1
|
Anastasiou IA, Sarantis P, Rebelos E, Eleftheriadou I, Tentolouris KN, Katsaouni A, Koustas E, Kokala V, Karamouzis MV, Tentolouris N. l-Securinine Induces ROS-Dependent Apoptosis on Pancreatic Cancer Cells via the PI3K/AKT/mTOR Signaling Pathway. J Biochem Mol Toxicol 2024; 38:e70036. [PMID: 39467148 DOI: 10.1002/jbt.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/03/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Accumulating evidence has shown that l-securinine can, in certain circumstances, suppress tumor development by elevating reactive oxygen species (ROS) levels. The current work set out to examine l-securinine's apoptotic effects on HuP-T3 cells as well as any potential underlying molecular mechanism(s) that could explain its action as an anticancer agent. In this study, we used 1.2B4 cells as a control human cell line to verify our findings. Hup-T3 and 1.2B4 cells were cultured with a medium containing the following dilutions of l-securinine: 1-10 μΜ for up to 72 h. We examined the viability and proliferation levels of cells in both cell lines. Then, we measured only 1.2B4 insulin levels and content. We also quantified cell apoptosis, cell cycle levels, and the intracellular reactive oxygen species on HuP-T3 and 1.2B4. Afterwards, we performed a real-time quantitative polymerase chain reaction and western blot analysis. Our results demonstrated that l-securinine inhibited both proliferation and growth of Hup-T3 cells, showing inhibitory and antiproliferative activity in comparison with the control group. In addition, l-securinine had no impact on the proliferation and growth of 1.2B4 cells, nor on their insulin levels and content. By boosting ROS production, and inhibiting the PI3K/AKT/mTOR signaling pathway, l-securinine induced apoptosis on HuP-T3 cells. Pancreatic cancer was successfully inhibited by l-securinine in vitro. l-securinine triggers ROS-dependent apoptosis on pancreatic cancer cells while inhibiting the PI3K/AKT/mTOR signaling pathway. These findings suggest that l-securinine holds promise as a potential lead for future drug development in the fight against pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Ioanna A Anastasiou
- First Department of Propaedeutic Internal Medicine, Diabetes Center, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Greece
| | - Eleni Rebelos
- First Department of Propaedeutic Internal Medicine, Diabetes Center, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
- Turku PET Centre, University of Turku, Turku, Finland
| | - Ioanna Eleftheriadou
- First Department of Propaedeutic Internal Medicine, Diabetes Center, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Konstantinos N Tentolouris
- First Department of Propaedeutic Internal Medicine, Diabetes Center, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasia Katsaouni
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Greece
| | - Vasileia Kokala
- First Department of Propaedeutic Internal Medicine, Diabetes Center, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Greece
| | - Nikolaos Tentolouris
- First Department of Propaedeutic Internal Medicine, Diabetes Center, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| |
Collapse
|
2
|
Vergoten G, Bailly C. Interaction of Norsecurinine-Type Oligomeric Alkaloids with α-Tubulin: A Molecular Docking Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:1269. [PMID: 38732484 PMCID: PMC11085049 DOI: 10.3390/plants13091269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
The medicinal plant Securinega virosa (Roxb ex. Willd) Baill., also known as Flueggea virosa (Roxb. ex Willd.) Royle, is commonly used in traditional medicine in Africa and Asia for the management of diverse pathologies, such as parasite infections, diabetes, and gastrointestinal diseases. Numerous alkaloids have been isolated from the twigs and leaves of the plant, notably a variety of oligomeric indolizidine alkaloids derived from the monomers securinine and norsecurinine which both display anticancer properties. The recent discovery that securinine can bind to tubulin and inhibit microtubule assembly prompted us to investigate the potential binding of two series of alkaloids, fluevirosines A-H and fluevirosinine A-J, with the tubulin dimer by means of molecular modeling. These natural products are rare high-order alkaloids with tri-, tetra-, and pentameric norsecurinine motifs. Despite their large size (up to 2500 Å3), these alkaloids can bind easily to the large drug-binding cavity (about 4800 Å3) on α-tubulin facing the β-tubulin unit. The molecular docking analysis suggests that these hydrophobic macro-alkaloids can form stable complexes with α/β-tubulin. The tubulin-binding capacity varies depending on the alkaloid size and structure. Structure-binding relationships are discussed. The docking analysis identifies the trimer fluevirosine D, tetramer fluevirosinine D, and pentamer fluevirosinine H as the most interesting tubulin ligands in the series. This study is the first to propose a molecular target for these atypical oligomeric Securinega alkaloids.
Collapse
Affiliation(s)
- Gérard Vergoten
- U1286—INFINITE, Lille Inflammation Research International Center, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, 3 rue du Professeur Laguesse, 59006 Lille, France
| | - Christian Bailly
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, 59000 Lille, France
- Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, 59006 Lille, France
- OncoWitan, Scientific Consulting Office, 59290 Lille, France
| |
Collapse
|
3
|
Xie L, Liang S, Jiwa H, Zhang L, Lu Q, Wang X, Luo L, Xia H, Li Z, Wang J, Luo X, Luo J. Securinine inhibits the tumor growth of human bladder cancer cells by suppressing Wnt/β-catenin signaling pathway and activating p38 and JNK signaling pathways. Biochem Pharmacol 2024; 223:116125. [PMID: 38484850 DOI: 10.1016/j.bcp.2024.116125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Bladder cancer (BC) is the most common malignant tumor in urinary system. Although chemotherapy is one of the most important adjuvant treatments for BC, drug resistance, non-specific toxicity and severe side effects are the major obstacles to BC chemotherapy. Natural products have always been a leading resource of antitumor drug discovery, with the advantages of excellent effectiveness, low toxicity, multi-targeting potency and easy availability. In this study, we evaluated the potential anti-tumor effect of securinine (SEC), a natural alkaloid from Securinega suffruticosa, on BC cells in vitro and in vivo, and delineated the underlying mechanism. We found that SEC inhibited the proliferation, migration and invasion, induced the apoptosis of BC cells in vitro, and retarded the xenograft tumor growth of BC cell in vivo. Notably, SEC had a promising safety profile because it presented no or low toxicity on normal cells and mice. Mechanistically, SEC inactivated Wnt/β-catenin signaling pathway while activated p38 and JNK signaling pathway. Moreover, β-catenin overexpression, the p38 inhibitor SB203580 and the JNK inhibitor SP600125 both mitigated the inhibitory effect of SEC on BC cells. Furthermore, we demonstrated a synergistic inhibitory effect of SEC and gemcitabine (GEM) on BC cells in vitro and in vivo. Taken together, our findings suggest that SEC may exert anti-BC cell effect at least through the activation of p38 and JNK signaling pathways, and the inhibition of Wnt/β-catenin signaling pathway. More meaningfully, the findings indicate that GEM-induced BC cell killing can be enhanced by combining with SEC.
Collapse
Affiliation(s)
- Liping Xie
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Shiqiong Liang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Habu Jiwa
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Lulu Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qiuping Lu
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoxuan Wang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lijuan Luo
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Haichao Xia
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ziyun Li
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jiayu Wang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Jinyong Luo
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
4
|
Hou W, Huang H, Wu XQ, Lan JX. Bioactivities and mechanism of action of securinega alkaloids derivatives reported prior to 2022. Biomed Pharmacother 2023; 158:114190. [PMID: 36916441 DOI: 10.1016/j.biopha.2022.114190] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Securinega alkaloids are indolizidine alkaloids extracted from the leaf and root of an Asian plant, Securinega suffruticosa. Since its discovery in 1956 by Russian scientists, numerous studies have been conducted on securinega alkaloids and their derivatives as bioactive agents. In this review, published work on the bioactivities and the mechanism of action of securinega alkaloids and their derivatives is addressed. References were obtained through for example, the Web of Science, Science Direct, Pubmed and Google Scholar. Research into the synthesis of securinega alkaloids and their derivatives lacking activity assessment has been excluded. Comprehensive reviews show that securinega alkaloids and their derivatives exhibit a wide range of activities among which antineoplastic activity and nervous system related activity were reported although the mechanisms of action remain in part unknown. The other activities such as induction of differentiation, reversal of multi-drug resistance, cardiovascular system related activity, anti-inflammatory, adjuvant agent and anti-pathogenic activity are also reviewed. We found that modification at the C12, C14, and C15 sites on securinine improves the antitumor activity, while derivatives in which a bivalent mimetic is linked to the C15 site is beneficial for differentiation induction activity and reversal of P-glycoprotein mediated drug resistance. The most related pathways involved in the bioactivity of securinega alkaloids and their derivatives are JAK/STAT, PI3K/AKT/mTOR and MAPK. A perspective and expectation concerning the research of securinega alkaloids is presented at the end of this article. This review indicates directions around which constant endeavor could be valuable for researchers in the near future.
Collapse
Affiliation(s)
- Wen Hou
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Hao Huang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Xue-Qiang Wu
- Center for Precision Medicine, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou 514000, PR China
| | - Jin-Xia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, PR China.
| |
Collapse
|
5
|
Sulaiman M, Jannat K, Nissapatorn V, Rahmatullah M, Paul AK, de Lourdes Pereira M, Rajagopal M, Suleiman M, Butler MS, Break MKB, Weber JF, Wilairatana P, Wiart C. Antibacterial and Antifungal Alkaloids from Asian Angiosperms: Distribution, Mechanisms of Action, Structure-Activity, and Clinical Potentials. Antibiotics (Basel) 2022; 11:1146. [PMID: 36139926 PMCID: PMC9495154 DOI: 10.3390/antibiotics11091146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
The emergence of multidrug-resistant bacteria and fungi requires the development of antibiotics and antifungal agents. This review identified natural products isolated from Asian angiosperms with antibacterial and/or antifungal activities and analyzed their distribution, molecular weights, solubility, and modes of action. All data in this review were compiled from Google Scholar, PubMed, Science Direct, Web of Science, ChemSpider, PubChem, and a library search from 1979 to 2022. One hundred and forty-one antibacterial and/or antifungal alkaloids were identified during this period, mainly from basal angiosperms. The most active alkaloids are mainly planar, amphiphilic, with a molecular mass between 200 and 400 g/mol, and a polar surface area of about 50 Å2, and target DNA and/or topoisomerase as well as the cytoplasmic membrane. 8-Acetylnorchelerythrine, cryptolepine, 8-hydroxydihydrochelerythrine, 6-methoxydihydrosanguinarine, 2'-nortiliacorinine, pendulamine A and B, rhetsisine, sampangine, tiliacorine, tryptanthrin, tylophorinine, vallesamine, and viroallosecurinine yielded MIC ≤ 1 µg/mL and are candidates for the development of lead molecules.
Collapse
Affiliation(s)
- Mazdida Sulaiman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Khoshnur Jannat
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Monica Suleiman
- Institute for Tropical Biology & Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | | | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81411, Saudi Arabia
| | - Jean-Frédéric Weber
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR ŒNOLOGIE, EA 4577, USC 1366, ISVV, Université de Bordeaux, 210 Chemin de Leysotte, 33882 Villenave d’Ornon, France
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Christophe Wiart
- Institute for Tropical Biology & Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
6
|
Cheng X, Wang Y, Liu L, Lv C, Liu C, Xu J. SLC7A11, a Potential Therapeutic Target Through Induced Ferroptosis in Colon Adenocarcinoma. Front Mol Biosci 2022; 9:889688. [PMID: 35517862 PMCID: PMC9065265 DOI: 10.3389/fmolb.2022.889688] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/23/2022] [Indexed: 01/14/2023] Open
Abstract
Background: Ferroptosis induced by SLC7A11 has an important translational value in the treatment of cancers. However, the mechanism of SLC7A11 in the pathogenesis of colon adenocarcinoma (COAD) is rarely studied in detail. Methods: SLC7A11 expression was explored with The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) databases, and Western blot assay. The correlation of SLC7A11 expression with the abundance of infiltrating immune cells was evaluated via the TIMER database. The relation of SLC7A11 expression with immune cell markers was investigated via Gene Expression Profiling Interactive Analysis (GEPIA). The co-expression genes of SLC7A11 were screened by R packages, and the PPI was constructed via the STRING database. SLC7A11 and co-expressed gene modulators were selected by NetworkAnalyst and DSigDB database. The correlations between SLC7A11 and cancer immune characteristics were analyzed via the TIMER and TISIDB databases. Results: SLC7A11 is overexpressed in most tumors, including COAD. The expression level of SLC7A11 has a significant correlation with the infiltration levels of CD8+ T cells, neutrophils, and dendritic cells in COAD. The infiltrated lymphocyte markers of Th1 cell such as TBX21, IL12RB2, IL27RA, STAT1, and IFN-γ were strongly correlated with SLC7A11 expression. Five hub genes co-expressed with SLC7A11 that induce ferroptosis were identified, and mir-335-5p, RELA, and securinine have regulatory effects on it. SLC7A11 was negatively correlated with the expression of chemokines and chemokine receptors, such as CCL17, CCL19, CCL22, CCL23, CXCL14, CCR10, CX3CR1, and CXCR3, in COAD. Conclusion: SLC7A11 may play a role in induced ferroptosis and regulating tumor immunity, which can be considered as potential therapeutic targets in COAD.
Collapse
Affiliation(s)
- Xin Cheng
- General Surgery Department, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, China
| | - Yadong Wang
- General Surgery Department, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, China
| | - Liangchao Liu
- General Surgery Department, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, China
| | - Chenggang Lv
- General Surgery Department, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, China
| | - Can Liu
- The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jingyun Xu
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| |
Collapse
|