1
|
Niu C, Zhang J, Okolo PI. Therapeutic potential of plant polyphenols in acute pancreatitis. Inflammopharmacology 2024:10.1007/s10787-024-01584-y. [PMID: 39497005 DOI: 10.1007/s10787-024-01584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 11/06/2024]
Abstract
Acute pancreatitis is a potentially life-threatening inflammatory disorder of the exocrine pancreas characterized by early activation of pancreatic enzymes followed by macrophage-driven inflammation, and pancreatic acinar cell death. The most common causes are gallstones and excessive alcohol consumption. Inflammation and oxidative stress play critical roles in its pathogenesis. Despite increasing incidence, currently, no specific drug therapy is available to treat or prevent acute pancreatitis, in particular severe acute pancreatitis. New therapeutic agents are very much needed. Plant polyphenols have attracted extensive attention in the field of acute pancreatitis due to their diverse pharmacological properties. In this review, we discuss the potential of plant polyphenols in inhibiting the occurrence and development of acute pancreatitis via modulation of inflammation, oxidative stress, calcium overload, autophagy, and apoptosis, based on the currently available in vitro, in vivo animal and very few clinical human studies. We also outline the opportunities and challenges in the clinical translation of plant polyphenols for the treatment of the disease. We concluded that plant polyphenols have a potential therapeutic effect in the management and treatment of acute pancreatitis. Knowledge gained from this review will hopefully inspire new research ideas and directions for the development and application of plant polyphenols for treating this disease.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA.
| | - Jing Zhang
- Rainier Springs Behavioral Health Hospital, 2805 NE 129th St, Vancouver, WA, 98686, USA
| | - Patrick I Okolo
- Division of Gastroenterology, Carillion Clinic, Roanoke, VA, 24014, USA
| |
Collapse
|
2
|
Petrović D, Ilić MD, Simonović D, Stojanović M, Stanković M, Stanišić S, Stojanović S, Arsić N, Sokolović DT. The role of melatonin in preventing amiodarone-induced rat liver damage. Can J Physiol Pharmacol 2024; 102:374-382. [PMID: 38079620 DOI: 10.1139/cjpp-2023-0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Long-term exposure to amiodarone, an antiarrhythmic drug, can induce different organ damage, including liver. Cell damage included by amiodarone is a consequence of mitochondrial damage, reactive oxygen species production, and cell energy depletion leading to programmed cell death. In the present study, hepatoprotective potential of neurohormone melatonin (50 mg/kg/day) was evaluated in a chronic experimental model of liver damage induced by a 4-week application of amiodarone (70 mg/kg/day). The obtained results indicate that amiodarone induces an increase in xanthine oxidase activity, as well as the content of the lipid and protein oxidatively modified products and p53 levels. Microscopic analysis further corroborated the biochemical findings revealing hepatocyte degeneration, apoptosis, and occasional necrosis, with the activation of Kupffer cells. Coadministration of melatonin and amiodaron prevented an increase in certain damage associated parameters, due to its multiple targets. In conclusion, the application of melatonin together with amiodarone prevented an increase in tissue oxidative damage parameters and moderately prevented liver cell apoptosis, indicating that the damage of hepatocytes provoked by amiodarone supersedes the protective properties of melatonin in a given dose.
Collapse
Affiliation(s)
- Dejan Petrović
- Faculty of Medicine, Institute for Treatment and Rehabilitation, University of Niš, Niška Banja, Niš, Serbia
| | - Marina Deljanin Ilić
- Faculty of Medicine, Institute for Treatment and Rehabilitation, University of Niš, Niška Banja, Niš, Serbia
| | - Dejan Simonović
- Institute for Treatment and Rehabilitation, University of Niš, Niška Banja, Niš, Serbia
| | - Milovan Stojanović
- Faculty of Medicine, Institute for Treatment and Rehabilitation, University of Niš, Niška Banja, Niš, Serbia
| | - Milica Stanković
- Institute of Pathology, University Clinical Centre Niš, Niš, Serbia
| | - Slaviša Stanišić
- Department of Obstetrics and Gyanaecology, Faculty of Medicine, University of Pristina, Kosovska Mitrovica, Serbia
| | - Sanja Stojanović
- Faculty of Medicine, Institute for Treatment and Rehabilitation, University of Niš, Niška Banja, Niš, Serbia
| | - Nebojša Arsić
- Dom zdravlja Medveđa, Šetalište 5, 16240 Medveđa, Serbia
| | - Dušan T Sokolović
- Department of Biochemistry, Faculty of Medicine, University of Niš, Niš, Serbia
| |
Collapse
|
3
|
Radulović NS, Đorđević Zlatković MR, Stojanović NM, Nešić MS, Zlatković DB, Potić Floranović MS, Tričković Vukić DS, Randjelovic PJ. Marrubiin Inhibits Peritoneal Inflammatory Response Induced by Carrageenan Application in C57 Mice. Int J Mol Sci 2024; 25:4496. [PMID: 38674081 PMCID: PMC11050121 DOI: 10.3390/ijms25084496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Marrubiin is a diterpene with a long history of a wide range of biological activities. In this study, the anti-inflammatory effects of marrubiin were investigated using several in vitro and in vivo assays. Marrubiin inhibited carrageenan-induced peritoneal inflammation by preventing inflammatory cell infiltration and peritoneal mast cell degranulation. The anti-inflammatory activity was further demonstrated by monitoring a set of biochemical parameters, showing that the peritoneal fluid of animals treated with marrubiin had lower levels of proteins and lower myeloperoxidase activity compared with the fluid of animals that were not treated. Marrubiin exerted the most pronounced cytotoxic activity towards peripheral mononuclear cells, being the main contributors to peritoneal inflammation. Additionally, a moderate lipoxygenase inhibition activity of marrubiin was observed.
Collapse
Affiliation(s)
- Niko S. Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (M.R.Đ.Z.); (M.S.N.); (D.B.Z.)
| | - Miljana R. Đorđević Zlatković
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (M.R.Đ.Z.); (M.S.N.); (D.B.Z.)
| | - Nikola M. Stojanović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (N.M.S.); (P.J.R.)
| | - Milan S. Nešić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (M.R.Đ.Z.); (M.S.N.); (D.B.Z.)
| | - Dragan B. Zlatković
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (M.R.Đ.Z.); (M.S.N.); (D.B.Z.)
| | - Milena S. Potić Floranović
- Scientific Research Centre for Biomedicine, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (M.S.P.F.); (D.S.T.V.)
| | - Dragana S. Tričković Vukić
- Scientific Research Centre for Biomedicine, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (M.S.P.F.); (D.S.T.V.)
| | - Pavle J. Randjelovic
- Department of Physiology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (N.M.S.); (P.J.R.)
| |
Collapse
|
4
|
Stojanović NM, Mitić KV, Nešić M, Stanković M, Petrović V, Baralić M, Randjelović PJ, Sokolović D, Radulović N. Oregano ( Origanum vulgare) Essential Oil and Its Constituents Prevent Rat Kidney Tissue Injury and Inflammation Induced by a High Dose of L-Arginine. Int J Mol Sci 2024; 25:941. [PMID: 38256015 PMCID: PMC10815453 DOI: 10.3390/ijms25020941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
This study aimed to evaluate the protective action of oregano (Origanum vulgare) essential oil and its monoterpene constituents (thymol and carvacrol) in L-arginine-induced kidney damage by studying inflammatory and tissue damage parameters. The determination of biochemical markers that reflect kidney function, i.e., serum levels of urea and creatinine, tissue levels of neutrophil-gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1), as well as a panel of oxidative-stress-related and inflammatory biomarkers, was performed. Furthermore, histopathological and immunohistochemical analyses of kidneys obtained from different experimental groups were conducted. Pre-treatment with the investigated compounds prevented an L-arginine-induced increase in serum and tissue kidney damage markers and, additionally, decreased the levels of inflammation-related parameters (TNF-α and nitric oxide concentrations and myeloperoxidase activity). Micromorphological kidney tissue changes correlate with the alterations observed in the biochemical parameters, as well as the expression of CD95 in tubule cells and CD68 in inflammatory infiltrate cells. The present results revealed that oregano essential oil, thymol, and carvacrol exert nephroprotective activity, which could be, to a great extent, associated with their anti-inflammatory, antiradical scavenging, and antiapoptotic action and, above all, due to their ability to lessen the disturbances arising from acute pancreatic damage. Further in-depth studies are needed in order to provide more detailed explanations of the observed activities.
Collapse
Affiliation(s)
- Nikola M. Stojanović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
| | - Katarina V. Mitić
- Institute of Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milica Nešić
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (M.N.); (N.R.)
| | - Milica Stanković
- Department of Pathology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
| | - Vladimir Petrović
- Department of Histology and Embryology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
| | - Marko Baralić
- School of Medicine, University of Belgrade, 11080 Belgrade, Serbia;
- Department of Nephrology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Pavle J. Randjelović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
| | - Dušan Sokolović
- Institute for Biochemistry, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
| | - Niko Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (M.N.); (N.R.)
| |
Collapse
|
5
|
Stojanović NM, Maslovarić A, Mihajlović I, Marković A, Randjelović PJ, Sokolović D. Melatonin treatment prevents carbon-tetrachloride induced rat brain injury. Toxicol Res (Camb) 2023; 12:895-901. [PMID: 37915487 PMCID: PMC10615814 DOI: 10.1093/toxres/tfad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/20/2023] [Accepted: 09/01/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction Herein the neuroprotective properties of melatonin, a highly effective antioxidant, administered in a single dose 50 mg/kg intraperitoneally, were investigated in the brain tissue of Wistar rats acutely exposed to the toxin carbon-tetrachloride (1 mL/kg, intraperitoneally). Methods To assess the degree of whole encephalic mass damage, biochemical parameters related to lipid and protein oxidation, antioxidant enzymes (catalase and superoxide dismutase), glutathione and inducible nitric oxide/arginase pathways were determined. Results The results showed that carbon-tetrachloride impaired the function of antioxidant enzymes (reduced catalase and superoxide dismutase activities) and reduced glutathione-metabolizing enzymes (reduced glutathione, glutathione S-transferase and peroxidase activity). Furthermore, carbon-tetrachloride increased lipid peroxidation and protein oxidative damage in the brain tissue, as well as myeloperoxidase and inducible nitric oxide synthase content/activities. Conclusions The application of a single dose of melatonin post intoxication has been able to reverse the disturbance in the function of antioxidant enzymes and alleviate the tissue damage caused by oxidative stress, indicating that melatonin could be a potential therapeutic agent in oxidative-damage related neurodegenerative disorders.
Collapse
Affiliation(s)
- Nikola M Stojanović
- Department of Physiology, Faculty of Medicine, University of Nis, Bulevar Zorana Djindjica 81, 18000 Nis, Serbia
| | - Aleksandra Maslovarić
- Faculty of Medicine, University of Nis, Bulevar Zorana Djindjica 81, 18000 Nis, Serbia
| | - Ivana Mihajlović
- Faculty of Medicine, University of Nis, Bulevar Zorana Djindjica 81, 18000 Nis, Serbia
| | - Aleksandar Marković
- Faculty of Medicine, University of Nis, Bulevar Zorana Djindjica 81, 18000 Nis, Serbia
| | - Pavle J Randjelović
- Department of Physiology, Faculty of Medicine, University of Nis, Bulevar Zorana Djindjica 81, 18000 Nis, Serbia
| | - Dušan Sokolović
- Department of Biochemistry, Faculty of Medicine, University of Nis, Bulevar Zorana Djindjica 81, 18000 Nis, Serbia
| |
Collapse
|
6
|
Sokolović D, Lazarević M, Milić D, Stanojković Z, Mitić K, Sokolović DT. Melatonin arrests excessive inflammatory response and apoptosis in lipopolysaccharide-damaged rat liver: A deeper insight into its mechanism of action. Tissue Cell 2022; 79:101904. [DOI: 10.1016/j.tice.2022.101904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022]
|
7
|
Liu Y, Yan H, Yu B, He J, Mao X, Yu J, Zheng P, Huang Z, Luo Y, Luo J, Wu A, Chen D. Protective Effects of Natural Antioxidants on Inflammatory Bowel Disease: Thymol and Its Pharmacological Properties. Antioxidants (Basel) 2022; 11:antiox11101947. [PMID: 36290669 PMCID: PMC9598597 DOI: 10.3390/antiox11101947] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a gastrointestinal disease that involves chronic mucosal or submucosal lesions that affect tissue integrity. Although IBD is not life-threatening, it sometimes causes severe complications, such as colon cancer. The exact etiology of IBD remains unclear, but several risk factors, such as pathogen infection, stress, diet, age, and genetics, have been involved in the occurrence and aggravation of IBD. Immune system malfunction with the over-production of inflammatory cytokines and associated oxidative stress are the hallmarks of IBD. Dietary intervention and medical treatment suppressing abnormal inflammation and oxidative stress are recommended as potential therapies. Thymol, a natural monoterpene phenol that is mostly found in thyme, exhibits multiple biological functions as a potential adjuvant for IBD. The purpose of this review is to summarize current findings on the protective effect of thymol on intestinal health in the context of specific animal models of IBD, describe the role of thymol in the modulation of inflammation, oxidative stress, and gut microbiota against gastrointestinal disease, and discuss the potential mechanism for its pharmacological activity.
Collapse
Affiliation(s)
| | - Hui Yan
- Correspondence: (H.Y.); (D.C.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Song B, Li P, Yan S, Liu Y, Gao M, Lv H, Lv Z, Guo Y. Effects of Dietary Astragalus Polysaccharide Supplementation on the Th17/Treg Balance and the Gut Microbiota of Broiler Chickens Challenged With Necrotic Enteritis. Front Immunol 2022; 13:781934. [PMID: 35265068 PMCID: PMC8899652 DOI: 10.3389/fimmu.2022.781934] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
This study aimed to investigate the effects of dietary astragalus polysaccharide (APS) supplementation on the immune function, gut microbiota and metabolism of broiler chickens challenged with necrotic enteritis (NE). Two hundred forty Arbor Acres broiler chicks (one day old) were randomly assigned using a 2 × 2 factorial arrangement into two groups fed different levels of dietary APS (0 or 200 ppm of diet) and two disease challenge groups (control or NE challenged). The results showed that NE infection significantly increased FCR, mortality rate, Th17/Treg (Th17 cells% in blood and ileum, Th17/Treg, IL-17 and IL-17/IL-10 in blood), NO, lysozyme activity and IL-1β in blood, intestinal immune cell proportion and activity (Tc%, Treg% and monocyte phagocytic activity in ileum), intestinal inflammatory cytokines (TLR2, NF-κB, TNF-α and IL- 6) gene expression levels, and the number of Clostridium perfringens in cecum. NE infection significantly reduced body weight gain, thymus index, lymphocyte proliferation activity in blood and ileum, villus height and V/C in jejunum, Th cells% and Mucin2 gene expression in ileum. Dietary APS supplementation significantly increased body weight, feed intake, proportion of immune cells (T cells in blood and Tc, Treg in ileum), lymphocyte proliferation activity, V/C in jejunum, and ZO-1 gene expression in ileum. Dietary APS supplementation significantly reduced FCR and mortality rate, Th17/Treg, Th17%, intestinal pathology scores, intestinal inflammatory cytokine gene expression levels, and the number of Clostridium perfringens in cecum. In addition, broilers challenged with NE significantly increased Staphylococcus and Turicibacter and reduced α diversity of microbiota in ileum. Dietary APS supplementation significantly increased α diversity, Romboutsia, Halomonas, propionic acid, butyric acid, formononetin, taurine, cholic acid and equol and downregulated uric acid, L-arginine and serotonin in ileum. Spearman’s correlation analysis revealed that Romboutsia, Turicibacter, Staphylocpccus, Halomonas, Streptococcus, Escherichia-Shigella, Prevotella, uric acid, L-arginine, jerivne, sodium cholate and cholic acid were related to inflammation and Th17/Treg balance. In conclusion, APS alleviated intestinal inflammation in broilers challenged with NE probably by regulating intestinal immune, Th17/Treg balance, as well as intestinal microbiota and metabolites.
Collapse
Affiliation(s)
- Bochen Song
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Animal Science, Shandong Agricultural University, Taian, China
| | - Peng Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shaojia Yan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mingkun Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Huiyuan Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Centre Research Institute, Beijing Centre Biology Co., Ltd., Beijing, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Yuming Guo,
| |
Collapse
|