1
|
Zeng P, Zheng X, Zhang H, Zhou M, Chen Z, Song H, Xu W. Circular RNA KIAA0564 Serves as a Competitive Endogenous RNA for MicroRNA-424-5p, Mediating the Expression of Lysine Demethylase 4a, Thereby Facilitating Intervertebral Disc Degeneration. Appl Biochem Biotechnol 2024; 196:8134-8155. [PMID: 38691277 DOI: 10.1007/s12010-024-04962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
A growing body of research has confirmed the involvement of circular RNAs (circRNAs) in the regulation of intervertebral disc degeneration (IDD) progression. However, the underlying molecular networks remain largely elusive. This study aimed to explore whether a novel circRNA, named circKIAA0564, affects nucleus pulposus (NP) cell injury and to elucidate its molecular mechanism. Both in vivo and in vitro IDD models were established, and the expression patterns of circKIAA0564/miR-424-5p/lysine demethylase 4a (KDM4A) were evaluated through quantitative reverse transcription PCR and Western blot analysis. Actinomycin D, RNase R, and Northern blotting were utilized to assess the circular structure of circKIAA0564. The Cell Counting Kit-8, flow cytometry, enzyme-linked immunosorbent assay, commercial assay kits, Western blotting, and reactive oxygen species (ROS) probes were employed to assess the inflammatory and oxidative stress status in NP cells and tissues. Hematoxylin and eosin and TUNEL staining were used to evaluate pathological damage in mouse NP tissues. RNA immunoprecipitation and dual-luciferase reporter assays were conducted to assess the direct targeting relationships among circKIAA0564, miR-424-5p, and KDM4A. CircKIAA0564 was found to be abnormally overexpressed in IDD, functioning as a novel circRNA. Knockdown of circKIAA0564 ameliorated interleukin-1 beta (IL-1β)-induced inflammation and oxidative stress in NP cells. The therapeutic effect of circKIAA0564 knockdown on NP cells was reversed by the silencing of miR-424-5p. Overexpression of circKIAA0564 exacerbated IL-1β-induced NP cell injury, a process that was reversed by knockdown of KDM4A. CircKIAA0564 activated the toll-like receptor 4 (TLR4)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) signaling pathway by regulating the miR-424-5p/KDM4A axis. CircKIAA0564 exacerbates IL-1β-induced inflammation and oxidative stress in NP cells by competitively binding miR-424-5p, thereby mediating KDM4A and activating the TLR4/NF-κB/NLRP3 signaling pathway. These findings provide robust data support for targeted therapy of IDD and the development of future pharmaceuticals.
Collapse
Affiliation(s)
- Peng Zeng
- Department of Orthopedics II, The Second Affiliated Hospital of Hunan University of Chinese Medicine, No.233, Cai E North Road, Kaifu District, Changsha City, 410005, Hunan, China
| | - XianBo Zheng
- Department of Orthopedics II, The Second Affiliated Hospital of Hunan University of Chinese Medicine, No.233, Cai E North Road, Kaifu District, Changsha City, 410005, Hunan, China
| | - Hui Zhang
- Department of Orthopedics II, The Second Affiliated Hospital of Hunan University of Chinese Medicine, No.233, Cai E North Road, Kaifu District, Changsha City, 410005, Hunan, China
| | - MingHan Zhou
- Department of Orthopedics II, The Second Affiliated Hospital of Hunan University of Chinese Medicine, No.233, Cai E North Road, Kaifu District, Changsha City, 410005, Hunan, China
| | - Zhen Chen
- Department of Orthopedics II, The Second Affiliated Hospital of Hunan University of Chinese Medicine, No.233, Cai E North Road, Kaifu District, Changsha City, 410005, Hunan, China
| | - HanLin Song
- Department of Orthopedics II, The Second Affiliated Hospital of Hunan University of Chinese Medicine, No.233, Cai E North Road, Kaifu District, Changsha City, 410005, Hunan, China
| | - WuJi Xu
- Department of Orthopedics II, The Second Affiliated Hospital of Hunan University of Chinese Medicine, No.233, Cai E North Road, Kaifu District, Changsha City, 410005, Hunan, China.
| |
Collapse
|
2
|
Yang G, Li C, Tao F, Liu Y, Zhu M, Du Y, Fei C, She Q, Chen J. The emerging roles of lysine-specific demethylase 4A in cancer: Implications in tumorigenesis and therapeutic opportunities. Genes Dis 2024; 11:645-663. [PMID: 37692513 PMCID: PMC10491877 DOI: 10.1016/j.gendis.2022.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/28/2022] [Indexed: 09/12/2023] Open
Abstract
Lysine-specific demethylase 4 A (KDM4A, also named JMJD2A, KIA0677, or JHDM3A) is a demethylase that can remove methyl groups from histones H3K9me2/3, H3K36me2/3, and H1.4K26me2/me3. Accumulating evidence suggests that KDM4A is not only involved in body homeostasis (such as cell proliferation, migration and differentiation, and tissue development) but also associated with multiple human diseases, especially cancers. Recently, an increasing number of studies have shown that pharmacological inhibition of KDM4A significantly attenuates tumor progression in vitro and in vivo in a range of solid tumors and acute myeloid leukemia. Although there are several reviews on the roles of the KDM4 subfamily in cancer development and therapy, all of them only briefly introduce the roles of KDM4A in cancer without systematically summarizing the specific mechanisms of KDM4A in various physiological and pathological processes, especially in tumorigenesis, which greatly limits advances in the understanding of the roles of KDM4A in a variety of cancers, discovering targeted selective KDM4A inhibitors, and exploring the adaptive profiles of KDM4A antagonists. Herein, we present the structure and functions of KDM4A, simply outline the functions of KDM4A in homeostasis and non-cancer diseases, summarize the role of KDM4A and its distinct target genes in the development of a variety of cancers, systematically classify KDM4A inhibitors, summarize the difficulties encountered in the research of KDM4A and the discovery of related drugs, and provide the corresponding solutions, which would contribute to understanding the recent research trends on KDM4A and advancing the progression of KDM4A as a drug target in cancer therapy.
Collapse
Affiliation(s)
- Guanjun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Changyun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yanjun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Minghui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yu Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chenjie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qiusheng She
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
3
|
Pei J, Zhang S, Yang X, Han C, Pan Y, Li J, Wang Z, Sun C, Zhang J. Epigenetic regulator KDM4A activates Notch1-NICD-dependent signaling to drive tumorigenesis and metastasis in breast cancer. Transl Oncol 2022; 28:101615. [PMID: 36592610 PMCID: PMC9816809 DOI: 10.1016/j.tranon.2022.101615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/18/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Altered epigenetic reprogramming and events contribute to breast cancer (Bca) progression and metastasis. How the epigenetic histone demethylases modulate breast cancer progression remains poorly defined. We aimed to elucidate the biological roles of KDM4A in driving Notch1 activation and Bca progression. METHODS The KDM4A expression in Bca specimens was analyzed using quantitative PCR and immunohistochemical assays. The biological roles of KDM4A were evaluated using wound-healing assays and an in vivo metastasis model. The Chromatin Immunoprecipitation (ChIP)-qPCR assay was used to determine the role of KDM4A in Notch1 regulation. RESULTS Here, we screened that targeting KDM4A could induce notable cell growth suppression. KDM4A is required for the growth and progression of Bca cells. High KDM4A enhances tumor migration abilities and in vivo lung metastasis. Bioinformatic analysis suggested that KDM4A was highly expressed in tumors and high KDM4A correlates with poor survival outcomes. KDM4A activates Notch1 expressions via directly binding to the promoters and demethylating H3K9me3 modifications. KDM4A inhibition reduces expressions of a list of Notch1 downstream targets, and ectopic expressions of ICN1 could restore the corresponding levels. KDM4A relies on Notch1 signaling to maintain cell growth, migration and self-renewal capacities. Lastly, we divided a panel of cell lines into KDM4Ahigh and KDM4Alow groups. Targeting Notch1 using specific LY3039478 could efficiently suppress cell growth and colony formation abilities of KDM4Ahigh Bca. CONCLUSION Taken together, KDM4A could drive Bca progression via triggering the activation of Notch1 pathway by decreasing H3K9me3 levels, highlighting a promising therapeutic target for Bca.
Collapse
Affiliation(s)
- Jing Pei
- Department of Breast Surgery, First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, Anhui 230022, PR China,Corresponding authors.
| | - ShengQuan Zhang
- Department of Biochemistry and Molecular Biology, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, PR China
| | - Xiaowei Yang
- Department of Breast Surgery, First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, Anhui 230022, PR China
| | - Chunguang Han
- Department of Breast Surgery, First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, Anhui 230022, PR China
| | - Yubo Pan
- Department of Breast Surgery, First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, Anhui 230022, PR China
| | - Jun Li
- Department of Breast Surgery, First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, Anhui 230022, PR China
| | - Zhaorui Wang
- Department of Breast Surgery, First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, Anhui 230022, PR China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, Illinois 60657, USA
| | - Jing Zhang
- The Department of Breast Surgery, The Tumor Hospital of XuZhou, 131 HuanCheng Road, XuZhou, Jiangsu 221003, PR China,Corresponding authors.
| |
Collapse
|
4
|
Diao W, Zheng J, Li Y, Wang J, Xu S. Targeting histone demethylases as a potential cancer therapy (Review). Int J Oncol 2022; 61:103. [PMID: 35801593 DOI: 10.3892/ijo.2022.5393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/15/2022] [Indexed: 11/06/2022] Open
Abstract
Post‑translational modifications of histones by histone demethylases have an important role in the regulation of gene transcription and are implicated in cancers. Recently, the family of lysine (K)‑specific demethylase (KDM) proteins, referring to histone demethylases that dynamically regulate histone methylation, were indicated to be involved in various pathways related to cancer development. To date, numerous studies have been conducted to explore the effects of KDMs on cancer growth, metastasis and drug resistance, and a majority of KDMs have been indicated to be oncogenes in both leukemia and solid tumors. In addition, certain KDM inhibitors have been developed and have become the subject of clinical trials to explore their safety and efficacy in cancer therapy. However, most of them focus on hematopoietic malignancy. This review summarizes the effects of KDMs on tumor growth, drug resistance and the current status of KDM inhibitors in clinical trials.
Collapse
Affiliation(s)
- Wenfei Diao
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Jiabin Zheng
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yong Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Songhui Xu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
5
|
Deactivation of AKT/GSK-3β-mediated Wnt/β-catenin pathway by silencing of KIF26B weakens the malignant behaviors of non-small cell lung cancer. Tissue Cell 2022; 76:101750. [DOI: 10.1016/j.tice.2022.101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/09/2022]
|
6
|
Zhang X, Wang X, Chai B, Wu Z, Liu X, Zou H, Hua Z, Ma Z, Wang W. Downregulated miR-18a and miR-92a synergistically suppress non-small cell lung cancer via targeting Sprouty 4. Bioengineered 2022; 13:11281-11295. [PMID: 35484993 PMCID: PMC9208480 DOI: 10.1080/21655979.2022.2066755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
As a novel noncoding RNA cluster, miR-17-92 cluster include six members: miR-17, miR-18a, miR-19a, miR-19b-1, miR-20a, and miR-92a. Dysregulation of miR-17-92 has been proved to be connected with the advancement of a series of human diseases, but the roles of miR-17-92 cluster in non-small cell lung cancer (NSCLC) have not been absolutely elaborated. Herein, we determined that miR-17-92 cluster were upregulated significantly in NSCLC tissues, and the cell proliferation, migration and cycle progression of NSCLC were also facilitated under the function of miR-17-92 cluster. Sprouty 4 (SPRY4) was a direct target of miR-92a, and its overexpression restrained the exacerbation of NSCLC induced by miR-92a. Furthermore, the tumor xenograft assay showed that miR-92a facilitated tumor growth by inhibiting the expression of SPRY4 and mediating Epithelial-Mesenchymal Transition (EMT) in vivo. Finally, we looked into the synergistic effects of miR-92a and miR-18a on NSCLC, and found that antagomiR-18a treatment arrested the tumor growth rate of xenografted mice markedly.
Collapse
Affiliation(s)
- Xinju Zhang
- Lab for Noncoding RNA & Cancer, Shanghai University, Shanghai, China
| | - Xianyi Wang
- Lab for Noncoding RNA & Cancer, Shanghai University, Shanghai, China
| | - Binshu Chai
- Lab for Noncoding RNA & Cancer, Shanghai University, Shanghai, China
| | - Zong Wu
- Lab for Noncoding RNA & Cancer, Shanghai University, Shanghai, China
| | - Xiaomin Liu
- Lab for Noncoding RNA & Cancer, Shanghai University, Shanghai, China
| | - Heng Zou
- Lab for Noncoding RNA & Cancer, Shanghai University, Shanghai, China
| | - Ziyi Hua
- Experimental Center for Life Science, Shanghai University, Shanghai, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, Shanghai University, Shanghai, China
| | - Weiwei Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| |
Collapse
|
7
|
Nanamori H, Sawada Y. Epigenetic Modification of PD-1/PD-L1-Mediated Cancer Immunotherapy against Melanoma. Int J Mol Sci 2022; 23:ijms23031119. [PMID: 35163049 PMCID: PMC8835029 DOI: 10.3390/ijms23031119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Malignant melanoma is one of the representative skin cancers with unfavorable clinical behavior. Immunotherapy is currently used for the treatment, and it dramatically improves clinical outcomes in patients with advanced malignant melanoma. On the other hand, not all these patients can obtain therapeutic efficacy. To overcome this limitation of current immunotherapy, epigenetic modification is a highlighted issue for clinicians. Epigenetic modification is involved in various physiological and pathological conditions in the skin. Recent studies identified that skin cancer, especially malignant melanoma, has advantages in tumor development, indicating that epigenetic manipulation for regulation of gene expression in the tumor can be expected to result in additional therapeutic efficacy during immunotherapy. In this review, we focus on the detailed molecular mechanism of epigenetic modification in immunotherapy, especially anti-PD-1/PD-L1 antibody treatment for malignant melanoma.
Collapse
|
8
|
High Expression of JMJD4 Is a Potential Diagnostic and Prognostic Marker of Renal Cell Carcinoma. DISEASE MARKERS 2022; 2021:9573540. [PMID: 34980950 PMCID: PMC8720244 DOI: 10.1155/2021/9573540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022]
Abstract
Histone demethylase JMJD4 is a burgeoning tumor marker, which has been proven to be associated with colon cancer, but the role it plays in kidney cancer has not yet been investigated. In the present study, we evaluated whether JMJD4 can be a prognostic marker of patients with clear cell renal cell carcinoma (ccRCC) using data from public platform and in vitro experiments. Our results revealed that the expression of JMJD4 is higher in cancerous tissue than in normal tissues (p < 0.001). High expression of JMJD4 is associated with a poor overall survival (OS) of ccRCC as compared with low expression of JMJD4 (p = 0.015). JMJD4 showed significant relevance with M stage (p = 0.016), gender (p = 0.003), OS (0.018), disease-specific survival (DSS) (0.007), and percussion free interval (PFI) (0.041). Univariate and multivariate Cox analyses demonstrated that high JMJD4 expression had independent predictive value for OS in ccRCC patients (hazard ratio (HR) = 1.563, 95%confidence interval (CI) = 1.055‐2.316, and p = 0.026). Besides, in vitro experiments confirmed that high expression of JMJD4 can significantly promote the invasion ability (p < 0.001), cloning ability (p < 0.001), and proliferation (p < 0.001) of renal cell carcinoma. In summary, high JMJD4 expression may be a prognostic marker in patients with kidney cancer.
Collapse
|
9
|
Chen B, Dong W, Shao T, Miao X, Guo Y, Liu X, Feng Y. A KDM4-DBC1-SIRT1 Axis Contributes to TGF-b Induced Mesenchymal Transition of Intestinal Epithelial Cells. Front Cell Dev Biol 2021; 9:697614. [PMID: 34631698 PMCID: PMC8493255 DOI: 10.3389/fcell.2021.697614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Intestinal fibrosis is one of the common pathophysiological processes in inflammatory bowel diseases (IBDs). Previously it has been demonstrated that epithelial-mesenchymal transition (EMT) can contribute to the development of intestinal fibrosis. Here we report that conditional ablation of SIRT1, a class III lysine deacetylase, in intestinal epithelial cells exacerbated 2, 4, 6-trinitro-benzene sulfonic acid (TNBS) induced intestinal fibrosis in mice. SIRT1 activity, but not SIRT1 expression, was down-regulated during EMT likely due to up-regulation of its inhibitor deleted in breast cancer 1 (DBC1). TGF-β augmented the recruitment of KDM4A, a histone H3K9 demethylase, to the DBC1 promoter in cultured intestinal epithelial cells (IEC-6) leading to DBC1 trans-activation. KDM4A depletion or inhibition abrogated DBC1 induction by TGF-β and normalized SIRT1 activity. In addition, KDM4A deficiency attenuated TGF-β induced EMT in IEC-6 cells. In conclusion, our data identify a KDM4-DBC1-SIRT1 pathway that regulates EMT to contribute to intestinal fibrosis.
Collapse
Affiliation(s)
- Baoyu Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenhui Dong
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Tinghui Shao
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiulian Miao
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yan Guo
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Xingyu Liu
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yifei Feng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Kochat V, Raman AT, Landers SM, Tang M, Schulz J, Terranova C, Landry JP, Bhalla AD, Beird HC, Wu CC, Jiang Y, Mao X, Lazcano R, Gite S, Ingram DR, Yi M, Zhang J, Keung EZ, Scally CP, Roland CL, Hunt KK, Feig BW, Futreal PA, Hwu P, Wang WL, Lazar AJ, Slopis JM, Wilson-Robles H, Wiener DJ, McCutcheon IE, Wustefeld-Janssens B, Rai K, Torres KE. Enhancer reprogramming in PRC2-deficient malignant peripheral nerve sheath tumors induces a targetable de-differentiated state. Acta Neuropathol 2021; 142:565-590. [PMID: 34283254 DOI: 10.1007/s00401-021-02341-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 02/03/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are soft tissue sarcomas that frequently harbor genetic alterations in polycomb repressor complex 2 (PRC2) components-SUZ12 and EED. Here, we show that PRC2 loss confers a dedifferentiated early neural-crest phenotype which is exclusive to PRC2-mutant MPNSTs and not a feature of neurofibromas. Neural crest phenotype in PRC2 mutant MPNSTs was validated via cross-species comparative analysis using spontaneous and transgenic MPNST models. Systematic chromatin state profiling of the MPNST cells showed extensive epigenomic reprogramming or chromatin states associated with PRC2 loss and identified gains of active enhancer states/super-enhancers on early neural crest regulators in PRC2-mutant conditions around genomic loci that harbored repressed/poised states in PRC2-WT MPNST cells. Consistently, inverse correlation between H3K27me3 loss and H3K27Ac gain was noted in MPNSTs. Epigenetic editing experiments established functional roles for enhancer gains on DLX5-a key regulator of neural crest phenotype. Consistently, blockade of enhancer activity by bromodomain inhibitors specifically suppressed this neural crest phenotype and tumor burden in PRC2-mutant PDXs. Together, these findings reveal accumulation of dedifferentiated neural crest like state in PRC2-mutant MPNSTs that can be targeted by enhancer blockade.
Collapse
Affiliation(s)
- Veena Kochat
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ayush T Raman
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sharon M Landers
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ming Tang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonathan Schulz
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Terranova
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jace P Landry
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Angela D Bhalla
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hannah C Beird
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chia-Chin Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yingda Jiang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xizeng Mao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Swati Gite
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Davis R Ingram
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Yi
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily Z Keung
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher P Scally
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christina L Roland
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kelly K Hunt
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Barry W Feig
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick Hwu
- Department of Melanoma Medical Oncology and Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Wei-Lien Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander J Lazar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John M Slopis
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heather Wilson-Robles
- Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Dominique J Wiener
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Science, Texas A&M University, College Station, TX, USA
| | - Ian E McCutcheon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandan Wustefeld-Janssens
- Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.,Department of Surgical Oncology, Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, USA
| | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA.
| | - Keila E Torres
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
11
|
Wang Y, Li N, Tian D, Zhou CW, Wang YH, Yang C, Zeng MS. Analysis of m6A-Related lncRNAs for Prognosis Value and Response to Immune Checkpoint Inhibitors Therapy in Hepatocellular Carcinoma. Cancer Manag Res 2021; 13:6451-6471. [PMID: 34429653 PMCID: PMC8379396 DOI: 10.2147/cmar.s322179] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023] Open
Abstract
Introduction N6-methyladenosine (m6A) modification and long non-coding RNAs (lncRNAs) play pivotal roles in the progression of hepatocellular carcinoma (HCC). However, how their interaction is involved in the prognostic value of HCC and immune checkpoint inhibitors (ICIs) therapy remains unclear. Methods The RNA sequencing and clinical data of HCC patients were collected from TCGA database. The prognostic m6A-related lncRNAs were screened out with Pearson correlation test, univariate Cox analysis and least absolute shrinkage and selection operator (LASSO) Cox regression. Patients with HCC were classified into 2 subtypes by consensus clustering. Survival analyses were performed to assess the prognostic value of different clusters and risk models. Potential tumor correlated biological pathways correlated with different clusters were explored through gene set enrichment analysis. We also identified the relationship of the risk model and clusters with response to immune checkpoint inhibitors (ICIs) therapy and tumor microenvironment (TME). Furthermore, the prognostic value of the 9 m6A-related lncRNAs was validated in the external cohort. Finally, the role of SNHG4 was explored by silencing and overexpression of SNHG4 through conducting proliferation, migration and invasion experiments. Results Patients from 2 clusters and different risk groups based on m6A-related lncRNAs had significantly different clinicopathological characteristics and overall survival outcomes. Tumor-correlated biological pathways were found to be correlated with Cluster 2 through GSEA. Moreover, we found that patients from different clusters and risk groups expressed higher levels of immune checkpoint genes and had distinct TME and different responses for ICIs therapy. Prognostic value of this risk model was further confirmed in the external cohort. Finally, consistent with the discovery, SNHG4 played an oncogenic role in vitro. Conclusion Our study demonstrated that the 9 m6A-related lncRNA signature may serve as a novel predictor in the prognosis of HCC and optimize (ICIs) therapy. SNHG4 plays an oncogenic role in HCC.
Collapse
Affiliation(s)
- Yi Wang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, 200032, People's Republic of China
| | - Na Li
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, 200032, People's Republic of China
| | - Di Tian
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, 200032, People's Republic of China
| | - Chang-Wu Zhou
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, 200032, People's Republic of China
| | - You-Hua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Chun Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, 200032, People's Republic of China
| | - Meng-Su Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, 200032, People's Republic of China
| |
Collapse
|
12
|
Zheng Z, Li L, Li G, Zhang Y, Dong C, Ren F, Chen W, Ma Y. EZH2/EHMT2 Histone Methyltransferases Inhibit the Transcription of DLX5 and Promote the Transformation of Myelodysplastic Syndrome to Acute Myeloid Leukemia. Front Cell Dev Biol 2021; 9:619795. [PMID: 34409024 PMCID: PMC8365305 DOI: 10.3389/fcell.2021.619795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 06/28/2021] [Indexed: 01/24/2023] Open
Abstract
Myelodysplastic syndrome (MDS) is characterized by clonal hematopoiesis and impaired differentiation, and may develop to acute myeloid leukemia (AML). We explored the mechanism of histone methyltransferase EZH2/EHMT2 during the transformation of MDS into AML. Expression of EZH2/EHMT2 in patients and NHD13 mice was detected. EZH2 and EHMT2 were silenced or overexpressed in SKM-1 cells. The cell proliferation and cycle were evaluated. Levels of DLX5, H3K27me3, and H3K9me2 in SKM-1 cells were detected. Binding of DLX5 promoter region to H3K27me3 and H3K9me2 was examined. Levels of H3K27me3/H3K9me2 were decreased by EZH2/EHMT2 inhibitor (EPZ-6438/BIX-01294), and changes of DLX5 expression and cell proliferation were observed. EZH2 was poorly expressed in MDS patients but highly expressed in MDS-AML patients. EHMT2 was promoted in both MDS and MDS-AML patients. EZH2 expression was reduced and EHMT2 expression was promoted in NHD13 mice. NHD13 mice with overexpressing EZH2 or EHMT2 transformed into AML more quickly. Intervention of EZH2 or EHMT2 inhibited SKM-1 cell proliferation and promoted DLX5 expression. When silencing EZH1 and EZH2 in SKM-1 cells, the H3K27me3 level was decreased. EZH2 silencing repressed the proliferation of SKM-1 cells. Transcription level of DLX5 in SKM-1 cells was inhibited by H3K27me3 and H3K9me2. Enhanced DLX5 repressed SKM-1 cell proliferation. In conclusion, EZH2/EHMT2 catalyzed H3K27me3/H3K9me2 to inhibit the transcription of DLX5, thus promoting the transformation from MDS to AML.
Collapse
Affiliation(s)
- Zhuanzhen Zheng
- Department of Hemapathotology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ling Li
- Department of Hemapathotology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Guoxia Li
- Department of Hemapathotology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yaofang Zhang
- Department of Hemapathotology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunxia Dong
- Department of Hemapathotology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Fanggang Ren
- Department of Hemapathotology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenliang Chen
- Department of Hemapathotology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanping Ma
- Department of Hemapathotology, Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
13
|
Lin B, Zhu J, Yin G, Liao M, Lin G, Yan Y, Huang D, Lu S. Transcription Factor DLX5 Promotes Hair Follicle Stem Cell Differentiation by Regulating the c-MYC/microRNA-29c-3p/NSD1 Axis. Front Cell Dev Biol 2021; 9:554831. [PMID: 34336814 PMCID: PMC8319474 DOI: 10.3389/fcell.2021.554831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 03/10/2021] [Indexed: 11/22/2022] Open
Abstract
Introduction Adult stem cell function has been one of the most intensively explored areas of biological and biomedical research, with hair follicle stem cells serving as one of the best model systems. This study explored the role of the transcription factor DLX5 in regulating hair follicle stem cell (HFSC) differentiation. Methods HFSCs were isolated, characterized, and assessed for their expression of DLX5, c-MYC, NSD1, and miR-29c-3p using RT-qPCR, Western blot analysis, or immunofluorescence. Next, the ability of HFSCs to proliferate as well as differentiate into either sebaceous gland cells or epidermal cells was determined. The binding of DLX5 to the c-MYC promoter region, the binding of c-MYC to the miR-29c-3p promoter region, and the binding of miR-29c-3p to the 3′-UTR of NSD1 mRNA were verified by luciferase activity assay and ChIP experiments. Results DLX5 was highly expressed in differentiated HFSCs. DLX5 transcriptionally activated c-MYC expression to induce HFSC differentiation. c-MYC was able to bind the miR-29c-3p promoter and thus suppressed its expression. Without miR-29c-3p mediated suppression, NSD1 was then able to promote HFSC differentiation. These in vitro experiments suggested that DLX5 could promote HFSC differentiation via the regulation of the c-MYC/miR-29c-3p/NSD1 axis. Discussion This study demonstrates that DLX5 promotes HFSC differentiation by modulating the c-MYC/miR-29c-3p/NSD1 axis and identifies a new mechanism regulating HFSC differentiation.
Collapse
Affiliation(s)
- Bojie Lin
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiangying Zhu
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Academy of Humanities and Social Sciences, Guangxi Medical University, Nanning, China
| | - Guoqian Yin
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mingde Liao
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guanyu Lin
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuyong Yan
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dan Huang
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Siding Lu
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
DLX Genes: Roles in Development and Cancer. Cancers (Basel) 2021; 13:cancers13123005. [PMID: 34203994 PMCID: PMC8232755 DOI: 10.3390/cancers13123005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary DLX homeobox family genes encode transcription factors that have indispensable roles in embryonic and postnatal development. These genes are critically linked to the morphogenesis of craniofacial structures, branchial arches, forebrain, and sensory organs. DLX genes are also involved in postnatal homeostasis, particularly hematopoiesis and, when dysregulated, oncogenesis. DLX1/2, DLX3/4, and DLX5/6 exist as bigenes on different chromosomes, sharing intergenic enhancers between gene pairs, which allows orchestrated spatiotemporal expression. Genomic alterations of human DLX gene enhancers or coding sequences result in congenital disorders such as split-hand/foot malformation. Aberrant postnatal expression of DLX genes is associated with hematological malignancies, including leukemias and lymphomas. In several mouse models of T-cell lymphoma, Dlx5 has been shown to act as an oncogene by cooperating with activated Akt, Notch1/3, and/or Wnt to drive tumor formation. In humans, DLX5 is aberrantly expressed in lung and ovarian carcinomas and holds promise as a therapeutic target. Abstract Homeobox genes control body patterning and cell-fate decisions during development. The homeobox genes consist of many families, only some of which have been investigated regarding a possible role in tumorigenesis. Dysregulation of HOX family genes have been widely implicated in cancer etiology. DLX homeobox genes, which belong to the NK-like family, exert dual roles in development and cancer. The DLX genes are the key transcription factors involved in regulating the development of craniofacial structures in vertebrates. The three DLX bigenes have overlapping expression in the branchial arches. Disruption of DLX function has destructive consequences in organogenesis and is associated with certain congenital disorders in humans. The role of DLX genes in oncogenesis is only beginning to emerge. DLX2 diminishes cellular senescence by regulating p53 function, whereas DLX4 has been associated with metastasis in breast cancer. In human ovarian cancer cells, DLX5 is essential for regulating AKT signaling, thereby promoting cell proliferation and survival. We previously implicated Dlx5 as an oncogene in murine T-cell lymphoma driven by a constitutively active form of Akt2. In this mouse model, overexpression of Dlx5 was caused by a chromosomal rearrangement that juxtaposed the Tcr-beta promoter region near the Dlx5 locus. Moreover, transgenic mice overexpressing Dlx5, specifically in immature T-cells, develop spontaneous thymic lymphomas. Oncogenesis in this mouse model involves binding of Dlx5 to the Notch1 and Notch3 gene loci to activate their transcription. Dlx5 also cooperates with Akt signaling to accelerate lymphomagenesis by activating Wnt signaling. We also discuss the fact that human DLX5 is aberrantly expressed in several human malignancies.
Collapse
|