1
|
Stańkowska W, Sarkisyan D, Bruhn-Olszewska B, Duzowska K, Bieńkowski M, Jąkalski M, Wójcik-Zalewska M, Davies H, Drężek-Chyła K, Pęksa R, Harazin-Lechowska A, Ambicka A, Przewoźnik M, Adamczyk A, Sasim K, Makarewicz W, Matuszewski M, Biernat W, Järhult JD, Lipcsey M, Hultström M, Frithiof R, Jaszczyński J, Ryś J, Genovese G, Piotrowski A, Filipowicz N, Dumanski JP. Tumor Predisposing Post-Zygotic Chromosomal Alterations in Bladder Cancer-Insights from Histologically Normal Urothelium. Cancers (Basel) 2024; 16:961. [PMID: 38473323 PMCID: PMC10930680 DOI: 10.3390/cancers16050961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Bladder urothelial carcinoma (BLCA) is the 10th most common cancer with a low survival rate and strong male bias. We studied the field cancerization in BLCA using multi-sample- and multi-tissue-per-patient protocol for sensitive detection of autosomal post-zygotic chromosomal alterations and loss of chromosome Y (LOY). We analysed 277 samples of histologically normal urothelium, 145 tumors and 63 blood samples from 52 males and 15 females, using the in-house adapted Mosaic Chromosomal Alterations (MoChA) pipeline. This approach allows identification of the early aberrations in urothelium from BLCA patients. Overall, 45% of patients exhibited at least one alteration in at least one normal urothelium sample. Recurrence analysis resulted in 16 hotspots composed of either gains and copy number neutral loss of heterozygosity (CN-LOH) or deletions and CN-LOH, encompassing well-known and new BLCA cancer driver genes. Conservative assessment of LOY showed 29%, 27% and 18% of LOY-cells in tumors, blood and normal urothelium, respectively. We provide a proof of principle that our approach can characterize the earliest alterations preconditioning normal urothelium to BLCA development. Frequent LOY in blood and urothelium-derived tissues suggest its involvement in BLCA.
Collapse
Affiliation(s)
- Wiktoria Stańkowska
- 3P-Medicine Laboratory, Medical University of Gdańsk, M. Sklodowskiej-Curie 3A, 80-210 Gdańsk, Poland; (W.S.); (K.D.); (M.J.); (M.W.-Z.); (K.D.-C.); (A.P.)
| | - Daniil Sarkisyan
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, BMC, Husargatan 3, 751 08 Uppsala, Sweden; (D.S.); (B.B.-O.); (H.D.)
| | - Bożena Bruhn-Olszewska
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, BMC, Husargatan 3, 751 08 Uppsala, Sweden; (D.S.); (B.B.-O.); (H.D.)
| | - Katarzyna Duzowska
- 3P-Medicine Laboratory, Medical University of Gdańsk, M. Sklodowskiej-Curie 3A, 80-210 Gdańsk, Poland; (W.S.); (K.D.); (M.J.); (M.W.-Z.); (K.D.-C.); (A.P.)
| | - Michał Bieńkowski
- Department of Pathomorphology, Medical University of Gdańsk, M. Sklodowskiej-Curie 3A, 80-210 Gdańsk, Poland; (M.B.); (R.P.); (W.B.)
| | - Marcin Jąkalski
- 3P-Medicine Laboratory, Medical University of Gdańsk, M. Sklodowskiej-Curie 3A, 80-210 Gdańsk, Poland; (W.S.); (K.D.); (M.J.); (M.W.-Z.); (K.D.-C.); (A.P.)
| | - Magdalena Wójcik-Zalewska
- 3P-Medicine Laboratory, Medical University of Gdańsk, M. Sklodowskiej-Curie 3A, 80-210 Gdańsk, Poland; (W.S.); (K.D.); (M.J.); (M.W.-Z.); (K.D.-C.); (A.P.)
| | - Hanna Davies
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, BMC, Husargatan 3, 751 08 Uppsala, Sweden; (D.S.); (B.B.-O.); (H.D.)
| | - Kinga Drężek-Chyła
- 3P-Medicine Laboratory, Medical University of Gdańsk, M. Sklodowskiej-Curie 3A, 80-210 Gdańsk, Poland; (W.S.); (K.D.); (M.J.); (M.W.-Z.); (K.D.-C.); (A.P.)
| | - Rafał Pęksa
- Department of Pathomorphology, Medical University of Gdańsk, M. Sklodowskiej-Curie 3A, 80-210 Gdańsk, Poland; (M.B.); (R.P.); (W.B.)
| | - Agnieszka Harazin-Lechowska
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Garncarska 11, 31-115 Kraków, Poland; (A.H.-L.); (M.P.); (A.A.); (J.R.)
| | - Aleksandra Ambicka
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Garncarska 11, 31-115 Kraków, Poland; (A.H.-L.); (M.P.); (A.A.); (J.R.)
| | - Marcin Przewoźnik
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Garncarska 11, 31-115 Kraków, Poland; (A.H.-L.); (M.P.); (A.A.); (J.R.)
| | - Agnieszka Adamczyk
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Garncarska 11, 31-115 Kraków, Poland; (A.H.-L.); (M.P.); (A.A.); (J.R.)
| | - Karol Sasim
- Clinic of Urology and Oncological Urology, Specialist Hospital of Kościerzyna, Piechowskiego 36, 83-400 Kościerzyna, Poland;
| | - Wojciech Makarewicz
- Clinic of General and Oncological Surgery, Specialist Hospital of Kościerzyna, Piechowskiego 36, 83-400 Kościerzyna, Poland;
| | - Marcin Matuszewski
- Department and Clinic of Urology, Medical University of Gdańsk, M. Sklodowskiej-Curie 3A, 80-210 Gdańsk, Poland;
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdańsk, M. Sklodowskiej-Curie 3A, 80-210 Gdańsk, Poland; (M.B.); (R.P.); (W.B.)
| | - Josef D. Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Akademiska Sjukhuset, 751 85 Uppsala, Sweden;
| | - Miklós Lipcsey
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Akademiska Sjukhuset, 751 85 Uppsala, Sweden; (M.L.); (M.H.); (R.F.)
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset, 751 85 Uppsala, Sweden
| | - Michael Hultström
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Akademiska Sjukhuset, 751 85 Uppsala, Sweden; (M.L.); (M.H.); (R.F.)
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University, BMC, Husargatan 3, 751 08 Uppsala, Sweden
| | - Robert Frithiof
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Akademiska Sjukhuset, 751 85 Uppsala, Sweden; (M.L.); (M.H.); (R.F.)
| | - Janusz Jaszczyński
- Department of Urology, Maria Skłodowska-Curie National Research Institute of Oncology, Garncarska 11, 31-115 Kraków, Poland;
| | - Janusz Ryś
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Garncarska 11, 31-115 Kraków, Poland; (A.H.-L.); (M.P.); (A.A.); (J.R.)
| | - Giulio Genovese
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA;
| | - Arkadiusz Piotrowski
- 3P-Medicine Laboratory, Medical University of Gdańsk, M. Sklodowskiej-Curie 3A, 80-210 Gdańsk, Poland; (W.S.); (K.D.); (M.J.); (M.W.-Z.); (K.D.-C.); (A.P.)
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland
| | - Natalia Filipowicz
- 3P-Medicine Laboratory, Medical University of Gdańsk, M. Sklodowskiej-Curie 3A, 80-210 Gdańsk, Poland; (W.S.); (K.D.); (M.J.); (M.W.-Z.); (K.D.-C.); (A.P.)
| | - Jan P. Dumanski
- 3P-Medicine Laboratory, Medical University of Gdańsk, M. Sklodowskiej-Curie 3A, 80-210 Gdańsk, Poland; (W.S.); (K.D.); (M.J.); (M.W.-Z.); (K.D.-C.); (A.P.)
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, BMC, Husargatan 3, 751 08 Uppsala, Sweden; (D.S.); (B.B.-O.); (H.D.)
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland
| |
Collapse
|
2
|
Wang S, Liu R. Insights into the pleiotropic roles of ZNF703 in cancer. Heliyon 2023; 9:e20140. [PMID: 37810156 PMCID: PMC10559930 DOI: 10.1016/j.heliyon.2023.e20140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Zinc finger proteins (ZNFs) belong to the NET/NLZ protein family. In physiological functions, ZNF703 play significant roles in embryonic development, especially in the nervous system. As an transcription factors with zinc finger domains, abnormal regulation of the ZNF703 protein is associated with enhanced proliferation, invasion, and metastasis as well as drug resistance in many tumors, although mechanisms of action vary depending on the specific tumor microenvironment. ZNF703 lacks a nuclear localization sequence despite its function requiring nuclear DNA binding. The purpose of this review is to summarize the architecture of ZNF703, its roles in tumorigenesis, and tumor progression, as well as future oncology therapeutic prospects, which have implications for understanding tumor susceptibility and progression.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Obstetrics and Gynaecology, Tianjin Central Hospital of Gynecology Obstetrics, No. 156 Nan Kai San Ma Lu, Tianjin, 300000, China
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300000, China
- Department of Obstetrics and Gynaecology, Nankai University Maternity Hospital, Tianjin, 300000, China
| | - Rong Liu
- Department of Obstetrics and Gynecology, Tianjin First Center Hospital, Tianjin, China
| |
Collapse
|
3
|
Li D, Tian T, Ko CN, Yang C. Prospect of targeting lysine methyltransferase NSD3 for tumor therapy. Pharmacol Res 2023; 194:106839. [PMID: 37400043 DOI: 10.1016/j.phrs.2023.106839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023]
Abstract
Nuclear receptor binding SET domain protein 3 (NSD3) has recently been recognized as a new epigenetic target in the fight against cancer. NSD3, which is amplified, overexpressed or mutated in a variety of tumors, promotes tumor development by regulating the cell cycle, apoptosis, DNA repair and EMT. Therefore, the inhibition, silencing or knockdown of NSD3 are highly promising antitumor strategies. This paper summarizes the structure and biological functions of NSD3 with an emphasis on its carcinogenic or cancer-promoting activity. The development of NSD3-specific inhibitors or degraders is also discussed and reviewed in this paper.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Tiantian Tian
- Center for Biological Science and Technology, Beijing Normal University, Zhuhai, Guangdong Province, 519087, China
| | - Chung-Nga Ko
- C-MER Dennis Lam and Partners Eye Center, Hong Kong International Eye Care Group, Hong Kong, China.
| | - Chao Yang
- National Engineering Research Center For Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China.
| |
Collapse
|
4
|
Zhao J, Jia X, Li Q, Zhang H, Wang J, Huang S, Hu Z, Li C. Genomic and transcriptional characterization of early esophageal squamous cell carcinoma. BMC Med Genomics 2023; 16:153. [PMID: 37393256 PMCID: PMC10315050 DOI: 10.1186/s12920-023-01588-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a highly heterogeneous cancer that lacks comprehensive understanding and effective treatment. Although multi-omics study has revealed features and underlying drivers of advanced ESCC, research on molecular characteristics of the early stage ESCC is quite limited. MATERIALS AND METHODS We presented characteristics of genomics and transcriptomics in 10 matched pairs of tumor and normal tissues of early ESCC patients in the China region. RESULTS We identified the specific patterns of cancer gene mutations and copy number variations. We also found a dramatic change in the transcriptome, with more than 4,000 genes upregulated in cancer. Among them, more than one-third of HOX family genes were specifically and highly expressed in early ESCC samples of China and validated by RT-qPCR. Gene regulation network analysis indicated that alteration of Hox family genes promoted the proliferation and metabolism remodeling of early ESCC. CONCLUSIONS We characterized the genomic and transcriptomic landscape of 10 paired normal adjacent and early ESCC tissues in the China region, and provided a new perspective to understand the development of ESCC and insight into potential prevention and diagnostic targets for the management of early ESCC in China.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Gastroenterology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiya Jia
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qiaojuan Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hena Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jianjun Wang
- Department of Pediatric Medicine, Gansu Provincial People's Hospital, Lanzhou City, , Gansu Province, China
| | - Shenglin Huang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhixiang Hu
- Department of Gastroenterology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Caiping Li
- Department of Gastroenterology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| |
Collapse
|
6
|
Voutsadakis IA. Biomarkers of everolimus efficacy in breast cancer therapy. J Oncol Pharm Pract 2022; 28:945-959. [PMID: 35018844 DOI: 10.1177/10781552211073673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Everolimus is an inhibitor of serine/ threonine kinase mTOR. The drug is approved for the treatment of metastatic ER positive, HER2 negative breast cancers and benefits a subset of patients with these breast cancers in combination with hormonal therapies. Despite extensive efforts, no additional predictive biomarkers to guide therapeutic decisions for everolimus have been introduced in clinical practice. DATA SOURCES This paper discusses predictive biomarkers for everolimus efficacy in breast cancer. A search of the medline and web of science databases was performed using the words "everolimus" and "biomarkers". References of retrieved articles were manually scanned for additional relevant articles. DATA SUMMARY Everolimus benefits a subset of patients with metastatic ER positive, HER2 negative breast cancers in combination with hormonal therapies. Despite extensive efforts no additional predictive biomarkers to guide therapeutic decisions for everolimus therapy have been confirmed for use in clinical practice. However, promising biomarker leads for everolimus efficacy in breast cancer have been suggested and include expression of proteins in the mTOR pathway in ER positive, HER2 negative breast cancers. In HER2 positive cancers PIK3CA mutations, and PTEN expression loss are prognostic. Other clinical predictive biomarkers with more limited data include characteristics derived from whole genome sequencing, subsets of circulating leukocytes and changes in Standardized Uptake Values (SUV) of Positron Emission Tomography (PET) scans. CONCLUSIONS Putative predictive biomarkers for everolimus efficacy in breast cancer patients, both genomic and clinical, deserve further study and could lead to a better selection of responsive patients.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, 10066Sault Area Hospital, Sault Ste. Marie, Ontario, Canada, and Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| |
Collapse
|
8
|
3q26 Amplifications in Cervical Squamous Carcinomas. ACTA ACUST UNITED AC 2021; 28:2868-2880. [PMID: 34436017 PMCID: PMC8395483 DOI: 10.3390/curroncol28040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/17/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
Background: Squamous carcinomas of the uterine cervix often carry mutations of the gene encoding for the catalytic sub-unit of kinase PI3K, PIK3CA. The locus of this gene at chromosome 3q26 and neighboring loci are also commonly amplified. The landscape of 3q26-amplified cases have not been previously characterized in detail in cervical cancer. Methods: Published genomic data and associated clinical data from TCGA cervical cancer cohort were analyzed at cBioportal for amplifications in genes at 3q26. The clinical and molecular characteristics of the group of patients with 3q26 amplifications was compared with the group without 3q26 amplifications. Comparative prevalence of amplification and expression of genes at 3q26 in amplified squamous cervical cancer cases were surveyed as well as 3q26 amplifications in cervical cancer cell line databases. Results: Amplification of 3q26 locus is a prevalent molecular lesion in cervical squamous cell carcinomas encountered in about 15% of cases in TCGA cohort of 247 patients. Cancer-related genes commonly amplified from 3q26 include PIK3CA, TBL1XR1, DCUN1D1, SOX2, MECOM, PRKCI, and TERC. Amplified cases do not completely overlap with PIK3CA mutant cases. Differences exist between 3q26-amplified and non-amplified carcinomas in the frequency of mutations and frequency of other amplifications. Most commonly over-expressed genes in 3q26 amplified cases include PIK3CA, TBL1XR1, DCUN1D1, and less commonly SOX2 and PRKCI. Conclusion: The subset of squamous cervical carcinomas with 3q26 amplifications is not overlapping with cancers carrying PIK3CA mutations and contains, besides PIK3CA, other cancer-associated genes that are over-expressed at the mRNA level, including TBL1XR1 and DCUN1D1. DCUN1D1, a regulator of SCF ubiquitin ligase activity, may be a relevant pathogenic player given the importance of ubiquitination and the proteasome in the disease. These observations could form the basis for therapeutic exploitation in this subset of squamous cervical carcinomas.
Collapse
|