1
|
Cheng C, Peng X, Xi L, Luo Y, Wang Y, Zhou Y, Yu X. Feasibility study of oxidized naringin as a novel crosslinking agent for crosslinking decellularized porcine Achilles tendon and its potential application for anterior cruciate ligament repair. J Biomed Mater Res A 2023; 111:170-184. [PMID: 36054309 DOI: 10.1002/jbm.a.37440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022]
Abstract
Naringin (Nar), a natural flavanone glycoside, has been shown to possess a variety of biological activities, including anti-inflammatory, anti-apoptotic, bone formation, and so forth. In this study, Nar was oxidized by sodium periodate and the oxidized naringin (ONar) was used as a novel biological crosslinking agent. In addition, ONar-fixed porcine decellularized Achilles tendon (DAT) was developed to substitute anterior cruciate ligament (ACL) for researching a novel ACL replacement material. The ONar with a 24 h oxidation time had appropriate aldehyde group content, almost no cytotoxicity, and a good crosslinking effect. The critical characteristics and cytocompatibility of ONar-fixed DAT were also investigated. The results demonstrated that 1% ONar-fixed DAT exhibited good resistance to enzymatic degradation and thermal stability as well as suitable mechanical strength. Moreover, 1% ONar-fixed specimens exhibited excellent L929 fibroblasts-cytocompatibility and MC3T3-E1-cytocompatibility. They also promoted the secretion of hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF) from fibroblasts and bone morphogenetic protein-2 (BMP-2) from osteoblasts. And they also showed the good anti-inflammatory properties in vivo experiments. Our data provided an experimental basis for ONar as a new cross-linking reagent in chemical modification of DAT and ONar-fixed DAT for ACL repair.
Collapse
Affiliation(s)
- Can Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu, People's Republic of China.,Experimental and Research Animal Institute, Sichuan University, Chengdu, People's Republic of China
| | - Linjie Xi
- Department of Oncology Hematology, Western Theater Command Air Force Hospital, Chengdu, Sichuan Province, People's Republic of China
| | - Yihao Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Yuhang Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Yufan Zhou
- College of Polymer Science and Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
2
|
Zheng Y, Zhu K, Wang G. miR-106a-5p carried by tumor-derived extracellular vesicles promotes the invasion and metastasis of ovarian cancer by targeting KLF6. Clin Exp Metastasis 2022; 39:603-621. [PMID: 35449340 DOI: 10.1007/s10585-022-10165-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/04/2022] [Indexed: 01/16/2023]
Abstract
Tumor-derived extracellular vesicles (EVs) promote ovarian cancer (OC) metastasis by carrying microRNAs (miRs). This study investigated the mechanism of miR-106a-5p carried by OC cell-derived EVs in OC. miR-106a-5p expression in OC tissues and cells was measured. EVs were extracted from SKOV3 cells and normal cells. The internalization of EVs in OC cells was observed. OC cells were treated with SKOV3-EVs or SKOV3-EVs overexpressing miR-106a-5p to detect the proliferation, migration, and invasion. The expression levels of miR-106a-5p, KLF6, and PTTG1 were detected and their binding relationships were identified. Combined experiments were designed to detect the effects of KLF6 and PTTG1 on OC cells. A xenograft tumor experiment was performed to verify the mechanism of EVs-miR-106a-5p and KLF6 in OC metastasis. Consequently, miR-106a-5p was enhanced in OC and correlated with OC metastasis. SKOV3-EVs promoted the proliferation, migration, and invasion of OC cells. Mechanistically, EVs carried miR-106a-5p into other OC cells, inhibited KLF6, reduced the binding of KLF6 to the PTTG1 promoter, and upregulated PTTG1 transcription. Overexpression of KLF6 or silencing of PTTG1 attenuated the promoting effect of EVs-miR-106a-5p on OC cells. EVs-miR-106a-5p facilitated OC metastasis via the KLF6/PTTG1 axis. To conclude, OC cell-derived EVs facilitated the progression and metastasis of OC via the miR-106a-5p/KLF6/PTTG1 axis.
Collapse
Affiliation(s)
- Yunyun Zheng
- Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, Shaanxi, China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of AFM (Air Force Medical University), Xi'an, 710032, Shaanxi, China
| | - Kang Zhu
- Department of Obstetrics and Gynecology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, Shaanxi, China
| | - Guihu Wang
- Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
3
|
Luo Y, Zhu LP, Lei Y, Zhao JW, Wang BM, Chen X. Research progress of non-steroidal anti-inflammatory drug-induced small intestinal injury. Shijie Huaren Xiaohua Zazhi 2021; 29:1191-1200. [DOI: 10.11569/wcjd.v29.i20.1191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are used widely around the world because of their anti-inflammatory, analgesic, and antiplatelet activity. However, long-term application of NSAIDs can lead to complications. Previously, the clinical attention was dedicated to the NSAID-induced upper gastrointestinal complications. Recently, the detection rate of small intestinal damage related to NSAIDs has increased due to the wide use of endoscopes such as capsule endoscopy and double-balloon colonoscopy. Although the majority of patients have no significant symptoms, there are still a small percentage of patients who develop obvious symptoms or complicated ulcers that require therapeutic intervention. Despite significant advances in our understanding of NSAIDs, the treatment modality and regimen for NSAID-induced small intestinal damage have remained relatively unclear. This article will provide a comprehensive overview of NSAID-induced small intestinal damage with regard to the epidemiology, clinical manifestations, diagnosis, risk factors, pathogenesis, and treatment, in order to provide informative evidence for clinical practice.
Collapse
Affiliation(s)
- Yang Luo
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lan-Ping Zhu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yue Lei
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jing-Wen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Bang-Mao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
4
|
Chen S, Jiang J, Chao G, Hong X, Cao H, Zhang S. Pure Total Flavonoids From Citrus Protect Against Nonsteroidal Anti-inflammatory Drug-Induced Small Intestine Injury by Promoting Autophagy in vivo and in vitro. Front Pharmacol 2021; 12:622744. [PMID: 33953669 PMCID: PMC8090934 DOI: 10.3389/fphar.2021.622744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Small intestine injury is an adverse effect of non-steroidal anti-inflammatory drugs (NSAIDs) that urgently needs to be addressed for their safe application. Although pure total flavonoids from citrus (PTFC) have been marketed for the treatment of digestive diseases, their effects on small intestine injury and the underlying mechanism of action remain unknown. This study aimed to investigate the potential role of autophagy in the mechanism of NSAID (diclofenac)-induced intestinal injury in vivo and in vitro and to demonstrate the protective effects of PTFC against NSAID-induced small intestine disease. The results of qRT-PCR, western blotting, and immunohistochemistry showed that the expression levels of autophagy-related 5 (Atg5), light chain 3 (LC3)-II, and tight junction (TJ) proteins ZO-1, claudin-1, and occludin were decreased in rats with NSAID-induced small intestine injury and diclofenac-treated IEC-6 cells compared with the control groups. In the PTFC group, Atg5 and LC3-II expression, TJ protein expression, and the LC3-II/LC3-I ratio increased. Furthermore, the mechanism by which PTFC promotes autophagy in vivo and in vitro was evaluated by western blotting. Expression levels of p-PI3K and p-Akt increased in the intestine disease-induced rat model group compared with the control, but decreased in the PTFC group. Autophagy of IEC-6 cells was upregulated after treatment with a PI3K inhibitor, and the upregulation was significantly more after PTFC treatment, suggesting PTFC promoted autophagy through the PI3K/Akt signaling pathway. In conclusion, PTFC protected intestinal barrier integrity by promoting autophagy, which demonstrates its potential as a therapeutic candidate for NSAID-induced small intestine injury.
Collapse
Affiliation(s)
- Shanshan Chen
- First Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Jianping Jiang
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Zhejiang, China.,Zhejiang You-du Biotech Limited Company, Quzhou, China
| | | | - Xiaojie Hong
- First Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Haijun Cao
- First Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Shuo Zhang
- First Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| |
Collapse
|