1
|
Zhang L, Su L, Wu L, Zhou W, Xie J, Fan Y, Zhou X, Zhou C, Cui Y, Sun J. Versatile hydrogels prepared by microfluidics technology for bone tissue engineering applications. J Mater Chem B 2025. [PMID: 39876639 DOI: 10.1039/d4tb02314e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Bone defects are a prevalent issue resulting from various factors, such as trauma, degenerative diseases, congenital disabilities, and the surgical removal of tumors. Current methods for bone regeneration have limitations. In this context, the fusion of tissue engineering and microfluidics has emerged as a promising strategy in the field of bone regeneration. This study describes the classification of microfluidic devices based on the nature of flow and channel type, as well as the materials and techniques required. An overview of microfluidic methods used to prepare hydrogels and the advantages of using these hydrogels in bone tissue engineering (BTE) combining several basic elements of BTE to highlight its advantages is provided. Furthermore, this work emphasizes the benefits of using hydrogels prepared via microfluidics over conventional hydrogels in BTE because of their controlled release of cargo, they can be used for in situ injection, simplify the steps of single-cell encapsulation and have the advantages of high-throughput and precise preparation. Additionally, organ-on-a-chip models fabricated via microfluidics offer a platform for studying cell and tissue behaviors in an authentic and dynamic environment. Moreover, microfluidic devices can be utilized for noninvasive diagnosis and therapy. Finally, this paper summarizes the preclinical and clinical applications of hydrogels prepared via microfluidics for bone regeneration by focusing on their current developmental status, limitations associated with their application, and future challenges, which underscore their potential impacts on advancing regenerative medicine practices.
Collapse
Affiliation(s)
- Luyue Zhang
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Liqian Su
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Lina Wu
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Weikai Zhou
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jing Xie
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Yi Fan
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xuedong Zhou
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Changchun Zhou
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yujia Cui
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jianxun Sun
- State Key Laboratory of Oral Disease & National Center for Stomatology & National Clinical Center for Oral Diseases & Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
You J, Li Y, Wang C, Lv H, Zhai S, Liu M, Liu X, Sezhen Q, Zhang L, Zhang Y, Zhou Y. Mild Thermotherapy-Assisted GelMA/HA/MPDA@Roxadustat 3D-Printed Scaffolds with Combined Angiogenesis-Osteogenesis Functions for Bone Regeneration. Adv Healthc Mater 2024; 13:e2400545. [PMID: 38706444 DOI: 10.1002/adhm.202400545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/04/2024] [Indexed: 05/07/2024]
Abstract
Early reconstruction of the vascular network is a prerequisite to the effective treatment of substantial bone defects. Traditional 3D printed tissue engineering scaffolds designed to repair large bone defects do not effectively regenerate the vascular network, and rely only on the porous structure within the scaffold for nutrient transfer and metabolic waste removal. This leads to delayed bone restoration and hence functional recovery. Therefore, strategies for generation scaffolds with the capacity to efficiently regenerate vascularization should be developed. This study loads roxarestat (RD), which can stabilize HIF-1α expression in a normoxic environment, onto the mesopore polydopamine nanoparticles (MPDA@RD) to enhance the reconstruction of vascular network in large bone defects. Subsequently, MPDA@RD is mixed with GelMA/HA hydrogel bioink to fabricate a multifunctional hydrogel scaffold (GHM@RD) through 3D printing. In vitro results show that the GHM@RD scaffolds achieve good angiogenic-osteogenic coupling by activating the PI3K/AKT/HSP90 pathway in BMSCs and the PI3K/AKT/HIF-1α pathway in HUVECs under mild thermotherapy. In vivo experiments reveal that RD and mild hyperthermia synergistically induce early vascularization and bone regeneration of critical bone defects. In conclusion, the designed GHM@RD drug delivery scaffold with mild hyperthermia holds great therapeutic value for future treatment of large bone defects.
Collapse
Affiliation(s)
- Jiaqian You
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Yangyang Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Chong Wang
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Shaobo Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Manxuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Quni Sezhen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Lu Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
- School of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Yidi Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, 130021, China
| |
Collapse
|
3
|
Lin X, Yuan G, Yang B, Xie C, Zhou Z, Liu Y, Liu Z, Wu Z, Akimoto Y, Li N, Xu R, Song F. Dauricine attenuates ovariectomized-induced bone loss and RANKL-induced osteoclastogenesis via inhibiting ROS-mediated NF-κB and NFATc1 activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155559. [PMID: 38579642 DOI: 10.1016/j.phymed.2024.155559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Osteoclast plays an important role in maintaining the balance between bone anabolism and bone catabolism. The abnormality of osteoclast is closely related to osteolytic bone diseases such as osteoporosis, rheumatoid arthritis and tumor bone metastasis. PURPOSE We aim to search for natural compound that may suppress osteoclast formation and function. STUDY DESIGN In this study, we assessed the impact of Dauricine (Dau) on the formation and function of osteoclasts in vitro, as well as its potential in preventing bone loss in an ovariectomy mouse model in vivo. METHODS Multiple in vitro experiments were carried out, including osteoclastogenesis, podosomal belt formation, bone resorption assay, RNA-sequencing, real-time quantitative PCR, ROS level detection, surface plasmon resonance assay, luciferase assay and western blot. To verify the effect in vivo, an ovariectomized mouse model (OVX model) was constructed, and bone parameters were measured using micro-CT and histology. Furthermore, metabolomics analysis was performed on blood serum samples from the OVX model. RESULTS In vitro experiments demonstrated that Dau inhibits RANKL-induced osteoclastogenesis, podosomal belt formation, and bone resorption function. RNA-sequencing results revealed that Dau significantly suppresses genes related to osteoclast. Functional enrichment analysis indicated that Dau's inhibition of osteoclasts may be associated with NF-κB signaling pathway and reactive oxygen metabolism pathway. Molecular docking, surface plasmon resonance assay and western blot analysis further confirmed that Dau inhibits RANKL-induced osteoclastogenesis by modulating the ROS/NF-κB/NFATc1 pathway. Moreover, administration of Dau to OVX-induced mice validated its efficacy in treating bone loss disease. CONCLUSION Dau prevents OVX-induced bone loss by inhibiting osteoclast activity and bone resorption, potentially offering a new approach for preventing and treating metabolic bone diseases such as osteoporosis. This study provides innovative insights into the inhibitory effects of Dau in an in vivo OVX model and elucidates the underlying mechanism.
Collapse
Affiliation(s)
- Xixi Lin
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, China; Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361100, China
| | - Guixin Yuan
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, China; Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361100, China; Department of Orthopedics, The Second Affiliated Hospital of Shantou University Medical College, Shantou University Medical College, Shantou, Guangdong, 515044, China
| | - Bin Yang
- Department of Anesthesiology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361000, China
| | - Chunlan Xie
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, China
| | - Zhigao Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Shantou University Medical College, Shantou University Medical College, Shantou, Guangdong, 515044, China
| | - Ying Liu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, China; Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361100, China
| | - Zhijuan Liu
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bio Resource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zuoxing Wu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, China; Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361100, China
| | | | - Na Li
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, China; Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361100, China
| | - Ren Xu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, China; Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361100, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bio Resource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Fangming Song
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361100, China; Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bio Resource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
4
|
Cheng S, Hu X, Sun K, Huang Z, Zhao Y, Sun Y, Zeng B, Wang J, Zhao D, Lu S, Shi Q, Wang Y, Zhang W, Liu X, Shu B. Local Application of Tanshinone IIA protects mesenchymal stem cells from apoptosis and promotes fracture healing in ovariectomized mice. J Orthop Surg Res 2024; 19:309. [PMID: 38783358 PMCID: PMC11112815 DOI: 10.1186/s13018-024-04793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Elderly patients suffering from osteoporotic fractures are more susceptible to delayed union or nonunion, and their bodies then are in a state of low-grade chronic inflammation with decreased antioxidant capacity. Tanshinone IIA is widely used in treating cardiovascular and cerebrovascular diseases in China and has anti-inflammatory and antioxidant effects. We aimed to observe the antioxidant effects of Tanshinone IIA on mesenchymal stem cells (MSCs), which play important roles in bone repair, and the effects of local application of Tanshinone IIA using an injectable biodegradable hydrogel on osteoporotic fracture healing. METHODS MSCs were pretreated with or without different concentrations of Tanshinone IIA followed by H2O2 treatment. Ovariectomized (OVX) C57BL/6 mice received a mid-shaft transverse osteotomy fracture on the left tibia, and Tanshinone IIA was applied to the fracture site using an injectable hydrogel. RESULTS Tanshinone IIA pretreatment promoted the expression of nuclear factor erythroid 2-related factor 2 and antioxidant enzymes, and inhibited H2O2-induced reactive oxygen species accumulation in MSCs. Furthermore, Tanshinone IIA reversed H2O2-induced apoptosis and decrease in osteogenic differentiation in MSCs. After 4 weeks of treatment with Tanshinone IIA in OVX mice, the bone mineral density of the callus was significantly increased and the biomechanical properties of the healed tibias were improved. Cell apoptosis was decreased and Nrf2 expression was increased in the early stage of callus formation. CONCLUSIONS Taken together, these results indicate that Tanshinone IIA can activate antioxidant enzymes to protect MSCs from H2O2-induced cell apoptosis and osteogenic differentiation inhibition. Local application of Tanshinone IIA accelerates fracture healing in ovariectomized mice.
Collapse
Affiliation(s)
- Shao Cheng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
- School of Orthopedics, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Xiaohui Hu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Kanghui Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Ziyu Huang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Yongjian Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Yueli Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Bo Zeng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Jing Wang
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Dongfeng Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Sheng Lu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xinhua Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Bing Shu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China.
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China.
| |
Collapse
|
5
|
Wang LL, Lu ZJ, Luo SK, Li Y, Yang Z, Lu HY. Unveiling the role of hypoxia-inducible factor 2alpha in osteoporosis: Implications for bone health. World J Stem Cells 2024; 16:389-409. [PMID: 38690514 PMCID: PMC11056635 DOI: 10.4252/wjsc.v16.i4.389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/12/2024] [Accepted: 02/21/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Osteoporosis (OP) has become a major public health problem worldwide. Most OP treatments are based on the inhibition of bone resorption, and it is necessary to identify additional treatments aimed at enhancing osteogenesis. In the bone marrow (BM) niche, bone mesenchymal stem cells (BMSCs) are exposed to a hypoxic environment. Recently, a few studies have demonstrated that hypoxia-inducible factor 2alpha (HIF-2α) is involved in BMSC osteogenic differentiation, but the molecular mechanism involved has not been determined. AIM To investigate the effect of HIF-2α on the osteogenic and adipogenic differentiation of BMSCs and the hematopoietic function of hematopoietic stem cells (HSCs) in the BM niche on the progression of OP. METHODS Mice with BMSC-specific HIF-2α knockout (Prx1-Cre;Hif-2αfl/fl mice) were used for in vivo experiments. Bone quantification was performed on mice of two genotypes with three interventions: Bilateral ovariectomy, semilethal irradiation, and dexamethasone treatment. Moreover, the hematopoietic function of HSCs in the BM niche was compared between the two mouse genotypes. In vitro, the HIF-2α agonist roxadustat and the HIF-2α inhibitor PT2399 were used to investigate the function of HIF-2α in BMSC osteogenic and adipogenic differentiation. Finally, we investigated the effect of HIF-2α on BMSCs via treatment with the mechanistic target of rapamycin (mTOR) agonist MHY1485 and the mTOR inhibitor rapamycin. RESULTS The quantitative index determined by microcomputed tomography indicated that the femoral bone density of Prx1-Cre;Hif-2αfl/fl mice was lower than that of Hif-2αfl/fl mice under the three intervention conditions. In vitro, Hif-2αfl/fl mouse BMSCs were cultured and treated with the HIF-2α agonist roxadustat, and after 7 d of BMSC adipogenic differentiation, the oil red O staining intensity and mRNA expression levels of adipogenesis-related genes in BMSCs treated with roxadustat were decreased; in addition, after 14 d of osteogenic differentiation, BMSCs treated with roxadustat exhibited increased expression of osteogenesis-related genes. The opposite effects were shown for mouse BMSCs treated with the HIF-2α inhibitor PT2399. The mTOR inhibitor rapamycin was used to confirm that HIF-2α regulated BMSC osteogenic and adipogenic differentiation by inhibiting the mTOR pathway. Consequently, there was no significant difference in the hematopoietic function of HSCs between Prx1-Cre;Hif-2αfl/fl and Hif-2αfl/fl mice. CONCLUSION Our study showed that inhibition of HIF-2α decreases bone mass by inhibiting the osteogenic differentiation and increasing the adipogenic differentiation of BMSCs through inhibition of mTOR signaling in the BM niche.
Collapse
Affiliation(s)
- Ling-Ling Wang
- Department of Gerontology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Zhan-Jin Lu
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Shun-Kui Luo
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Yun Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Zhe Yang
- Department of Endocrinology and Metabolism, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University, the First Hospital Affiliated with Medical College of Macao University of Science and Technology), Zhuhai 519000, Guangdong Province, China
| | - Hong-Yun Lu
- Department of Endocrinology and Metabolism, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University, the First Hospital Affiliated with Medical College of Macao University of Science and Technology), Zhuhai 519000, Guangdong Province, China.
| |
Collapse
|
6
|
Wang D, Diao S, Zhou X, Zhou J, Liu Y. A new method regulates bone fracture tissue exosome lncRNA-mRNA to promote mesenchymal stem cell proliferation and migration. Injury 2024; 55:111210. [PMID: 38006783 DOI: 10.1016/j.injury.2023.111210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 11/27/2023]
Abstract
Post-injury adaptation (PIA) is a simple and convenient method to promote bone healing, but its mechanism is unclear. This study was to discuss the role of fracture site tissue exosomes lncRNAs-mRNAs networks on PIA promoting bone mesenchymal stem cells (BMSCs) proliferation and migration. Firstly, the effects of PIA accelerating BMSCs proliferation and migration were confirmed by rat fracture model and bone fracture environment in vitro. Besides, the fracture site tissue exosomes were isolated and authenticated. Then the tissue exosomes were the key factor in PIA promoting BMSCs proliferation and migration authenticated by in vitro and in vivo experiments. The high throughput sequencing and RT-PCR were used to analyze the tissue exosomes lncRNAs-mRNAs networks. It was found that PIA treatment upregulated 118 lncRNAs, 295 mRNAs, and downregulated 111 lncRNAs, 2706 mRNAs in tissue exosomes. A total 12,211 genes were the target genes. Akt1, Actb and Uba52 were the hub mRNAs in tissue exosomes. In additions, tissue-derived exosomes of PIA treated rats upregulated 49 genes, 3 lncRNAs and downregulated 28 genes, 1 lncRNA in BMSCs. Kif11 was the hub gene. Overall, PIA promoted BMSCs proliferation and migration in the early stage of fracture healing, which was closely related to the fracture site tissue exosomes. Akt1, Actb and Uba52 were the hub mRNAs in the exosomes. Besides, Kif11 might be the key gene in BMSC regulated by tissue-derived exosomes of PIA treated rats.
Collapse
Affiliation(s)
- Dong Wang
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Shuo Diao
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiaobin Zhou
- Third Department of Traumatology, The Third Hospital of Shijiazhuang, Shijiazhuang 050000, China
| | - Junlin Zhou
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | - Yang Liu
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
7
|
Soh S, Han S, Ka HI, Mun SH, Kim W, Oh G, Yang Y. Adiponectin affects the migration ability of bone marrow-derived mesenchymal stem cells via the regulation of hypoxia inducible factor 1α. Cell Commun Signal 2023; 21:158. [PMID: 37370133 PMCID: PMC10294307 DOI: 10.1186/s12964-023-01143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/22/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Bone marrow (BM) is progressively filled with adipocytes during aging process. Thus, BM adipocytes-derived adiponectin (APN) affects the function of bone marrow-derived mesenchymal stem cells (BMSCs). However, little is known about the effect of APN on migration ability of BMSCs cultured under hypoxic conditions, which is similar to the BM microenvironment. RESULTS We found that the population and migration ability of BMSCs from APN KO mice was higher than that of WT mice due to increased stability of hypoxia inducible factor 1α (HIF1α). Stem cell factor (SCF)-activated STAT3 stimulated the induction of HIF1α which further stimulated SCF production, indicating that the SCF/STAT3/HIF1α positive loop was highly activated in the absence of APN. It implies that APN negatively regulated this positive loop by stimulating HIF1α degradation via the inactivation of GSK3β. Furthermore, APN KO BMSCs were highly migratory toward EL-4 lymphoma, and the interaction between CD44 in BMSCs and hyaluronic acid (HA) from EL-4 enhanced the migration of BMSCs. On the other hand, the migrated BMSCs recruited CD8+ T cells into the EL-4 tumor tissue, resulting in the retardation of tumor growth. Additionally, gradually increased APN in BM on the aging process affects migration and related functions of BMSCs, thus aged APN KO mice showed more significant suppression of EL-4 growth than young APN KO mice due to higher migration and recruitment of CD8+ T cells. CONCLUSION APN deficiency enhances CD44-mediated migration ability of BMSCs in the hypoxic conditions by the SCF/STAT3/HIF1α positive loop and influences the migration ability of BMSCs for a longer time depending on the aging process. Video Abstract.
Collapse
Affiliation(s)
- Sujung Soh
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Sora Han
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Hye In Ka
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Se Hwan Mun
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Woojung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Gaeun Oh
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Young Yang
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
8
|
Li L, Li A, Gan L, Zuo L. Roxadustat improves renal osteodystrophy by dual regulation of bone remodeling. Endocrine 2023; 79:180-189. [PMID: 36184719 DOI: 10.1007/s12020-022-03199-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/11/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Renal osteodystrophy (ROD), a component of chronic kidney disease-mineral and bone disorder (CKD-MBD) can lead to bone loss increasing fracture risks in CKD patients. Therefore, it is important to prevent and treat ROD. Activation of hypoxia-inducible factor-1α (HIF-1α) signaling was reported to prevent osteoporotic bone loss. Roxadustat, which is used to treat renal anemia in the clinic, is a novel HIF stabilizer. In our study, we aimed to investigate the effects of roxadustat on ROD. METHODS We established an adenine-induced CKD rat model. Roxadustat was administered intragastrically to normal and CKD rats for 4 weeks. Hemoglobin concentrations and serum biochemical parameters were tested, and bone histomorphometric analysis was performed. RESULTS CKD rats exhibited impaired renal function with anemia, secondary hyperparathyroidism and high-turnover ROD-induced significant bone loss. Roxadustat ameliorated renal anemia and attenuated the extreme increase in intact parathyroid hormone (iPTH) and fibroblast growth factor 23 (FGF23) in CKD rats. Bone histomorphometric analysis showed that roxadustat significantly alleviated bone loss and bone microarchitecture deterioration in CKD rats by increasing osteoblast activity and inhibiting osteoclast activity. We did not find that roxadustat had significant effects on bone metabolism in normal rats. CONCLUSION Roxadustat can improve ROD via dual regulation of bone remodeling. The use of roxadustat may be a promising strategy to treat osteoporotic bone disorders, such as ROD.
Collapse
Affiliation(s)
- Luyao Li
- Department of Nephrology, Peking University People's Hospital, Beijing, China
| | - Afang Li
- Department of Nephrology, Peking University People's Hospital, Beijing, China
| | - Liangying Gan
- Department of Nephrology, Peking University People's Hospital, Beijing, China
| | - Li Zuo
- Department of Nephrology, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
9
|
Greben AI, Eremin PS, Kostromina EY, Markov PA, Greben TN, Gilmutdinova IR, Konchugova TV. [Low level laser therapy: molecular mechanisms of anti-inflammatory and regenerative effects]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2023; 100:61-68. [PMID: 37141524 DOI: 10.17116/kurort202310002161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Laser therapy as a physiotherapeutic method has been successfully used for a long time in the treatment of various pathologies, but the action mechanisms of low level laser therapy (LLLT) remain understudied. OBJECTIVE To perform the analysis of published results of LLLT investigations, to describe the physical principles of photobiomodulation, its action mechanisms on various cells and tissues, therapeutic intervention and efficiency of the technique. MATERIAL AND METHODS The search of articles was done for the period from 2014 to 2022. The preference was given to the articles for the last 5 years in the PubMed database depending on keywords: low level laser therapy, photobiomodulation, exosomes, monocytes, macrophages. RESULTS AND DISCUSSION This article represents the current conceptions about the action mechanisms and reproduced effects of low level laser therapy, the photobiomodulation influence on the inflammation and reparative processes in human body by intervention on cells and their signal pathways. The discussion of research results and probable causes of conflicting data are performed, as well as the efficacy assessment of laser irradiation in different conditions and diseases is made. CONCLUSION Laser therapy has certain variety of advantages, among which: non-invasiveness and availability, long-term service of equipment, stable intensity of light radiation and the ability to use in various wavelength ranges. The technique efficacy was proven for a large number of diseases. However, for the successful application of photobiomodulation in clinical practice in current evidence-based medicine, additional investigations are necessary to determine the best dosimetric radiation parameters, as well as further study of action mechanisms on various human cells and tissues.
Collapse
Affiliation(s)
- A I Greben
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - P S Eremin
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
| | - E Yu Kostromina
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
| | - P A Markov
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
| | - T N Greben
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
| | - I R Gilmutdinova
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
| | - T V Konchugova
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
| |
Collapse
|
10
|
Wang P, Wang X. Mimicking the native bone regenerative microenvironment for in situ repair of large physiological and pathological bone defects. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
11
|
Chen W, Wu P, Yu F, Luo G, Qing L, Tang J. HIF-1α Regulates Bone Homeostasis and Angiogenesis, Participating in the Occurrence of Bone Metabolic Diseases. Cells 2022; 11:cells11223552. [PMID: 36428981 PMCID: PMC9688488 DOI: 10.3390/cells11223552] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/16/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
In the physiological condition, the skeletal system's bone resorption and formation are in dynamic balance, called bone homeostasis. However, bone homeostasis is destroyed under pathological conditions, leading to the occurrence of bone metabolism diseases. The expression of hypoxia-inducible factor-1α (HIF-1α) is regulated by oxygen concentration. It affects energy metabolism, which plays a vital role in preventing bone metabolic diseases. This review focuses on the HIF-1α pathway and describes in detail the possible mechanism of its involvement in the regulation of bone homeostasis and angiogenesis, as well as the current experimental studies on the use of HIF-1α in the prevention of bone metabolic diseases. HIF-1α/RANKL/Notch1 pathway bidirectionally regulates the differentiation of macrophages into osteoclasts under different conditions. In addition, HIF-1α is also regulated by many factors, including hypoxia, cofactor activity, non-coding RNA, trace elements, etc. As a pivotal pathway for coupling angiogenesis and osteogenesis, HIF-1α has been widely studied in bone metabolic diseases such as bone defect, osteoporosis, osteonecrosis of the femoral head, fracture, and nonunion. The wide application of biomaterials in bone metabolism also provides a reasonable basis for the experimental study of HIF-1α in preventing bone metabolic diseases.
Collapse
|
12
|
Zhu X, Jiang L, Wei X, Long M, Du Y. Roxadustat: Not just for anemia. Front Pharmacol 2022; 13:971795. [PMID: 36105189 PMCID: PMC9465375 DOI: 10.3389/fphar.2022.971795] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Roxadustat is a recently approved hypoxia-inducible factor prolyl hydroxylase inhibitor that has demonstrated favorable safety and efficacy in the treatment of renal anemia. Recent studies found it also has potential for the treatment of other hypoxia-related diseases. Although clinical studies have not yet found significant adverse or off-target effects of roxadustat, clinicians must be vigilant about these possible effects. Hypoxia-inducible factor regulates the expression of many genes and physiological processes in response to a decreased level of oxygen, but its role in the pathogenesis of different diseases is complex and controversial. In addition to increasing the expression of hypoxia-inducible factor, roxadustat also has some effects that may be HIF-independent, indicating some potential off-target effects. This article reviews the pharmacological characteristics of roxadustat, its current status in the treatment of renal anemia, and its possible effects on other pathological mechanisms.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lili Jiang
- Physical Examination Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mengtuan Long
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Yujun Du,
| |
Collapse
|
13
|
Liu J, Yao Y, Huang J, Sun H, Pu Y, Tian M, Zheng M, He H, Li Z. Comprehensive analysis of lncRNA-miRNA-mRNA networks during osteogenic differentiation of bone marrow mesenchymal stem cells. BMC Genomics 2022; 23:425. [PMID: 35672672 PMCID: PMC9172120 DOI: 10.1186/s12864-022-08646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/19/2022] [Indexed: 11/15/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) plays crucial role in osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs), involving in regulation of competing endogenous RNA (ceRNA) mechanisms and conduction of signaling pathways. However, its mechanisms are poorly understood. This study aimed to investigate lncRNAs, miRNAs and mRNAs expression profiles in rat BMMSCs (rBMMSCs) osteogenic differentiation, screen the potential key lncRNA-miRNA-mRNA networks, explore the putative functions and identify the key molecules, as the basis of studying potential mechanism of rBMMSCs osteogenic differentiation driven by lncRNA, providing molecular targets for the management of bone defect. Methods High-throughput RNA sequencing (RNA-seq) was used to determine lncRNAs, miRNAs, and mRNAs expression profiles at 14-day rBMMSCs osteogenesis. The pivotal lncRNA-miRNA and miRNA-mRNA networks were predicted from sequencing data and bioinformatic analysis, and the results were exported by Cytoscape 3.9.0 software. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used for functional exploration. Real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to validate lncRNAs, miRNAs and mRNAs. Results rBMMSCs were identified, and the osteogenic and adipogenic differentiation ability were detected. A total of 8634 lncRNAs were detected by RNA-seq, and 1524 differential expressed lncRNAs, of which 812 up-regulated and 712 down-regulated in osteo-inductive groups compared with control groups. 30 up-regulated and 61 down-regulated miRNAs, 91 miRNAs were differentially expressed in total. 2453 differentially expressed mRNAs including 1272 up-expressed and 1181 down-expressed were detected. 10 up-regulated lncRNAs were chosen to predict 21 down-regulated miRNAs and 650 up-regulated mRNAs. 49 lncRNA-miRNA and 1515 miRNA–mRNA interactive networks were constructed. GO analysis showed the most important enrichment in cell component and molecular function were “cytoplasm” and “protein binding”, respectively. Biological process related to osteogenic differentiation such as “cell proliferation”, “wound healing”, “cell migration”, “osteoblast differentiation”, “extracellular matrix organization” and “response to hypoxia” were enriched. KEGG analysis showed differentially expressed genes were mainly enriched in “PI3K-Akt signaling pathway”, “Signaling pathway regulating pluripotency of stem cells”, “cGMP-PKG signaling pathway”, “Axon guidance” and “Calcium signaling pathway”. qRT-PCR verified that lncRNA Tug1, lncRNA AABR07011996.1, rno-miR-93-5p, rno-miR-322-5p, Sgk1 and Fzd4 were consistent with the sequencing results, and 4 lncRNA-miRNA-mRNA networks based on validations were constructed, and enrichment pathways were closely related to “PI3K-Akt signaling pathway”, “Signaling pathway regulating pluripotency of stem cells” and “Wnt signaling pathway”. Conclusions lncRNAs, miRNAs and mRNAs expression profiles provide clues for future studies on their roles for BMMSCs osteogenic differentiation. Furthermore, lncRNA–miRNA–mRNA networks give more information on potential new mechanisms and targets for management on bone defect. Supplementary information The online version contains supplementary material available at 10.1186/s12864-022-08646-x.
Collapse
Affiliation(s)
- Jialin Liu
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.,Affiliated Stomatological Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.,Stomatology Research Institute of Xinjiang Uygur Autonomous Region, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Yuan Yao
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.,Affiliated Stomatological Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.,Stomatology Research Institute of Xinjiang Uygur Autonomous Region, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Jinyong Huang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Hao Sun
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Yixuan Pu
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Mengting Tian
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Meijie Zheng
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China
| | - Huiyu He
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.
| | - Zheng Li
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Xin Jiang Uygur Autonomous Region, 830054, Urumqi, China.
| |
Collapse
|
14
|
Chen P, Liu Y, Liu W, Wang Y, Liu Z, Rong M. Impact of High-Altitude Hypoxia on Bone Defect Repair: A Review of Molecular Mechanisms and Therapeutic Implications. Front Med (Lausanne) 2022; 9:842800. [PMID: 35620712 PMCID: PMC9127390 DOI: 10.3389/fmed.2022.842800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/15/2022] [Indexed: 11/23/2022] Open
Abstract
Reaching areas at altitudes over 2,500–3,000 m above sea level has become increasingly common due to commerce, military deployment, tourism, and entertainment. The high-altitude environment exerts systemic effects on humans that represent a series of compensatory reactions and affects the activity of bone cells. Cellular structures closely related to oxygen-sensing produce corresponding functional changes, resulting in decreased tissue vascularization, declined repair ability of bone defects, and longer healing time. This review focuses on the impact of high-altitude hypoxia on bone defect repair and discusses the possible mechanisms related to ion channels, reactive oxygen species production, mitochondrial function, autophagy, and epigenetics. Based on the key pathogenic mechanisms, potential therapeutic strategies have also been suggested. This review contributes novel insights into the mechanisms of abnormal bone defect repair in hypoxic environments, along with therapeutic applications. We aim to provide a foundation for future targeted, personalized, and precise bone regeneration therapies according to the adaptation of patients to high altitudes.
Collapse
Affiliation(s)
- Pei Chen
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yushan Liu
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Wenjing Liu
- Department of Prosthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yarong Wang
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Ziyi Liu
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Mingdeng Rong
- Department of Periodontology and Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Li L, Li A, Zhu L, Gan L, Zuo L. Roxadustat promotes osteoblast differentiation and prevents estrogen deficiency-induced bone loss by stabilizing HIF-1α and activating the Wnt/β-catenin signaling pathway. J Orthop Surg Res 2022; 17:286. [PMID: 35597989 PMCID: PMC9124388 DOI: 10.1186/s13018-022-03162-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/03/2022] [Indexed: 02/08/2023] Open
Abstract
Background Osteoporosis is a very common skeletal disorder that increases the risk of fractures. However, the treatment of osteoporosis is challenging. Hypoxia-inducible factor-1α (HIF-1α) plays an important role in bone metabolism. Roxadustat is a novel HIF stabilizer, and its effects on bone metabolism remain unknown. This study aimed to investigate the effects of roxadustat on osteoblast differentiation and bone remodeling in an ovariectomized (OVX) rat model. Methods In vitro, primary mouse calvarial osteoblasts were treated with roxadustat. Alkaline phosphatase (ALP) activity and extracellular matrix mineralization were assessed. The mRNA and protein expression levels of osteogenic markers were detected. The effects of roxadustat on the HIF-1α and Wnt/β-catenin pathways were evaluated. Furthermore, osteoblast differentiation was assessed again after HIF-1α expression knockdown or inhibition of the Wnt/β-catenin pathway. In vivo, roxadustat was administered orally to OVX rats for 12 weeks. Then, bone histomorphometric analysis was performed. The protein expression levels of the osteogenic markers HIF-1α and β-catenin in bone tissue were detected. Results In vitro, roxadustat significantly increased ALP staining intensity, enhanced matrix mineralization and upregulated the expression of osteogenic markers at the mRNA and protein levels in osteoblasts compared with the control group. Roxadustat activated the HIF-1α and Wnt/β-catenin pathways. HIF-1α knockdown or Wnt/β-catenin pathway inhibition significantly attenuated roxadustat-promoted osteoblast differentiation. In vivo, roxadustat administration improved bone microarchitecture deterioration and alleviated bone loss in OVX rats by promoting bone formation and inhibiting bone resorption. Roxadustat upregulated the protein expression levels of the osteogenic markers, HIF-1α and β-catenin in the bone tissue of OVX rats. Conclusion Roxadustat promoted osteoblast differentiation and prevented bone loss in OVX rats. The use of roxadustat may be a new promising strategy to treat osteoporosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-022-03162-w.
Collapse
Affiliation(s)
- Luyao Li
- Department of Nephrology, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Afang Li
- Department of Nephrology, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Li Zhu
- Department of Nephrology, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Liangying Gan
- Department of Nephrology, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Li Zuo
- Department of Nephrology, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.
| |
Collapse
|
16
|
Wixted J, Challa S, Nazarian A. Enhancing fracture repair: cell-based approaches. OTA Int 2022; 5:e168. [PMID: 35282391 PMCID: PMC8900459 DOI: 10.1097/oi9.0000000000000168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 05/24/2023]
Abstract
Fracture repair is based both on the macrolevel modulation of fracture fragments and the subsequent cellular activity. Surgeons have also long recognized other influences on cellular behavior: the effect of the fracture or subsequent surgery on the available pool of cells present locally in the periosteum, the interrelated effects of fragment displacement, and construct stiffness on healing potential, patient pathophysiology and systemic disease conditions (such as diabetes), and external regulators of the skeletal repair (such as smoking or effect of medications). A wide variety of approaches have been applied to enhancing fracture repair by manipulation of cellular biology. Many of these approaches reflect our growing understanding of the cellular physiology that underlies skeletal regeneration. This review focuses on approaches to manipulating cell lineages, influencing paracrine and autocrine cell signaling, or applying other strategies to influence cell surface receptors and subsequent behavior. Scientists continue to evolve new approaches to pharmacologically enhancing the fracture repair process.
Collapse
Affiliation(s)
- John Wixted
- Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center
| | - Sravya Challa
- Harvard Combined Orthopedic Residency Program, Boston, Massachusetts
| | - Ara Nazarian
- Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center
| |
Collapse
|
17
|
Chen C, Yan S, Geng Z, Wang Z. Fracture repair by IOX2: Regulation of the hypoxia inducible factor-1α signaling pathway and BMSCs. Eur J Pharmacol 2022; 921:174864. [PMID: 35219731 DOI: 10.1016/j.ejphar.2022.174864] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/22/2022] [Indexed: 11/03/2022]
Abstract
The treatment of fracture delayed union and nonunion has become a challenging problem. Hypoxia inducible factor-1α (HIF-1α) is reported to be a key factor in fracture healing, and is degraded by hydroxylation of prolyl hydroxylase (PHDs) under normal oxygen. Small molecules could inhibit the activity of PHDs, stabilize HIF-1α protein, regulate the expression of downstream target genes of HIF-1α, and make the body adapt to hypoxia. The migration and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is the most promising candidate for the treatment of fracture nonunion. Here we reported that IOX2, an HIF-1α PHD inhibitor, markedly improved the proliferation and migration of BMSCs by upregulating intracellular Ca2+ and concomitant decreasing reactive oxygen species (ROS) in vitro, and facilitated the repair of bone fracture by increasing the number of BMSCs and cartilage formation in vivo. No significant influence of IOX2 on the proliferation and migration of BMSCs after silencing of the HIF-1α. Together, our findings indicated that IOX2 promoted the proliferation and migration of BMSCs via the HIF-1α pathway and further accelerated fracture healing. These results provide a deeper understanding of the mechanism by which HIF promotes fracture healing.
Collapse
Affiliation(s)
- Chunxia Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China; Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, Henan University, Kaifeng, 475004, China
| | - Shihai Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China; Department of Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Zhirong Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhilin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
18
|
Bai J, Li L, Kou N, Bai Y, Zhang Y, Lu Y, Gao L, Wang F. Low level laser therapy promotes bone regeneration by coupling angiogenesis and osteogenesis. Stem Cell Res Ther 2021; 12:432. [PMID: 34344474 PMCID: PMC8330075 DOI: 10.1186/s13287-021-02493-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Bone tissue engineering is a new concept bringing hope for the repair of large bone defects, which remains a major clinical challenge. The formation of vascularized bone is key for bone tissue engineering. Growth of specialized blood vessels termed type H is associated with bone formation. In vivo and in vitro studies have shown that low level laser therapy (LLLT) promotes angiogenesis, fracture healing, and osteogenic differentiation of stem cells by increasing reactive oxygen species (ROS). However, whether LLLT can couple angiogenesis and osteogenesis, and the underlying mechanisms during bone formation, remains largely unknown. METHODS Mouse bone marrow mesenchymal stem cells (BMSCs) combined with biphasic calcium phosphate (BCP) grafts were implanted into C57BL/6 mice to evaluate the effects of LLLT on the specialized vessel subtypes and bone regeneration in vivo. Furthermore, human BMSCs and human umbilical vein endothelial cells (HUVECs) were co-cultured in vitro. The effects of LLLT on cell proliferation, angiogenesis, and osteogenesis were assessed. RESULTS LLLT promoted the formation of blood vessels, collagen fibers, and bone tissue and also increased CD31hiEMCNhi-expressing type H vessels in mBMSC/BCP grafts implanted in mice. LLLT significantly increased both osteogenesis and angiogenesis, as well as related gene expression (HIF-1α, VEGF, TGF-β) of grafts in vivo and of co-cultured BMSCs/HUVECs in vitro. An increase or decrease of ROS induced by H2O2 or Vitamin C, respectively, resulted in an increase or decrease of HIF-1α, and a subsequent increase and decrease of VEGF and TGF-β in the co-culture system. The ROS accumulation induced by LLLT in the co-culture system was significantly decreased when HIF-1α was inhibited with DMBPA and was followed by decreased expression of VEGF and TGF-β. CONCLUSIONS LLLT enhanced vascularized bone regeneration by coupling angiogenesis and osteogenesis. ROS/HIF-1α was necessary for these effects of LLLT. LLLT triggered a ROS-dependent increase of HIF-1α, VEGF, and TGF-β and resulted in subsequent formation of type H vessels and osteogenic differentiation of mesenchymal stem cells. As ROS also was a target of HIF-1α, there may be a positive feedback loop between ROS and HIF-1α, which further amplified HIF-1α induction via the LLLT-mediated ROS increase. This study provided new insight into the effects of LLLT on vascularization and bone regeneration in bone tissue engineering.
Collapse
Affiliation(s)
- Jie Bai
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Lijun Li
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Ni Kou
- School of Stomatology, Dalian Medical University, Dalian, 116044, China.,The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, 116027, China
| | - Yuwen Bai
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Yaoyang Zhang
- School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Yun Lu
- School of Stomatology, Dalian Medical University, Dalian, 116044, China.,The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, 116027, China
| | - Lu Gao
- School of Stomatology, Dalian Medical University, Dalian, 116044, China. .,The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, 116027, China. .,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, 116044, China.
| | - Fu Wang
- School of Stomatology, Dalian Medical University, Dalian, 116044, China. .,The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, 116027, China. .,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|