1
|
Gui J, Zhou H, Wan H, Yang D, Liu Q, Zhu L, Mi Y. The Role of Vasodilator-stimulated Phosphoproteins in the Development of Malignant Tumors. Curr Cancer Drug Targets 2024; 24:477-489. [PMID: 37962042 PMCID: PMC11092557 DOI: 10.2174/0115680096262439231023110106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/06/2023] [Accepted: 09/06/2023] [Indexed: 11/15/2023]
Abstract
Vasodilator-stimulated phosphoprotein (VASP) is an actin-binding protein that includes three structural domains: Enabled/VASP homolog1 (EVH1), EVH2, and proline-rich (PRR). VASP plays an important role in various cellular behaviors related to cytoskeletal regulation. More importantly, VASP plays a key role in the progression of several malignant tumors and is associated with malignant cell proliferation, invasion, and metastasis. Here, we have summarized current studies on the impact of VASP on the development of several malignant tumors and their mechanisms. This study provides a new theoretical basis for clinical molecular diagnosis and molecular targeted therapy.
Collapse
Affiliation(s)
- Jiandong Gui
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Hangsheng Zhou
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Hongyuan Wan
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Dongjie Yang
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Qing Liu
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
- Huadong Sanatorium, 67 Dajishan, Wuxi 214122, Jiangsu Province, China
| | - Lijie Zhu
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| |
Collapse
|
2
|
Pan W, Tian Y, Zheng Q, Yang Z, Qiang Y, Zhang Z, Zhang N, Xiong J, Zhu X, Wei L, Li F. Oncogenic BRAF noncanonically promotes tumor metastasis by mediating VASP phosphorylation and filopodia formation. Oncogene 2023; 42:3194-3205. [PMID: 37689827 DOI: 10.1038/s41388-023-02829-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
BRAF is frequently mutated in various cancer types and contributes to tumorigenesis and metastasis. As an important switch in RAS signaling pathway, BRAF typically enables the activation of MEK and ERK, and its mutation significantly promotes metastasis. However, whether BRAF could stimulate metastasis via a distinct manner is still unknown. Herein, we found that a portion of the BRAF protein localized at the plasma membrane and that the BRAFV600E mutation led to abundant formation of filopodia, which is a hallmark of invasive cancer cells. Mechanistically, BRAF physically interacts with the pseudopod formation-related protein Vasodilator-stimulated phosphoprotein (VASP), and BRAF specifically catalyzes VASP phosphorylation at Ser157. VASP depletion or disruption of Ser157 phosphorylation preferentially reduced the motility, invasion and metastasis of tumor cells harboring oncogenic BRAF or KRAS. Moreover, in clinical cancer tissues, BRAFV600E was positively correlated with the extent of invasion, and tissues with BRAFV600E expression exhibited elevated levels of VASP Ser157 phosphorylation. Our study therefor reveals a noncanonical mechanism by which oncogenic BRAF or KRAS promotes metastasis, suggests that VASP Ser157 phosphorylation might serve as a valuable therapeutic target in BRAF or KRAS mutant cancers.
Collapse
Affiliation(s)
- Wenting Pan
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yihao Tian
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qian Zheng
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zelin Yang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yulong Qiang
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zun Zhang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Nan Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jie Xiong
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| | - Xin Zhu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, China.
| | - Lei Wei
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| | - Feng Li
- Department of Medical Genetics, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
- Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan, China.
| |
Collapse
|
3
|
Tarvainen I, Nunn RC, Tuominen RK, Jäntti MH, Talman V. Protein kinase A Mediated Effects of Protein kinase C Partial Agonist HMI-1a3 in Colorectal Cancer Cells. J Pharmacol Exp Ther 2021; 380:54-62. [PMID: 34697230 DOI: 10.1124/jpet.121.000848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is the third most commonly occurring cancer in men and the second in women. The global burden of colorectal cancer is projected to increase to over 2 million new cases with over 1 million deaths within the next 10 years and there is a great need for new compounds with novel mechanisms of action. Our group has developed PKC modulating isophthalic acid derivatives that induce cytotoxicity towards human cervical and prostate cancer cell lines. In this study, we investigated the effects of 5-(hydroxymethyl)isophthalate 1a3 (HMI-1a3) on colorectal cancer cell lines (Caco2, Colo205 and HT29). HMI-1a3 inhibited cell proliferation, decreased cell viability and induced an apoptotic response in all studied cell lines. These effects, however, were independent of PKC. Using serine/threonine kinome profiling and pharmacological kinase inhibitors we identified activation of the cAMP/PKA pathway as a new mechanism-of-action for HMI-1a3-induced anti-cancer activity in colorectal cancer cell lines. Our current results strengthen the hypothesis for HMI-1a3 as a potential anti-cancer agent against various malignancies. Significance Statement Colorectal cancer (CRC) is a common solid organ malignancy. Here, we demonstrate that the protein kinase C (PKC) C1 domain-targeted isophthalatic acid derivative HMI-1a3 has anti-cancer activity on CRC cell lines independently of PKC. We identified protein kinase A (PKA) activation as a mechanism of HMI-1a3 induced anti-cancer effects. Our results reveal a new anti-cancer mechanism of action for the partial PKC agonist HMI-1a3 and thus provide new insights for the development of PKC and PKA modulators for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Virpi Talman
- Faculty of Pharmacy, University of Helsinki, Finland
| |
Collapse
|