1
|
Boykin JR, Steiner JL, Laskin GR, Roberts MD, Vied C, Willis CRG, Etheridge T, Gordon BS. Comparative analysis of acute eccentric contraction-induced changes to the skeletal muscle transcriptome in young and aged mice and humans. Am J Physiol Regul Integr Comp Physiol 2025; 328:R45-R58. [PMID: 39495237 DOI: 10.1152/ajpregu.00224.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Adaptations to skeletal muscle following resistance exercise are due in part to changes to the skeletal muscle transcriptome. Although transcriptional changes in response to resistance exercise occur in young and aged muscles, aging alters this response. Rodent models have served great utility in defining regulatory factors that underscore the influence of mechanical load and aging on changes to skeletal muscle phenotype. Unilateral eccentric contractions in young and aged rodents are widely used to model resistance exercises in humans. However, the extent to which unilateral eccentric contractions in young and aged rodents mimic the transcriptional response in humans remains unknown. We reanalyzed two publicly available RNA sequencing datasets from young and aged mice and humans that were subjected to acute eccentric contractions to define key similarities and differences in the muscle transcriptional response following this exercise modality. The effect of aging on the number of contraction-sensitive genes, the distribution patterns of those genes into unique/common categories, and the cellular pathways associated with the differentially expressed genes (DEGs) were similar in mice and humans. However, there was little overlap between species when comparing specific contraction-sensitive DEGs within the same age group. There were strong intraspecies relationships for the common transcription factors predicted to influence the contraction-sensitive gene sets, whereas interspecies relationships were weak. Overall, these data demonstrate key similarities between mice and humans for the contraction-induced changes to the muscle transcriptome, but we posit species-specific responses exist and should be taken into consideration when attempting to translate rodent eccentric exercise models.NEW & NOTEWORTHY Acute eccentric muscle contractions in rodents are used to model resistance exercise in young and aged humans, including changes to the muscle transcriptome. This work defines the utility of the rodent model at mimicking the transcriptional features observed in young and aged humans.
Collapse
Affiliation(s)
- Jake R Boykin
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Jennifer L Steiner
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| | - Grant R Laskin
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Cynthia Vied
- Translational Science Laboratory, Florida State University College of Medicine, Tallahassee, Florida, United States
| | - Craig R G Willis
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Timothy Etheridge
- Department of Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Bradley S Gordon
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, Florida, United States
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
2
|
Chen K, Xu B, Qiu S, Long L, Zhao Q, Xu J, Wang H. Inhibition of phosphodiesterase 4 attenuates aquaporin 4 expression and astrocyte swelling following cerebral ischemia/reperfusion injury. Glia 2024; 72:1629-1645. [PMID: 38785370 DOI: 10.1002/glia.24572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
We have previously shown that phosphodiesterase 4 (PDE4) inhibition protects against neuronal injury in rats following middle cerebral artery occlusion/reperfusion (MCAO/R). However, the effects of PDE4 on brain edema and astrocyte swelling are unknown. In this study, we showed that inhibition of PDE4 by Roflumilast (Roflu) reduced brain edema and brain water content in rats subjected to MCAO/R. Roflu decreased the expression of aquaporin 4 (AQP4), while the levels of phosphorylated protein kinase B (Akt) and forkhead box O3a (FoxO3a) were increased. In addition, Roflu reduced cell volume and the expression of AQP4 in primary astrocytes undergoing oxygen and glucose deprivation/reoxygenation (OGD/R). Consistently, PDE4B knockdown showed similar effects as PDE4 inhibition; and PDE4B overexpression rescued the inhibitory role of PDE4B knockdown on AQP4 expression. We then found that the effects of Roflu on the expression of AQP4 and cell volume were blocked by the Akt inhibitor MK2206. Since neuroinflammation and astrocyte activation are the common events that are observed in stroke, we treated primary astrocytes with interleukin-1β (IL-1β). Astrocytes treated with IL-1β showed decreased AQP4 and phosphorylated Akt and FoxO3a. Roflu significantly reduced AQP4 expression, which was accompanied by increased phosphorylation of Akt and FoxO3a. Furthermore, overexpression of FoxO3a partly reversed the effect of Roflu on AQP4 expression. Our findings suggest that PDE4 inhibition limits ischemia-induced brain edema and astrocyte swelling via the Akt/FoxO3a/AQP4 pathway. PDE4 is a promising target for the intervention of brain edema after cerebral ischemia.
Collapse
Affiliation(s)
- Kechun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Bingtian Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuqin Qiu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lu Long
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qian Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiangping Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China
| | - Haitao Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China
| |
Collapse
|
3
|
Farid HA, Sayed RH, El-Shamarka MES, Abdel-Salam OME, El Sayed NS. PI3K/AKT signaling activation by roflumilast ameliorates rotenone-induced Parkinson's disease in rats. Inflammopharmacology 2024; 32:1421-1437. [PMID: 37541971 PMCID: PMC11006765 DOI: 10.1007/s10787-023-01305-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/20/2023] [Indexed: 08/06/2023]
Abstract
Parkinson's disease (PD) is the second most common progressive age-related neurodegenerative disorder. Paramount evidence shed light on the role of PI3K/AKT signaling activation in the treatment of neurodegenerative disorders. PI3K/AKT signaling can be activated via cAMP-dependent pathways achieved by phosphodiesterase 4 (PDE4) inhibition. Roflumilast is a well-known PDE4 inhibitor that is currently used in the treatment of chronic obstructive pulmonary disease. Furthermore, roflumilast has been proposed as a favorable candidate for the treatment of neurological disorders. The current study aimed to unravel the neuroprotective role of roflumilast in the rotenone model of PD in rats. Ninety male rats were allocated into six groups as follows: control, rotenone (1.5 mg/kg/48 h, s.c.), L-dopa (22.5 mg/kg, p.o), and roflumilast (0.2, 0.4 or 0.8 mg/kg, p.o). All treatments were administrated for 21 days 1 h after rotenone injection. Rats treated with roflumilast showed an improvement in motor activity and coordination as well as preservation of dopaminergic neurons in the striatum. Moreover, roflumilast increased cAMP level and activated the PI3K/AKT axis via stimulation of CREB/BDNF/TrkB and SIRT1/PTP1B/IGF1 signaling cascades. Roflumilast also caused an upsurge in mTOR and Nrf2, halted GSK-3β and NF-ĸB, and suppressed FoxO1 and caspase-3. Our study revealed that roflumilast exerted neuroprotective effects in rotenone-induced neurotoxicity in rats. These neuroprotective effects were mediated via the crosstalk between CREB/BDNF/TrkB and SIRT1/PTP1B/IGF1 signaling pathways which activates PI3K/AKT trajectory. Therefore, PDE4 inhibition is likely to offer a reliable persuasive avenue in curing PD via PI3K/AKT signaling activation.
Collapse
Affiliation(s)
- Heba A Farid
- Department of Narcotics, Ergogenic Aids and Poisons, National Research Centre, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.
| | | | - Omar M E Abdel-Salam
- Department of Narcotics, Ergogenic Aids and Poisons, National Research Centre, Cairo, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| |
Collapse
|
4
|
Jacques M, Landen S, Romero JA, Hiam D, Schittenhelm RB, Hanchapola I, Shah AD, Voisin S, Eynon N. Methylome and proteome integration in human skeletal muscle uncover group and individual responses to high-intensity interval training. FASEB J 2023; 37:e23184. [PMID: 37698381 DOI: 10.1096/fj.202300840rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023]
Abstract
Exercise is a major beneficial contributor to muscle metabolism, and health benefits acquired by exercise are a result of molecular shifts occurring across multiple molecular layers (i.e., epigenome, transcriptome, and proteome). Identifying robust, across-molecular level targets associated with exercise response, at both group and individual levels, is paramount to develop health guidelines and targeted health interventions. Sixteen, apparently healthy, moderately trained (VO2 max = 51.0 ± 10.6 mL min-1 kg-1 ) males (age range = 18-45 years) from the Gene SMART (Skeletal Muscle Adaptive Responses to Training) study completed a longitudinal study composed of 12-week high-intensity interval training (HIIT) intervention. Vastus lateralis muscle biopsies were collected at baseline and after 4, 8, and 12 weeks of HIIT. DNA methylation (~850 CpG sites) and proteomic (~3000 proteins) analyses were conducted at all time points. Mixed models were applied to estimate group and individual changes, and methylome and proteome integration was conducted using a holistic multilevel approach with the mixOmics package. A total of 461 proteins significantly changed over time (at 4, 8, and 12 weeks), whilst methylome overall shifted with training only one differentially methylated position (DMP) was significant (adj.p-value < .05). K-means analysis revealed cumulative protein changes by clusters of proteins that presented similar changes over time. Individual responses to training were observed in 101 proteins. Seven proteins had large effect-sizes >0.5, among them are two novel exercise-related proteins, LYRM7 and EPN1. Integration analysis showed bidirectional relationships between the methylome and proteome. We showed a significant influence of HIIT on the epigenome and more so on the proteome in human muscle, and uncovered groups of proteins clustering according to similar patterns across the exercise intervention. Individual responses to exercise were observed in the proteome with novel mitochondrial and metabolic proteins consistently changed across individuals. Future work is required to elucidate the role of these proteins in response to exercise.
Collapse
Affiliation(s)
- Macsue Jacques
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Shanie Landen
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Javier Alvarez Romero
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
| | - Danielle Hiam
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
- Institute of Nutrition and Health Sciences, Deakin University, Melbourne, Victoria, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility, Monash University, Melbourne, Victoria, Australia
| | - Iresha Hanchapola
- Monash Proteomics & Metabolomics Facility, Monash University, Melbourne, Victoria, Australia
| | - Anup D Shah
- Monash Proteomics & Metabolomics Facility, Monash University, Melbourne, Victoria, Australia
| | - Sarah Voisin
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Potential Therapeutic Strategies for Skeletal Muscle Atrophy. Antioxidants (Basel) 2022; 12:antiox12010044. [PMID: 36670909 PMCID: PMC9854691 DOI: 10.3390/antiox12010044] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The maintenance of muscle homeostasis is vital for life and health. Skeletal muscle atrophy not only seriously reduces people's quality of life and increases morbidity and mortality, but also causes a huge socioeconomic burden. To date, no effective treatment has been developed for skeletal muscle atrophy owing to an incomplete understanding of its molecular mechanisms. Exercise therapy is the most effective treatment for skeletal muscle atrophy. Unfortunately, it is not suitable for all patients, such as fractured patients and bedridden patients with nerve damage. Therefore, understanding the molecular mechanism of skeletal muscle atrophy is crucial for developing new therapies for skeletal muscle atrophy. In this review, PubMed was systematically screened for articles that appeared in the past 5 years about potential therapeutic strategies for skeletal muscle atrophy. Herein, we summarize the roles of inflammation, oxidative stress, ubiquitin-proteasome system, autophagic-lysosomal pathway, caspases, and calpains in skeletal muscle atrophy and systematically expound the potential drug targets and therapeutic progress against skeletal muscle atrophy. This review focuses on current treatments and strategies for skeletal muscle atrophy, including drug treatment (active substances of traditional Chinese medicine, chemical drugs, antioxidants, enzyme and enzyme inhibitors, hormone drugs, etc.), gene therapy, stem cell and exosome therapy (muscle-derived stem cells, non-myogenic stem cells, and exosomes), cytokine therapy, physical therapy (electroacupuncture, electrical stimulation, optogenetic technology, heat therapy, and low-level laser therapy), nutrition support (protein, essential amino acids, creatine, β-hydroxy-β-methylbutyrate, and vitamin D), and other therapies (biomaterial adjuvant therapy, intestinal microbial regulation, and oxygen supplementation). Considering many treatments have been developed for skeletal muscle atrophy, we propose a combination of proper treatments for individual needs, which may yield better treatment outcomes.
Collapse
|
6
|
Tan YQ, Li J, Chen HW. Epac, a positive or negative signaling molecule in cardiovascular diseases. Pharmacotherapy 2022; 148:112726. [DOI: 10.1016/j.biopha.2022.112726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023]
|
7
|
Saliu TP, Kumrungsee T, Miyata K, Tominaga H, Yazawa N, Hashimoto K, Kamesawa M, Yanaka N. Comparative study on molecular mechanism of diabetic myopathy in two different types of streptozotocin-induced diabetic models. Life Sci 2022; 288:120183. [PMID: 34848193 DOI: 10.1016/j.lfs.2021.120183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022]
Abstract
AIMS Streptozotocin (STZ)-induced diabetic animal models have been widely used to study diabetic myopathy; however, non-specific cytotoxic effects of high-dose STZ have been discussed. The purpose of this study was to compare diabetic myopathy in a high-STZ model with another well-established STZ model with reduced cytotoxicity (high-fat diet (HFD) and low-dose STZ) and to identify mechanistic insights underlying diabetic myopathy in STZ models that can mimic perturbations observed in human patients with diabetic myopathy. MAIN METHODS Male C57BL6 mice were injected with a single high dose of STZ (180 mg/kg, High-STZ) or were given HFD plus low-dose STZ injection (STZ, 55 mg/kg/day, five consecutive days, HFD/STZ). We characterized diabetic myopathy by histological and immunochemical analyses and conducted gene expression analysis. KEY FINDINGS The high-STZ model showed a significant reduction in tibialis anterior myofiber size along with decreased satellite cell content and downregulation of inflammation response and collagen gene expression. Interestingly, blood corticosteroid levels were significantly increased in the high-STZ model, which was possibly related to lowered inflammation response-related gene expression. Further analyses using the HFD/STZ model showed downregulation of gene expression related to mitochondrial functions accompanied by a significant decrease in ATP levels in the muscles. SIGNIFICANCE The high-STZ model is suitable for studies regarding not only severe diabetic myopathy with excessive blood glucose but also negative impact of glucocorticoids on skeletal muscles. In contrast, the HFD/STZ model is characterized by higher immune responses and lower ATP production, which also reflects the pathologies observed in human diabetic patients.
Collapse
Affiliation(s)
- Tolulope Peter Saliu
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan
| | - Thanutchaporn Kumrungsee
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan.
| | - Kenshu Miyata
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan
| | - Hikaru Tominaga
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan
| | - Nao Yazawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan
| | - Kotaro Hashimoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan
| | - Mion Kamesawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan
| | - Noriyuki Yanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 4-4 Kagamiyama 1-chome, Higashi-Hiroshima 739-8528, Japan.
| |
Collapse
|