and the pathogenic mechanism of IVDD remains unclear. The nucleus pulposus (NP) is a component of the intervertebral disc (IVD) that provides protection from mechanical stimuli. The matrix stiffness of NP tissue increases during the process of disc degeneration. Although several studies have found that pathological mechanical stimuli induce NP cell senescence, which is relevant for NP degeneration, however, the effect of matrix stiffness on NP cell senescence is not clear. Therefore, in the present study, we used polyvinyl alcohol (PVA) hydrogel with controllable stiffness to mimic the matrix stiffness of normal (4 kPa) and severely degenerated (20 kPa) NP tissue. Rat NP cells were isolated and cultured on substrates with different stiffness, and the cell proliferation, SA-β-gal activity, cell cycle, telomerase activity and the phenotype markers of NP cells were analyzed. Moreover, cytoskeleton staining and NP cellular Young's modulus on different substrates were also measured. To further investigate how substrate stiffness affects NP cell senescence, lysyl oxidase (LOX) was used to restore the extracellular matrix (ECM) synthesis of NP cells. The expression levels of integrin β1 and p38 MAPK were then measured. Our results showed that the 20 kPa substrate significantly induced NP cell senescence compared to the 4 kPa substrate. NP cells cultured on the 20 kPa substrate failed to maintain the expression of their phenotype markers. Furthermore, the 20 kPa substrate induced an increase of Young's modulus of NP cells, which possibly through up regulating the expressions of integrin β1 and p38 MAPK. These results indicated that the integrin β1-p38 MAPK signaling pathway may participated in substrate stiffness induced senescence of NP cells. LOX significantly increased ECM synthesis and inhibited substrate stiffness induced NP cell senescence, which indicated that matrix mechanics may be essential for maintaining the function of NP cell. Our results may provide a new perspective on the mechanism of IVDD by pathological matrix mechanics.
Collapse
Affiliation(s)
- Runze Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital, Orthopedic Institute, Medical College, Soochow University, Suzhou, 215000, Jiangsu, China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Shuangjian He
- Department of Orthopedics, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, 215153, Jiangsu, China.
| | - Tingting Xia
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, 215153, Jiangsu, China.
| |
Collapse
|
16
|
Jiang C, Wang M, Yao W, Lv G, Liu X, Wang G. Comprehensive Analysis on Prognosis and Immune Infiltration of Lysyl Oxidase Family Members in Pancreatic Adenocarcinoma With Experimental Verification. Front Mol Biosci 2022; 9:778857. [PMID: 35433829 PMCID: PMC9010946 DOI: 10.3389/fmolb.2022.778857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Pancreatic adenocarcinoma (PDAC) is the most aggressive among all solid malignancies with delayed disease detection and limited effective treatment. However, due to the intricate heterogeneity and exclusive tumor microenvironment (TME), the development of effective therapy has been facing enormous challenges. The lysyl oxidases (LOXs) underpin the shaping of the TME to promote cancer growth, metastasis and modulate response to treatment.Materials and Methods: The mRNA expression, prognostic, and clinicopathological data for LOXs in PDAC from multiple open-access databases were summarized and analyzed. The protein expression was verified by immunohistochemistry (IHC). Co-expressed genes of LOXs were predicted and elaborated by LinkedOmics. Functional enrichment analysis of LOXs co-expressed genes was performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). TIMER and TISIDB were applied to analyze the relationship between LOXs expression and immune infiltration.Results: The mRNA expression levels of LOX, LOXL1 and LOXL2 were significantly higher in PDAC, the expression levels of LOXL3 and LOXL4 were contrary in different databases. High mRNA levels of LOX and LOXL2 were associated with advanced PDAC stage, while elevated LOX and LOXL3 expression correlated with high tumor grade. The IHC staining showed higher expression levels of LOX, LOXL1 and LOXL2, lower expression level of LOXL3 in PDAC tissues, while the protein expression of LOXL4 made no difference. Functional enrichment analysis showed a close relationship with extracellular matrix (ECM) regulation, except that LOXL3 and its ligands were highly associated with immune-related functions. Further analysis suggested that LOX and LOXL3 strongly correlated with tumor-infiltrating lymphocytes (TILs), various immune signatures, and immune checkpoints. Finally, survival analysis revealed high LOX and LOXL2 expression predicted worse overall survival (OS), progression-free interval (PFI), and disease-specific survival (DSS).Conclusion: These findings indicated that the LOX family, especially LOX and LOXL2, might have a prospective value in PDAC oncogenesis, and they may become prognostic biomarkers, revealing a promising field in targeted therapy.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Hepatobiliary Pancreatic Surgery I, The First Hospital of Jilin University, Changchun, China
- Multi-Organ Transplant Program, University Health Network, Toronto, ON, Canada
| | - Meng Wang
- Department of Hepatobiliary Pancreatic Surgery I, The First Hospital of Jilin University, Changchun, China
| | - Weikai Yao
- Department of Pathology, The First Hospital of Jilin University, Changchun, China
| | - Guoyue Lv
- Department of Hepatobiliary Pancreatic Surgery I, The First Hospital of Jilin University, Changchun, China
| | - Xueyan Liu
- Cardiovascular Department, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Xueyan Liu, ; Guangyi Wang,
| | - Guangyi Wang
- Department of Hepatobiliary Pancreatic Surgery I, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Xueyan Liu, ; Guangyi Wang,
| |
Collapse
|
17
|
Naringin protects human nucleus pulposus cells against TNF-α-induced inflammation, oxidative stress, and loss of cellular homeostasis by enhancing autophagic flux via AMPK/SIRT1 activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7655142. [PMID: 35265264 PMCID: PMC8898769 DOI: 10.1155/2022/7655142] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/26/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022]
Abstract
Activation of the proinflammatory-associated cytokine, tumor necrosis factor-α (TNF-α), in nucleus pulposus (NP) cells is essential for the pathogenesis of intervertebral disc degeneration (IDD). Restoring autophagic flux has been shown to effectively protect against IDD and is a potential target for treatment. The goal of this study was to explore particular autophagic signalings responsible for the protective effects of naringin, a known autophagy activator, on human NP cells. The results showed that significantly increased autophagic flux was observed in NP cells treated with naringin, with pronounced decreases in the inflammatory response and oxidative stress, which rescued the disturbed cellular homeostasis induced by TNF-α activation. Autophagic flux inhibition was detectable in NP cells cotreated with 3-methyladenine (3-MA, an autophagy inhibitor), partially offsetting naringin-induced beneficial effects. Naringin promoted the expressions of autophagy-associated markers via SIRT1 (silent information regulator-1) activation by AMPK (AMP-activated protein kinase) phosphorylation. Either AMPK inhibition by BML-275 or SIRT1 silencing partially counteracted naringin-induced autophagic flux enhancement. These findings indicate that naringin boosts autophagic flux through SIRT1 upregulation via AMPK activation, thus protecting NP cells against inflammatory response, oxidative stress, and impaired cellular homeostasis. Naringin can be a promising inducer of restoration autophagic flux restoration for IDD.
Collapse
|
18
|
Wang W, Li C, Chen Z, Zhang J, Ma L, Tian Y, Ma Y, Guo L, Wang X, Ye J, Wang X. Novel diosgenin-amino acid-benzoic acid mustard trihybrids exert antitumor effects via cell cycle arrest and apoptosis. J Steroid Biochem Mol Biol 2022; 216:106038. [PMID: 34861390 DOI: 10.1016/j.jsbmb.2021.106038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022]
Abstract
In discovering new powerful antitumor agents, two series of novel diosgenin-amino acid-benzoic acid mustard trihybrids (7a-7 g and 12a-12 g) were designed and synthesized. The antiproliferative activities were tested against five human tumor cell lines and one normal cell line using CCK-8 assays. Among the trihybrids, 12e was the most promising compound, which inhibited T24 cells with IC50 value of 6.96 μM, and was stronger than its parent compound diosgenin (IC50 = 32.33 μM). In addition, 12e had weak cytotoxicity on the normal GES-1 cell line (IC50 = 213.74 μM). Moreover, 12e could cause G2/M cell cycle arrest, increase the percentage of apoptosis, induce mitochondrial depolarization, and promote reactive oxygen species generation in T24 cells. Further studies on antitumor mechanism demonstrated that 12e triggered the intrinsic (mitochondrial) and extrinsic (death receptor) apoptotic pathways. More importantly, 12e could inhibit T24 cell proliferation in an in vivo zebrafish xenograft model. Therefore, 12e, as a novel trihybrid with potent cytotoxicity, might be applied as a promising skeleton for antitumor agents, which deserved further optimization.
Collapse
Affiliation(s)
- Wenbao Wang
- Qiqihar Medical University, Qiqihar, 161006 Heilongjiang, PR China; Chinese People's Liberation Army Logistics Support Force No. 967 Hospital, Dalian, 116021, PR China.
| | - Chuan Li
- General Hospital of Northern Theater Command, Shenyang, 110016, PR China
| | - Zhe Chen
- Qiqihar Medical University, Qiqihar, 161006 Heilongjiang, PR China
| | - Jinling Zhang
- Qiqihar Medical University, Qiqihar, 161006 Heilongjiang, PR China
| | - Liwei Ma
- Qiqihar Medical University, Qiqihar, 161006 Heilongjiang, PR China
| | - Yanzhao Tian
- Chinese People's Liberation Army Logistics Support Force No. 967 Hospital, Dalian, 116021, PR China
| | - Yukun Ma
- Qiqihar Medical University, Qiqihar, 161006 Heilongjiang, PR China
| | - Lina Guo
- Qiqihar Medical University, Qiqihar, 161006 Heilongjiang, PR China
| | - Xiaoli Wang
- Qiqihar Medical University, Qiqihar, 161006 Heilongjiang, PR China
| | - Jin Ye
- Qiqihar Medical University, Qiqihar, 161006 Heilongjiang, PR China
| | - Xiaobo Wang
- Chinese People's Liberation Army Logistics Support Force No. 967 Hospital, Dalian, 116021, PR China.
| |
Collapse
|
19
|
Bai X, Lian Y, Hu C, Yang S, Pei B, Yao M, Zhu X, Shang L, Li Z. Cyanidin-3-glucoside protects against high glucose-induced injury in human nucleus pulposus cells by regulating the Nrf2/HO-1 signaling. J Appl Toxicol 2021; 42:1137-1145. [PMID: 34964128 DOI: 10.1002/jat.4281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/20/2021] [Accepted: 12/03/2021] [Indexed: 11/09/2022]
Abstract
Cyanidin-3-glucoside (C3G) is a well-known natural anthocyanin with antioxidant and anti-inflammatory properties. In this study, we explored the role and action mechanism of C3G in high glucose (HG)-induced damage of human nucleus pulposus cells (HNPCs). Cell viability was assessed by CCK-8 assay. TUNEL assay was performed for detecting apoptotic rate. Western blot was performed to determine the expression levels of cl-caspase-3, caspase-3, Bax, Bim, collagen II, aggrecan, MMP-3, MMP-13, and ADAMTS5. ROS generation was analyzed using DCFH-DA staining. The Nrf2 was knocked down or overexpressed in HNPCs through transfection with si-Nrf2 or pcDNA3.0-Nrf2. C3G treatment (12.5, 25, and 50 μM) improved cell viability of HNPCs under HG condition. HG-induced cell apoptosis of HNPCs was attenuated by C3G with decreased apoptotic rate and relative levels of cl-caspase-3/caspase-3, Bax, and Bim. C3G treatment caused significant increase in expression levels of collagen II and aggrecan and decrease in the relative levels of MMP-3, MMP-13, and ADAMTS5. After treatment with C3G, ROS generation in HNPCs was markedly reduced. Treatment with N-Acetylcysteine (NAC) reversed HG-induced cell apoptosis and extracellular matrix (ECM) degradation. C3G treatment induced the expression of Nrf2 and HO-1 in HG-induced HNPCs. Moreover, knockdown of Nrf2 reversed the inhibitory effect of C3G on ROS production. Summarily, C3G exerted a protective effect on ROS-mediated cellular damage in HNPCs under HG condition, which was attributed to the induction of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Xiaoliang Bai
- Department of Spine, Tianjin Hospital, Tianjin, China.,The Fifth Department of Orthopedics, Baoding First Central Hospital, Baoding, Hebei, China
| | - Yong Lian
- The Fifth Department of Orthopedics, Baoding First Central Hospital, Baoding, Hebei, China
| | - Changqing Hu
- The Fifth Department of Orthopedics, Baoding First Central Hospital, Baoding, Hebei, China
| | - Shuai Yang
- The Fifth Department of Orthopedics, Baoding First Central Hospital, Baoding, Hebei, China
| | - Bo Pei
- The Fifth Department of Orthopedics, Baoding First Central Hospital, Baoding, Hebei, China
| | - Mingyan Yao
- Department of Endocrinology, Baoding First Central Hospital, Baoding, Hebei, China
| | - Xiaojuan Zhu
- Department of Geriatrics, Baoding First Central Hospital, Baoding, Hebei, China
| | - Lin Shang
- Department of Obstetrics and Gynecology, Baoding First Central Hospital, Baoding, Hebei, China
| | - Zhihong Li
- Department of Endocrinology, Baoding First Central Hospital, Baoding, Hebei, China
| |
Collapse
|
20
|
Wang Y, Kang J, Guo X, Zhu D, Liu M, Yang L, Zhang G, Kang X. Intervertebral Disc Degeneration Models for Pathophysiology and Regenerative Therapy -Benefits and Limitations. J INVEST SURG 2021; 35:935-952. [PMID: 34309468 DOI: 10.1080/08941939.2021.1953640] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aim:This review summarized the recent intervertebral disc degeneration (IDD) models and described their advantages and potential disadvantages, aiming to provide an overview for the current condition of IDD model establishment and new ideas for new strategies development of the treatment and prevention of IDD.Methods:The database of PubMed was searched up to May 2021 with the following search terms: nucleus pulposus, annulus fibrosus, cartilage endplate, intervertebral disc(IVD), intervertebral disc degeneration, animal model, organ culture, bioreactor, inflammatory reaction, mechanical stress, pathophysiology, epidemiology. Any IDD model-related articles were collected and summarized.Results:The best IDD model should have the features of repeatability, measurability and controllability. There are a lot of aspects to be considered in the selection of animals. Mice, rats and rabbits are low-cost and easy to access. However, their IVD size and shape are more different from human anatomy than pigs, cattle, sheep and goats. Organ culture models and animal models are two options in model establishment for IDD. The IVD organ culture model can put the studying variables into the controllable system for transitional research. Unlike the animal model, the organ culture model can only be used to evaluate the short-term effects and it is not applicable in simulating the complex process of IDD. Similarly, the animal models induced by different methods also have their advantages and disadvantages. For studying the mechanism of IDD and the corresponding treatment and prevention strategies, the selection of model should be individualized based on the purpose of each study.Conclusions:Various models have different characteristics and scope of application due to their different rationales and methods of construction. Currently, there is no experimental model that can perfectly mimic the degenerative process of human IVD. Personalized selection of appropriate model based on study purpose and experimental designing can enhance the possibility to obtain reliable and real results.
Collapse
Affiliation(s)
- Yidian Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Jihe Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Xudong Guo
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Daxue Zhu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Mingqiang Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Liang Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Guangzhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China
| | - Xuewen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R. China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, P.R. China.,The International Cooperation Base of Gansu Province for The Pain Research in Spinal Disorders, Gansu, P.R. China
| |
Collapse
|
21
|
Zhang K, Zhang Y, Zhang C, Zhu L. Upregulation of P53 promotes nucleus pulposus cell apoptosis in intervertebral disc degeneration through upregulating NDRG2. Cell Biol Int 2021; 45:1966-1975. [PMID: 34051015 DOI: 10.1002/cbin.11650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/09/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022]
Abstract
P53 is an apoptosis marker which is involved in determining nucleus pulposus (NP) cell fate. Little is known about P53 interaction with N-Myc downstream-regulated gene 2 (NDRG2) in intervertebral disc degeneration (IVDD). Here, we studied the role of the P53-NDRG2 axis in IVDD. We found that NDRG2 was expressed in NP tissue obtained from patients with IVDD. The level of NDRG2 was positively related to the severity of IVDD, as determined by Pfirrmann grading. Subsequently, we overexpressed NDRG2 in human NP cells by adenoviral transfection and studied the effects of increased levels of NDRG2 on the viability and apoptosis of these cells. NDRG2 overexpression induced NP cell apoptosis and reduced viability in NP cells obtained from patient with IVDD. We also found that the level of P53 was elevated in NP cells from patients with IVDD and treatment with exogenous P53 upregulated NDRG2 in NP cells. Last, IVDD model was established in P53 knockout mice and the pathological changes in the intervertebral discs and NDRG2 expression were examined. P53 knockout can reduce the damage of NP tissues after IVDD surgery to some extent. Restoration of NDRG2 antagonized the effect of P53 knockout on IVDD. Collectively, this study suggests that elevated P53 in NP cells stimulates apoptosis of the cells by upregulating NDRG2 expression, thereby exacerbating IVDD.
Collapse
Affiliation(s)
- Kejie Zhang
- Department of Orthopaedics, Fuyang Orthopaedics and Traumatology Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuanbin Zhang
- Department of Orthopaedics, Fuyang Orthopaedics and Traumatology Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Cong Zhang
- Department of Orthopaedics, Fuyang Orthopaedics and Traumatology Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Limin Zhu
- Department of Orthopaedics, Fuyang Orthopaedics and Traumatology Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Zhang XB, Hu YC, Cheng P, Zhou HY, Chen XY, Wu D, Zhang RH, Yu DC, Gao XD, Shi JT, Zhang K, Li SL, Song PJ, Wang KP. Targeted therapy for intervertebral disc degeneration: inhibiting apoptosis is a promising treatment strategy. Int J Med Sci 2021; 18:2799-2813. [PMID: 34220308 PMCID: PMC8241771 DOI: 10.7150/ijms.59171] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a multifactorial pathological process associated with low back pain (LBP). The pathogenesis is complicated, and the main pathological changes are IVD cell apoptosis and extracellular matrix (ECM) degradation. Apoptotic cell loss leads to ECM degradation, which plays an essential role in IDD pathogenesis. Apoptosis regulation may be a potential attractive therapeutic strategy for IDD. Previous studies have shown that IVD cell apoptosis is mainly induced by the death receptor pathway, mitochondrial pathway, and endoplasmic reticulum stress (ERS) pathway. This article mainly summarizes the factors that induce IDD and apoptosis, the relationship between the three apoptotic pathways and IDD, and potential therapeutic strategies. Preliminary animal and cell experiments show that targeting apoptotic pathway genes or drug inhibition can effectively inhibit IVD cell apoptosis and slow IDD progression. Targeted apoptotic pathway inhibition may be an effective strategy to alleviate IDD at the gene level. This manuscript provides new insights and ideas for IDD therapy.
Collapse
Affiliation(s)
- Xiao-Bo Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Honghui Hospital, Xi'an, Shanxi, 710000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Yi-Cun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Peng Cheng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Hai-Yu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Xigu District People's Hospital, Lanzhou, Gansu 730000, PR China
| | - Xiang-Yi Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Ding Wu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Rui-Hao Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - De-Chen Yu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Xi-Dan Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Jin-Tao Shi
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Kai Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Shao-Long Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Peng-Jie Song
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Ke-Ping Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Xigu District People's Hospital, Lanzhou, Gansu 730000, PR China
| |
Collapse
|