1
|
Yan BH, Xu QX, Ge X, Gao MT, Li Y, Guo L, Hu P, Pan Y. Molecular mechanisms of Chengshi Beixie Fenqing Decoction based on network pharmacology: pivotal roles of relaxin signaling pathway and its associated target proteins against Benign prostatic hyperplasia. J Biomol Struct Dyn 2024; 42:2075-2093. [PMID: 37102991 DOI: 10.1080/07391102.2023.2203237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
Benign prostatic hyperplasia (BPH) is a common disease that affects the quality of life of middle-aged and older men. We investigated the therapeutical effects of Chengshi Beixie Fenqing Decoction (CBFD), a classic traditional Chinese medicine prescription, on BPH through in vivo model and network pharmacology. Bioactives in CBFD were detected through UPLC-Q-Tof-MS/MS and GC-MS, and filtered by the modified Lipinski's rule. Target proteins associated with the filtered compounds and BPH are selected from public databases. Venn diagram identified the overlapping target proteins between the bioactives-interacted target proteins and the BPH-targeted proteins. The bioactive-protein interactive networking of BPH was analyzed through the KEGG pathway on STRING to identify potential ligand-target and visualized the rich factors on the R packet. After that, the molecular docking test (MDT) was performed between bioactives and target proteins. It showed that the mechanism of CBFD against BPH was related to 104 signaling pathways of 42 compounds. AKT1, 6-demethyl-4'-methyl-N-methylcoclaurine and relaxin signaling pathways were selected as a hub target, key bioactivitie and hub signaling pathway, respectively. In addition, three major compounds, 6-demethyl-4'-methyl-N-methylcoclaurine, isoliensinine and liensinine, had the highest affinity on MDT for the three crucial target proteins, AKT1, JUN and MAPK1. These proteins were associated with the relaxin signaling pathway, which regulated the level of nitric oxide and is implicated in both BPH development and CBFD. We concluded that the three key bioactivities found in Plumula nelumbinis of CBFD may contribute to improving BPH condition by activating the relaxin signaling pathways.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bing-Hui Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qi-Xuan Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiao Ge
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Ming-Tong Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yun Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Liang Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Po Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Li CY, Liu SP, Dai XF, Lan DF, Song T, Wang XY, Kong QH, Tan J, Zhang JD. The emerging role of exosomes in the development of testicular. Asian J Androl 2023; 25:547-555. [PMID: 37040218 PMCID: PMC10521952 DOI: 10.4103/aja2022126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/04/2023] [Indexed: 04/12/2023] Open
Abstract
The mechanisms of testicular development in mammals are complex. Testis is an organ that produces sperm and secretes androgens. It is rich in exosomes and cytokines that mediate signal transduction between tubule germ cells and distal cells, promoting testicular development and spermatogenesis. Exosomes are nanoscale extracellular vesicles that transmit information between cells. By transmitting information, exosomes play an important role in male infertility diseases such as azoospermia, varicocele, and testicular torsion. However, due to the wide range of sources of exosomes, extraction methods are numerous and complex. Therefore, there are many difficulties in studying the mechanisms of exosomal effects on normal development and male infertility. Therefore, in this review, first, we introduce the formation of exosomes and methods for culturing testis and sperm. Then, we introduce the effects of exosomes on different stages of testicular development. Finally, we summarize the prospects and shortcomings of exosomes when used in clinical applications. We lay the theoretical foundation for the mechanism of the influence of exosomes on normal development and male infertility.
Collapse
Affiliation(s)
- Chun-Yang Li
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Song-Po Liu
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Xiao-Fang Dai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Dong-Feng Lan
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xian-Yao Wang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Qing-Hong Kong
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi 563000, China
| | - Ji-Dong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
3
|
Philibert P, Déjardin S, Girard M, Durix Q, Gonzalez AA, Mialhe X, Tardat M, Poulat F, Boizet-Bonhoure B. Cocktails of NSAIDs and 17α Ethinylestradiol at Environmentally Relevant Doses in Drinking Water Alter Puberty Onset in Mice Intergenerationally. Int J Mol Sci 2023; 24:ijms24065890. [PMID: 36982971 PMCID: PMC10099742 DOI: 10.3390/ijms24065890] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) and 17α-ethinyl-estradiol (EE2) are among the most relevant endocrine-disrupting pharmaceuticals found in the environment, particularly in surface and drinking water due to their incomplete removal via wastewater treatment plants. Exposure of pregnant mice to NSAID therapeutic doses during the sex determination period has a negative impact on gonadal development and fertility in adults; however, the effects of their chronic exposure at lower doses are unknown. In this study, we investigated the impact of chronic exposure to a mixture containing ibuprofen, 2hydroxy-ibuprofen, diclofenac, and EE2 at two environmentally relevant doses (added to the drinking water from fetal life until puberty) on the reproductive tract in F1 exposed mice and their F2 offspring. In F1 animals, exposure delayed male puberty and accelerated female puberty. In post-pubertal F1 testes and ovaries, differentiation/maturation of the different gonad cell types was altered, and some of these modifications were observed also in the non-exposed F2 generation. Transcriptomic analysis of post-pubertal testes and ovaries of F1 (exposed) and F2 animals revealed significant changes in gene expression profiles and enriched pathways, particularly the inflammasome, metabolism and extracellular matrix pathways, compared with controls (non-exposed). This suggested that exposure to these drug cocktails has an intergenerational impact. The identified Adverse Outcome Pathway (AOP) networks for NSAIDs and EE2, at doses that are relevant to everyday human exposure, will improve the AOP network of the human reproductive system development concerning endocrine disruptor chemicals. It may serve to identify other putative endocrine disruptors for mammalian species based on the expression of biomarkers.
Collapse
Affiliation(s)
- Pascal Philibert
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
- Laboratoire de Biochimie et Biologie Moléculaire, Hôpital Carèmeau, CHU de Nîmes, 30900 Nîmes, France
| | - Stéphanie Déjardin
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| | - Mélissa Girard
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| | - Quentin Durix
- IExplore-RAM, Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Université de Montpellier and Institut National de la Santé Et de la Recherche Médicale (INSERM), 34090 Montpellier, France
| | - Anne-Alicia Gonzalez
- MGX-Montpellier GenomiX, UMS Biocampus, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Xavier Mialhe
- MGX-Montpellier GenomiX, UMS Biocampus, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Mathieu Tardat
- Biologie des Séquences Répétées, Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, 34090 Montpellier, France
| | - Francis Poulat
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| | - Brigitte Boizet-Bonhoure
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| |
Collapse
|
4
|
Rosales IA, Mahowald GK, Tomaszewski K, Hotta K, Iwahara N, Otsuka T, Tsuji T, Takada Y, Acheampong E, Araujo-Medina M, Bruce A, Rios A, Cosimi AB, Elias N, Kawai T, Gilligan H, Safa K, Riella LV, Tolkoff-Rubin NE, Williams WW, Smith RN, Colvin RB. Banff Human Organ Transplant Transcripts Correlate with Renal Allograft Pathology and Outcome: Importance of Capillaritis and Subpathologic Rejection. J Am Soc Nephrol 2022; 33:2306-2319. [PMID: 36450597 PMCID: PMC9731628 DOI: 10.1681/asn.2022040444] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/19/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND To seek insights into the pathogenesis of chronic active antibody-mediated rejection (CAMR), we performed mRNA analysis and correlated transcripts with pathologic component scores and graft outcomes. METHODS We utilized the NanoString nCounter platform and the Banff Human Organ Transplant gene panel to quantify transcripts on 326 archived renal allograft biopsy samples. This system allowed correlation of transcripts with Banff pathology scores from the same tissue block and correlation with long-term outcomes. RESULTS The only pathology score that correlated with AMR pathways in CAMR was peritubular capillaritis (ptc). C4d, cg, g, v, i, t, or ci scores did not correlate. DSA-negative CAMR had lower AMR pathway scores than DSA-positive CAMR. Transcript analysis in non-CAMR biopsies yielded evidence of increased risk of later CAMR. Among 108 patients without histologic CAMR, 23 developed overt biopsy-documented CAMR within 5 years and as a group had higher AMR pathway scores (P=3.4 × 10-5). Random forest analysis correlated 3-year graft loss with elevated damage, innate immunity, and macrophage pathway scores in CAMR and TCMR. Graft failure in CAMR was associated with TCMR transcripts but not with AMR transcripts, and graft failure in TCMR was associated with AMR transcripts but not with TCMR transcripts. CONCLUSIONS Peritubular capillary inflammation and DSA are the primary drivers of AMR transcript elevation. Transcripts revealed subpathological evidence of AMR, which often preceded histologic CAMR and subpathological evidence of TCMR that predicted graft loss in CAMR.
Collapse
Affiliation(s)
- Ivy A. Rosales
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Grace K. Mahowald
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kristen Tomaszewski
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kiyohiko Hotta
- Department of Urology, Hokkaido University Hospital, Hokkaido, Japan
| | - Naoya Iwahara
- Department of Urology, Hokkaido University Hospital, Hokkaido, Japan
| | - Takuya Otsuka
- Department of Surgical Pathology, Hokkaido University Hospital, Hokkaido, Japan
| | - Takahiro Tsuji
- Department of Pathology, Sapporo City General Hospital, Hokkaido, Japan
| | - Yusuke Takada
- Department of Kidney Transplant Surgery, Sapporo City General Hospital, Hokkaido, Japan
| | - Ellen Acheampong
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Milagros Araujo-Medina
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amy Bruce
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrea Rios
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anthony Benedict Cosimi
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nahel Elias
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tatsuo Kawai
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hannah Gilligan
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kassem Safa
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Leonardo V. Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nina E. Tolkoff-Rubin
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Winfred W. Williams
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Rex Neal Smith
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Robert B. Colvin
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Xue Z, Zhuang J, Bai H, Wang L, Lu H, Wang S, Zeng W, Zhang T. VDR mediated HSD3B1 to regulate lipid metabolism and promoted testosterone synthesis in mouse Leydig cells. Genes Genomics 2022; 44:583-592. [PMID: 35254654 DOI: 10.1007/s13258-022-01232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/06/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND The vitamin D receptor (VDR) mediates the pleiotropic biological actions that include osteoporosis, immune responses and androgen synthesis wherein the VDR transcriptionally regulates expression of the genes involved in this complex process. 3β-Hydroxysteroid dehydrogenase-1 (HSD3B1) is an absolutely necessary enzyme for androgen synthesis. OBJECTIVE The purpose of the present study was to explore the molecular mechanism of VDR mediated HSD3B1 regulation of lipid metabolism and testosterone synthesis. METHODS The levels of VDR, HSD3B1 and lipid metabolism associated protein were determined by quantitative real-time polymerase chain reaction (RT-qPCR) or western blot. The levels of testosterone concentrations in cell culture media serum by enzyme-linked immunosorbent assay (ELISA). Targeted relationship between VDR and Hsd3b1 was evaluated by dual-luciferase reporter assay. RESULTS Based on the data analysis of mouse testicular proteome, we found that the expression of HSD3B1 was significantly reduced after VDR deletion. Here, we identified that Hsd3b1 was widely expressed in different tissues of mice by RT-qPCR, and was highly expressed in testis, and mainly located in testicular Leydig cells. Dual-luciferase assay confirmed that VDR could bind candidate vitamin D responsive elements (VDREs) in upstream region of Hsd3b1, and enhance gene expression. Furthermore, over-expression VDR and HSD3B1 significantly increased testosterone synthesis in mice Leydig cells. Meanwhile, Lpl expression was significantly down-regulated and Angptl4 expression was significantly up-regulated in the present of HSD3B1 overexpression. Both LPL and ANGPTL4 play important roles in regulating lipid metabolism. CONCLUSIONS The present study unveiled VDR mediated HSD3B1 to regulate lipid metabolism and promoted testosterone synthesis in mouse Leydig cells. These findings will greatly help us to understand the roles of VDR and HSD3B1 in testosterone synthesis and lipid metabolism.
Collapse
Affiliation(s)
- Zhen Xue
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Jianan Zhuang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Hao Bai
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong, 723001, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, Hanzhong, 723001, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, Hanzhong, 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Shanshan Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Wenxian Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, Hanzhong, 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China.
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, Hanzhong, 723001, China.
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, 723001, China.
| |
Collapse
|