1
|
Giri BR, Jakka D, Sandoval MA, Kulkarni VR, Bao Q. Advancements in Ocular Therapy: A Review of Emerging Drug Delivery Approaches and Pharmaceutical Technologies. Pharmaceutics 2024; 16:1325. [PMID: 39458654 PMCID: PMC11511072 DOI: 10.3390/pharmaceutics16101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Eye disorders affect a substantial portion of the global population, yet the availability of efficacious ophthalmic drug products remains limited. This can be partly ascribed to a number of factors: (1) inadequate understanding of physiological barriers, treatment strategies, drug and polymer properties, and delivery systems; (2) challenges in effectively delivering drugs to the anterior and posterior segments of the eye due to anatomical and physiological constraints; and (3) manufacturing and regulatory hurdles in ocular drug product development. The present review discusses innovative ocular delivery and treatments, encompassing implants, liposomes, nanoparticles, nanomicelles, microparticles, iontophoresis, in situ gels, contact lenses, microneedles, hydrogels, bispecific antibodies, and gene delivery strategies. Furthermore, this review also introduces advanced manufacturing technologies such as 3D printing and hot-melt extrusion (HME), aimed at improving bioavailability, reducing therapeutic dosages and side effects, facilitating the design of personalized ophthalmic dosage forms, as well as enhancing patient compliance. This comprehensive review lastly offers insights into digital healthcare, market trends, and industry and regulatory perspectives pertaining to ocular product development.
Collapse
Affiliation(s)
- Bhupendra Raj Giri
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (B.R.G.); (M.A.S.); (V.R.K.)
| | - Deeksha Jakka
- School of Pharmacy, The University of Mississippi, University, MS 38677, USA;
| | - Michael A. Sandoval
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (B.R.G.); (M.A.S.); (V.R.K.)
| | - Vineet R. Kulkarni
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (B.R.G.); (M.A.S.); (V.R.K.)
| | - Quanying Bao
- Synthetic Product Development, Alexion, AstraZeneca Rare Disease, 101 College Street, New Haven, CT 06510, USA
| |
Collapse
|
2
|
Wang T, Yu T, Liu Q, Sung TC, Higuchi A. Lipid nanoparticle technology-mediated therapeutic gene manipulation in the eyes. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102236. [PMID: 39005878 PMCID: PMC11245926 DOI: 10.1016/j.omtn.2024.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Millions of people worldwide have hereditary genetic disorders, trauma, infectious diseases, or cancer of the eyes, and many of these eye diseases lead to irreversible blindness, which is a major public health burden. The eye is a relatively small and immune-privileged organ. The use of nucleic acid-based drugs to manipulate malfunctioning genes that target the root of ocular diseases is regarded as a therapeutic approach with great promise. However, there are still some challenges for utilizing nucleic acid therapeutics in vivo because of certain unfavorable characteristics, such as instability, biological carrier-dependent cellular uptake, short pharmacokinetic profiles in vivo (RNA), and on-target and off-target side effects (DNA). The development of lipid nanoparticles (LNPs) as gene vehicles is revolutionary progress that has contributed the clinical application of nucleic acid therapeutics. LNPs have the capability to entrap and transport various genetic materials such as small interfering RNA, mRNA, DNA, and gene editing complexes. This opens up avenues for addressing ocular diseases through the suppression of pathogenic genes, the expression of therapeutic proteins, or the correction of genetic defects. Here, we delve into the cutting-edge LNP technology for ocular gene therapy, encompassing formulation designs, preclinical development, and clinical translation.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Tao Yu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Qian Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Tzu-Cheng Sung
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD, Jhongli, Taoyuan 32001, Taiwan
| |
Collapse
|
3
|
Liu F, Li R, Zhu Z, Yang Y, Lu F. Current developments of gene therapy in human diseases. MedComm (Beijing) 2024; 5:e645. [PMID: 39156766 PMCID: PMC11329757 DOI: 10.1002/mco2.645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 08/20/2024] Open
Abstract
Gene therapy has witnessed substantial advancements in recent years, becoming a constructive tactic for treating various human diseases. This review presents a comprehensive overview of these developments, with a focus on their diverse applications in different disease contexts. It explores the evolution of gene delivery systems, encompassing viral (like adeno-associated virus; AAV) and nonviral approaches, and evaluates their inherent strengths and limitations. Moreover, the review delves into the progress made in targeting specific tissues and cell types, spanning the eye, liver, muscles, and central nervous system, among others, using these gene technologies. This targeted approach is crucial in addressing a broad spectrum of genetic disorders, such as inherited lysosomal storage diseases, neurodegenerative disorders, and cardiovascular diseases. Recent clinical trials and successful outcomes in gene therapy, particularly those involving AAV and the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated proteins, are highlighted, illuminating the transformative potentials of this approach in disease treatment. The review summarizes the current status of gene therapy, its prospects, and its capacity to significantly ameliorate patient outcomes and quality of life. By offering comprehensive analysis, this review provides invaluable insights for researchers, clinicians, and stakeholders, enriching the ongoing discourse on the trajectory of disease treatment.
Collapse
Affiliation(s)
- Fanfei Liu
- Department of OphthalmologyWest China HospitalChengduSichuanChina
| | - Ruiting Li
- State Key Laboratory of BiotherapyWest China HospitalChengduSichuanChina
| | - Zilin Zhu
- College of Life SciencesSichuan UniversityChengduSichuanChina
| | - Yang Yang
- Department of OphthalmologyWest China HospitalChengduSichuanChina
- State Key Laboratory of BiotherapyWest China HospitalChengduSichuanChina
| | - Fang Lu
- Department of OphthalmologyWest China HospitalChengduSichuanChina
| |
Collapse
|
4
|
Chen Y, Li Y, Li C, Zhang D, Liu Y, Zhang J, Guan S, Ding X, Xiao Q. The current perspective and opportunities of small nucleic acid-based therapeutics. Drug Dev Res 2024; 85:e22164. [PMID: 38411296 DOI: 10.1002/ddr.22164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
Compared to traditional small molecule and antibody drugs, RNA-based drugs offer a simple design, short research and development cycles, high specificity, broad treatment fields, and long-term efficacy. As a result, RNA-based drugs are extensively used to treat genetic diseases, tumors, viral infections, and other illnesses, suggesting that they have the potential to become the third-largest drug class after small molecule and antibody drugs. Currently, more than 10 small nucleic acid drugs have gained regulatory approval. The commercialization successes of small nucleic acid drugs will stimulate the development of RNA-based drugs. Small nucleic acid drugs primarily target liver diseases, metabolic diseases, genetic diseases, and tumors, and there is also significant potential for expanding indications in the future. This review provides a brief overview of the advantages and development of small nucleic acid-based therapeutics and shows a focus on platform technologies such as chemical modifications and delivery systems that have enabled the clinical translation of small nucleic acid-based therapeutics. Additionally, we summarize the latest clinical progress in small nucleic acid-based therapeutics for the treatment of various diseases, including rare diseases, liver diseases, metabolic diseases, and tumors. Finally, we highlight the future prospects for this promising treatment approach.
Collapse
Affiliation(s)
- Yang Chen
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Yang Li
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chao Li
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Dandan Zhang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Yuheng Liu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jingjing Zhang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Shan Guan
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Xiaoyan Ding
- Department of Pediatrics, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Qin Xiao
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| |
Collapse
|
5
|
Venkatakrishnan J, Yuan Y, Zhang J, Yu Y, Hu YC, Kao WWY. Self-complementary AAV vector therapy for treating corneal cloudiness of mucopolysaccharidosis type VII (MPS VII). Ocul Surf 2024; 32:39-47. [PMID: 38218582 DOI: 10.1016/j.jtos.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/26/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
PURPOSE To design a novel efficacious scAAV-Gusb viral vector for treating Mucopolysaccharidosis Type VII (MPS VII) caused by a mutation in the β-Glu gene (Gusb allele). METHODS β-Glu expression of single-stranded AAV-Gusb (ssAAV-Gusb) and self-complementary AAV (scAAV-Gusb) vectors are tested with cultured murine Gusb fibroblasts. The scAAV-Gusb vector was chosen in further studies to prolong the life span and treat corneal pathology of Gusb mice via intrahepatic injection of neonates and intrastromal injection in adults, respectively. Corneal pathology was studied using HRT2 in vivo confocal microscope and histochemistry in mice corneas. RESULTS Both ssAAV-Gusb and scAAV-Gusb vectors expressed murine β-Glu in cultured Gusb fibroblasts. The scAAV-Gusb vector had higher transduction efficiency than the ssAAV-Gusb vector. To prolong the life span of Gusb mice, neonates (3 days old) were administered with scAAV-Gusb virus via intrahepatic injection. The treatment improves the survival rate of Gusb mice, prolonging the median survival rate from 22.5 weeks (untreated) to 50 weeks (treated). Thereafter, we determined the efficacy of the scAAV-Gusb virus in ameliorating corneal cloudiness observed in aged Gusb mice. Both corneal cloudiness and stroma thickness decreased, and there was the presence of β-Glu enzyme activity in the Gusb corneas receiving scAAV-Gusb virus associated with morphology change of amoeboid stromal cells in untreated to characteristic dendritic keratocytes morphology after 4-12 weeks of scAAV-Gusb virus injection. CONCLUSION Intrahepatic injection of scAAV-Gusb is efficacious in prolonging the life span of Gusb mice, and intrastromal injection can ameliorate corneal phenotypes. Both strategies can be adapted for treating other MPS.
Collapse
Affiliation(s)
- Jhuwala Venkatakrishnan
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA; Department of Biomedical Engineering, University of Cincinnati, OH, USA
| | - Yong Yuan
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | - Jianhua Zhang
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | - Yang Yu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, OH, USA
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, OH, USA
| | - Winston W-Y Kao
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
6
|
Sulak R, Liu X, Smedowski A. The concept of gene therapy for glaucoma: the dream that has not come true yet. Neural Regen Res 2024; 19:92-99. [PMID: 37488850 PMCID: PMC10479832 DOI: 10.4103/1673-5374.375319] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 07/26/2023] Open
Abstract
Gene therapies, despite of being a relatively new therapeutic approach, have a potential to become an important alternative to current treatment strategies in glaucoma. Since glaucoma is not considered a single gene disease, the identified goals of gene therapy would be rather to provide neuroprotection of retinal ganglion cells, especially, in intraocular-pressure-independent manner. The most commonly reported type of vector for gene delivery in glaucoma studies is adeno-associated virus serotype 2 that has a high tropism to retinal ganglion cells, resulting in long-term expression and low immunogenic profile. The gene therapy studies recruit inducible and genetic animal models of optic neuropathy, like DBA/2J mice model of high-tension glaucoma and the optic nerve crush-model. Reported gene therapy-based neuroprotection of retinal ganglion cells is targeting specific genes translating to growth factors (i.e., brain derived neurotrophic factor, and its receptor TrkB), regulation of apoptosis and neurodegeneration (i.e., Bcl-xl, Xiap, FAS system, nicotinamide mononucleotide adenylyl transferase 2, Digit3 and Sarm1), immunomodulation (i.e., Crry, C3 complement), modulation of neuroinflammation (i.e., erythropoietin), reduction of excitotoxicity (i.e., CamKIIα) and transcription regulation (i.e., Max, Nrf2). On the other hand, some of gene therapy studies focus on lowering intraocular pressure, by impacting genes involved in both, decreasing aqueous humor production (i.e., aquaporin 1), and increasing outflow facility (i.e., COX2, prostaglandin F2α receptor, RhoA/RhoA kinase signaling pathway, MMP1, Myocilin). The goal of this review is to summarize the current state-of-art and the direction of development of gene therapy strategies for glaucomatous neuropathy.
Collapse
Affiliation(s)
- Robert Sulak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Xiaonan Liu
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Adrian Smedowski
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- GlaucoTech Co., Katowice, Poland
| |
Collapse
|
7
|
Hakim A, Guido B, Narsineni L, Chen DW, Foldvari M. Gene therapy strategies for glaucoma from IOP reduction to retinal neuroprotection: progress towards non-viral systems. Adv Drug Deliv Rev 2023; 196:114781. [PMID: 36940751 DOI: 10.1016/j.addr.2023.114781] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/25/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Glaucoma is the result of the gradual death of retinal ganglion cells (RGCs) whose axons form the optic nerve. Elevated intraocular pressure (IOP) is a major risk factors thatcontributes to RGC apoptosis and axonal loss at the lamina cribrosa, resulting in progressive reduction and eventual anterograde-retrograde transport blockade of neurotrophic factors. Current glaucoma management mainly focuses on pharmacological or surgical lowering of IOP, to manage the only modifiable risk factor. Although IOP reduction delays disease progression, it does not address previous and ongoing optic nerve degeneration. Gene therapy is a promising direction to control or modify genes involved in the pathophysiology of glaucoma. Both viral and non-viral gene therapy delivery systems are emerging as promising alternatives or add-on therapies to traditional treatments for improving IOP control and provide neuroprotection. The specific spotlight on non-viral gene delivery systems shows further progress towards improving the safety of gene therapy and implementing neuroprotection by targeting specific tissues and cells in the eye and specifically in the retina.
Collapse
Affiliation(s)
- Antoine Hakim
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Benjamin Guido
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Lokesh Narsineni
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Ding-Wen Chen
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Marianna Foldvari
- School of Pharmacy, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1; Waterloo Institute of Nanotechnology and Center for Bioengineering and Biotechnology University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1.
| |
Collapse
|
8
|
Luo J, Tan G, Thong KX, Kafetzis KN, Vallabh N, Sheridan CM, Sato Y, Harashima H, Tagalakis AD, Yu-Wai-Man C. Non-Viral Gene Therapy in Trabecular Meshwork Cells to Prevent Fibrosis in Minimally Invasive Glaucoma Surgery. Pharmaceutics 2022; 14:pharmaceutics14112472. [PMID: 36432663 PMCID: PMC9693853 DOI: 10.3390/pharmaceutics14112472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
The primary cause of failure for minimally invasive glaucoma surgery (MIGS) is fibrosis in the trabecular meshwork (TM) that regulates the outflow of aqueous humour, and no anti-fibrotic drug is available for intraocular use in MIGS. The myocardin-related transcription factor/serum response factor (MRTF/SRF) pathway is a promising anti-fibrotic target. This study aims to utilise a novel lipid nanoparticle (LNP) to deliver MRTF-B siRNA into human TM cells and to compare its effects with those observed in human conjunctival fibroblasts (FF). Two LNP formulations were prepared with and without the targeting peptide cΥ, and with an siRNA concentration of 50 nM. We examined the biophysical properties and encapsulation efficiencies of the LNPs, and evaluated the effects of MRTF-B silencing on cell viability, key fibrotic genes expression and cell contractility. Both LNP formulations efficiently silenced MRTF-B gene and were non-cytotoxic in TM and FF cells. The presence of cΥ made the LNPs smaller and more cationic, but had no significant effect on encapsulation efficiency. Both TM and FF cells also showed significantly reduced contractibility after transfection with MRTF-B siRNA LNPs. In TM cells, LNPs with cΥ achieved a greater decrease in contractility compared to LNPs without cΥ. In conclusion, we demonstrate that the novel CL4H6-LNPs are able to safely and effectively deliver MRTF-B siRNA into human TM cells. LNPs can serve as a promising non-viral gene therapy to prevent fibrosis in MIGS.
Collapse
Affiliation(s)
- Jinyuan Luo
- Faculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UK
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Greymi Tan
- Faculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UK
| | - Kai Xin Thong
- Faculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UK
| | | | - Neeru Vallabh
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Carl M. Sheridan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Aristides D. Tagalakis
- Department of Biology, Edge Hill University, Ormskirk L39 4QP, UK
- Correspondence: (A.D.T.); (C.Y.-W.-M.); Tel.: +44-(0)1695-650923 (A.D.T.); +44-(0)2071-881504 (C.Y.-W.-M.)
| | - Cynthia Yu-Wai-Man
- Faculty of Life Sciences & Medicine, King’s College London, London SE1 7EH, UK
- Correspondence: (A.D.T.); (C.Y.-W.-M.); Tel.: +44-(0)1695-650923 (A.D.T.); +44-(0)2071-881504 (C.Y.-W.-M.)
| |
Collapse
|
9
|
Wasnik VB, Thool AR. Ocular Gene Therapy: A Literature Review With Focus on Current Clinical Trials. Cureus 2022; 14:e29533. [DOI: 10.7759/cureus.29533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022] Open
|
10
|
Sargazi S, Arshad R, Ghamari R, Rahdar A, Bakhshi A, Karkan SF, Ajalli N, Bilal M, Díez-Pascual AM. siRNA-based nanotherapeutics as emerging modalities for immune-mediated diseases: A preliminary review. Cell Biol Int 2022; 46:1320-1344. [PMID: 35830711 PMCID: PMC9543380 DOI: 10.1002/cbin.11841] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022]
Abstract
Immune‐mediated diseases (IMDs) are chronic conditions that have an immune‐mediated etiology. Clinically, these diseases appear to be unrelated, but pathogenic pathways have been shown to connect them. While inflammation is a common occurrence in the body, it may either stimulate a favorable immune response to protect against harmful signals or cause illness by damaging cells and tissues. Nanomedicine has tremendous promise for regulating inflammation and treating IMIDs. Various nanoparticles coated with nanotherapeutics have been recently fabricated for effective targeted delivery to inflammatory tissues. RNA interference (RNAi) offers a tremendous genetic approach, particularly if traditional treatments are ineffective against IMDs. In cells, several signaling pathways can be suppressed by using RNAi, which blocks the expression of particular messenger RNAs. Using this molecular approach, the undesirable effects of anti‐inflammatory medications can be reduced. Still, there are many problems with using short‐interfering RNAs (siRNAs) to treat IMDs, including poor localization of the siRNAs in target tissues, unstable gene expression, and quick removal from the blood. Nanotherapeutics have been widely used in designing siRNA‐based carriers because of the restricted therapy options for IMIDs. In this review, we have discussed recent trends in the fabrication of siRNA nanodelivery systems, including lipid‐based siRNA nanocarriers, liposomes, and cationic lipids, stable nucleic acid‐lipid particles, polymeric‐based siRNA nanocarriers, polyethylenimine (PEI)‐based nanosystems, chitosan‐based nanoformulations, inorganic material‐based siRNA nanocarriers, and hybrid‐based delivery systems. We have also introduced novel siRNA‐based nanocarriers to control IMIDs, such as pulmonary inflammation, psoriasis, inflammatory bowel disease, ulcerative colitis, rheumatoid arthritis, etc. This study will pave the way for new avenues of research into the diagnosis and treatment of IMDs.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Reza Ghamari
- Department of Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| | - Ali Bakhshi
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Sonia Fathi Karkan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Quimica Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
11
|
Bang JH, Ryu YC, Kim KA, Hwang BH. Targeted Delivery of Self-assembled Nanocomplex between Fusion Peptides and siRNAs for Breast Cancer Treatment. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Ghoraba HH, Akhavanrezayat A, Karaca I, Yavari N, Lajevardi S, Hwang J, Regenold J, Matsumiya W, Pham B, Zaidi M, Mobasserian A, DongChau AT, Or C, Yasar C, Mishra K, Do D, Nguyen QD. Ocular Gene Therapy: A Literature Review with Special Focus on Immune and Inflammatory Responses. Clin Ophthalmol 2022; 16:1753-1771. [PMID: 35685379 PMCID: PMC9173725 DOI: 10.2147/opth.s364200] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/19/2022] [Indexed: 12/22/2022] Open
Affiliation(s)
- Hashem H Ghoraba
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Amir Akhavanrezayat
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Irmak Karaca
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Negin Yavari
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Sherin Lajevardi
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Jaclyn Hwang
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Jonathan Regenold
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Wataru Matsumiya
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Brandon Pham
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Moosa Zaidi
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Azadeh Mobasserian
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Anthony Toan DongChau
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Christopher Or
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Cigdem Yasar
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Kapil Mishra
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Diana Do
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Quan Dong Nguyen
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
- Correspondence: Quan Dong Nguyen, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, USA, Tel +1 6507257245, Fax +1 6507368232, Email
| |
Collapse
|
13
|
Arroyo-García CM, Quinteros D, Palma SD, Jiménez de los Santos CJ, Moyano JR, Rabasco AM, González-Rodríguez ML. Synergistic Effect of Acetazolamide-(2-hydroxy)propyl β-Cyclodextrin in Timolol Liposomes for Decreasing and Prolonging Intraocular Pressure Levels. Pharmaceutics 2021; 13:2010. [PMID: 34959292 PMCID: PMC8709067 DOI: 10.3390/pharmaceutics13122010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to design, for the first time, a co-loaded liposomal formulation (CLL) for treatment of glaucoma including timolol maleate (TM) in the lipid bilayer and acetazolamide (Acz)-(2-hydroxy)propyl β-cyclodextrin (HPβCD) complexes (AczHP) solubilized in the aqueous core of liposomes. Formulations with TM (TM-L) and AczHP (AczHP-L), separately, were also prepared and characterized. A preliminary study comprising the Acz/HPβCD complexes and their interaction with cholesterol (a component of the lipid bilayer) was realized. Then, a screening study on formulation factors affecting the quality of the product was carried out following the design of the experiment methodology. In addition, in vitro release and permeation studies and in vivo lowering intraocular pressure (IOP) studies were performed. The results of the inclusion complexation behavior, characterization, and binding ability of Acz with HPβCD showed that HPβCD could enhance the water solubility of Acz despite the weak binding ability of the complex. Ch disturbed the stability and solubility parameters of Acz due to the fact of its competence by CD; thus, Chems (steroid derivative) was selected for further liposome formulation studies. The optimization of the lipid bilayer composition (DDAB, 0.0173 mmol and no double loading) and the extrusion as methods to reduce vesicle size were crucial for improving the physico-chemical properties and encapsulation efficiency of both drugs. In vitro release and permeation studies demonstrated that the CLL formulation showed improvement in in vitro drug release and permeation compared to the liposomal formulations with a single drug (TM-L and AczHP-L) and the standard solutions (TM-S and AczHP-S). CLL showed high efficacy in reducing and prolonging IOP, suggesting that the synergistic effect of TM and Acz on aqueous humor retention and the presence of this cyclodextrin and liposomes as permeation enhancers are responsible for the success of this strategy of co-loading for glaucoma therapy.
Collapse
Affiliation(s)
- Carmen M. Arroyo-García
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González, 2, 41012 Sevilla, Spain; (C.M.A.-G.); (C.J.J.d.l.S.); (J.R.M.); (A.M.R.)
| | - Daniela Quinteros
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina; (D.Q.); (S.D.P.)
- Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Santiago D. Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina; (D.Q.); (S.D.P.)
- Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Cesáreo J. Jiménez de los Santos
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González, 2, 41012 Sevilla, Spain; (C.M.A.-G.); (C.J.J.d.l.S.); (J.R.M.); (A.M.R.)
| | - José R. Moyano
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González, 2, 41012 Sevilla, Spain; (C.M.A.-G.); (C.J.J.d.l.S.); (J.R.M.); (A.M.R.)
| | - Antonio M. Rabasco
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González, 2, 41012 Sevilla, Spain; (C.M.A.-G.); (C.J.J.d.l.S.); (J.R.M.); (A.M.R.)
| | - María Luisa González-Rodríguez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/Prof. García González, 2, 41012 Sevilla, Spain; (C.M.A.-G.); (C.J.J.d.l.S.); (J.R.M.); (A.M.R.)
| |
Collapse
|
14
|
Amador C, Shah R, Ghiam S, Kramerov AA, Ljubimov AV. Gene therapy in the anterior eye segment. Curr Gene Ther 2021; 22:104-131. [PMID: 33902406 DOI: 10.2174/1566523221666210423084233] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/14/2021] [Accepted: 04/04/2021] [Indexed: 11/22/2022]
Abstract
This review provides comprehensive information about the advances in gene therapy in the anterior segment of the eye including cornea, conjunctiva, lacrimal gland, and trabecular meshwork. We discuss gene delivery systems including viral and non-viral vectors as well as gene editing techniques, mainly CRISPR-Cas9, and epigenetic treatments including antisense and siRNA therapeutics. We also provide a detailed analysis of various anterior segment diseases where gene therapy has been tested with corresponding outcomes. Disease conditions include corneal and conjunctival fibrosis and scarring, corneal epithelial wound healing, corneal graft survival, corneal neovascularization, genetic corneal dystrophies, herpetic keratitis, glaucoma, dry eye disease, and other ocular surface diseases. Although most of the analyzed results on the use and validity of gene therapy at the ocular surface have been obtained in vitro or using animal models, we also discuss the available human studies. Gene therapy approaches are currently considered very promising as emerging future treatments of various diseases, and this field is rapidly expanding.
Collapse
Affiliation(s)
- Cynthia Amador
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ruchi Shah
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sean Ghiam
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|