1
|
Liu G, Su L, Kong C, Huang L, Zhu X, Zhang X, Ma Y, Wang J. Improved diagnostic efficiency of CRC subgroups revealed using machine learning based on intestinal microbes. BMC Gastroenterol 2024; 24:315. [PMID: 39289618 PMCID: PMC11409688 DOI: 10.1186/s12876-024-03408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common cancer that causes millions of deaths worldwide each year. At present, numerous studies have confirmed that intestinal microbes play a crucial role in the process of CRC. Additionally, studies have shown that CRC can be divided into several consensus molecular subtypes (CMS) based on tumor gene expression, and CRC microbiomes have been reported related to CMS. However, most previous studies on intestinal microbiome of CRC have only compared patients with healthy controls, without classifying of CRC patients based on intestinal microbial composition. RESULTS In this study, a CRC cohort including 339 CRC samples and 333 healthy controls was selected as the discovery set, and the CRC samples were divided into two subgroups (234 Subgroup1 and 105 Subgroup2) using PAM clustering algorithm based on the intestinal microbial composition. We found that not only the microbial diversity was significantly different (Shannon index, p-value < 0.05), but also 129 shared genera altered (p-value < 0.05) between the two CRC subgroups, including several marker genera in CRC, such as Fusobacterium and Bacteroides. A random forest algorithm was used to construct diagnostic models, which showed significantly higher efficiency when the CRC samples were divided into subgroups. Then an independent cohort including 187 CRC samples (divided into 153 Subgroup1 and 34 Subgroup2) and 123 healthy controls was chosen to validate the models, and confirmed the results. CONCLUSIONS These results indicate that the divided CRC subgroups can improve the efficiency of disease diagnosis, with various microbial composition in the subgroups.
Collapse
Affiliation(s)
- Guang Liu
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Guangdong Hongyuan Pukang Medical Technology Co, Ltd, Guangzhou, 510000, China
| | - Lili Su
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Guangdong Hongyuan Pukang Medical Technology Co, Ltd, Guangzhou, 510000, China
| | - Cheng Kong
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Liang Huang
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510000, China
| | - Xiaoyan Zhu
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xuanping Zhang
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Jiayin Wang
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
2
|
Kamath HS, Shukla R, Shah U, Patel S, Das S, Chordia A, Satish P, Ghosh D. Role of Gut Microbiota in Predisposition to Colon Cancer: A Narrative Review. Indian J Microbiol 2024; 64:1-13. [PMID: 39282181 PMCID: PMC11399513 DOI: 10.1007/s12088-024-01242-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/28/2024] [Indexed: 09/18/2024] Open
Abstract
Globally, colorectal cancer (CRC) is a leading cause of cancer-related mortality. Dietary habits, inflammation, hereditary characteristics, and gut microbiota are some of its causes. The gut microbiota, a diverse population of bacteria living in the digestive system, has an impact on a variety of parameters, including inflammation, DNA damage, and immune response. The gut microbiome has a significant role in colon cancer susceptibility. Many studies have highlighted dysbiosis, an imbalance in the gut microbiota's makeup, as a major factor in colon cancer susceptibility. Dysbiosis has the potential to produce toxic metabolites and pro-inflammatory substances, which can hasten the growth of tumours. The ability of the gut microbiota to affect the host's immune system can also influence whether cancer develops or not. By better comprehending these complex interactions between colon cancer predisposition and gut flora, new preventive and therapeutic techniques might be developed. Targeting the gut microbiome with dietary modifications, probiotics, or faecal microbiota transplantation may offer cutting-edge approaches to reducing the risk of colon cancer and improving patient outcomes. The complex connection between the makeup of the gut microbiota and the emergence of colorectal cancer is explored in this narrative review.
Collapse
Affiliation(s)
- Hattiangadi Shruthi Kamath
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Rushikesh Shukla
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Urmil Shah
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Siddhi Patel
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Soumyajit Das
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Ayush Chordia
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Poorvikha Satish
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| | - Dibyankita Ghosh
- Kasturba Medical College, Mangalore, a constituent institution of the Manipal Academy of Higher Education (MAHE), Mangalore, Karnataka India
| |
Collapse
|
3
|
de Souza JB, de Almeida Campos LA, Palácio SB, Brelaz-de-Castro MCA, Cavalcanti IMF. Prevalence and implications of pKs-positive Escherichia coli in colorectal cancer. Life Sci 2024; 341:122462. [PMID: 38281542 DOI: 10.1016/j.lfs.2024.122462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Colorectal cancer (CRC) remains a significant global health concern, necessitating continuous investigation into its etiology and potential risk factors. Recent research has shed light on the potential role of pKs-positive Escherichia coli (pKs + E. coli) and colibactin in the development and progression of CRC. Therefore, this review aimed to provide an updated analysis of the prevalence and implications of pKs + E. coli in colorectal cancer. We conducted a literature review search in major scientific databases to identify relevant studies exploring the association between pKs + E. coli and CRC. The search strategy included studies published up to the present date, and articles were carefully selected based on predefined inclusion criteria. Thus, the present study encompasses scientific evidence from clinical and epidemiological studies supporting the presence of pKs + E. coli in CRC patients, demonstrating a consistent and significant association in multiple studies. Furthermore, we highlighted the potential mechanisms by which colibactin may promote tumorigenesis and cancer progression within the colorectal mucosa, including the production of genotoxic virulence factors. Additionally, we explored current diagnostic methods for detecting pKs + E. coli in clinical settings, emphasizing the importance of accurate identification. Moreover, we discussed future strategies that could utilize the presence of this strain as a biomarker for CRC diagnosis and treatment. In conclusion, this review consolidated existing evidence on the prevalence and implications of pKs + E. coli in colorectal cancer. The findings underscore the importance of further research to elucidate the precise mechanisms linking this strain to CRC pathogenesis and to explore its potential as a therapeutic target or diagnostic marker. Ultimately, a better understanding of the role of pKs + E. coli in CRC may pave the way for innovative strategies in CRC management and patient care.
Collapse
Affiliation(s)
| | | | - Sarah Brandão Palácio
- Research, development and innovation subdivision (SDPI) of Chemical-Pharmaceutical Laboratory of Aeronautics (LAQFA), Rio de Janeiro, RJ, Brazil
| | | | - Isabella Macário Ferro Cavalcanti
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife, PE, Brazil; Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão, PE, Brazil.
| |
Collapse
|
4
|
Xu J, Kang Y, Zhong Y, Ye W, Sheng T, Wang Q, Zheng J, Yang Q, Yi P, Li Z. Alteration of gut microbiome and correlated amino acid metabolism are associated with acute myelocytic leukemia carcinogenesis. Cancer Med 2023; 12:16431-16443. [PMID: 37409640 PMCID: PMC10469656 DOI: 10.1002/cam4.6283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND The aim of this study is to investigate the profiles of gut microbiota and metabolites in acute myelocytic leukemia (AML) patients treated with/without chemotherapy. METHODS Herein, high-throughput 16S rRNA gene sequencing was performed to analysis gut microbiota profiles, and liquid chromatography and mass spectrometry were performed to analysis metabolites profiles. The correlation between gut microbiota biomarkers identified by LEfSe and differentially expressed metabolites were determined by spearman association analysis. RESULTS The results showed the distinguished gut microbiota and metabolites profiles between AML patients and control individuals or AML patients treated with chemotherapy. Compared to normal populations, the ratio of Firmicutes to Bacteroidetes was increased at the phylum level than that in AML patients, and LEfSe analysis identified Collinsella and Coriobacteriaceae as biomarkers of AML patients. Differential metabolite analysis indicated that, compared to AML patients, numerous differential amino acids and analogs could be observed in control individuals and AML patients treated with chemotherapy. Interestingly, spearman association analysis demonstrated that plenty of bacteria biomarkers shows statistical correlations with differentially expressed amino acid metabolites. In addition, we found that both Collinsella and Coriobacteriaceae demonstrate remarkable positive correlation with hydroxyprolyl-hydroxyproline, prolyl-tyrosine, and tyrosyl-proline. CONCLUSION In conclusion, our present study investigated the role of the gut-microbiome-metabolome axis in AML and revealed the possibility of AML treatment by gut-microbiome-metabolome axis in the further.
Collapse
Affiliation(s)
- Jing Xu
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yong Kang
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of HematologyFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Yan Zhong
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of General MedicineGanzhou People's hospitalGanzhouChina
| | - Wencan Ye
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
- Department of HematologyFirst Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Tianle Sheng
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Qingming Wang
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Jifu Zheng
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Qiuyue Yang
- Department of Scientific Research ProjectWuhan Kindstar Medical Laboratory Co., Ltd.WuhanChina
- Kindstar Global Precision Medicine InstituteWuhanChina
| | - Ping Yi
- Department of Scientific Research ProjectWuhan Kindstar Medical Laboratory Co., Ltd.WuhanChina
- Kindstar Global Precision Medicine InstituteWuhanChina
| | - Zhenjiang Li
- Department of HematologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
5
|
Wang J, Zhang X, Yang X, Yu H, Bu M, Fu J, Zhang Z, Xu H, Hu J, Lu J, Zhang H, Zhai Z, Yang W, Wu X, Wang Y, Tong Q. Revitalizing myocarditis treatment through gut microbiota modulation: unveiling a promising therapeutic avenue. Front Cell Infect Microbiol 2023; 13:1191936. [PMID: 37260696 PMCID: PMC10229058 DOI: 10.3389/fcimb.2023.1191936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
Numerous studies have demonstrated that gut microbiota plays an important role in the development and treatment of different cardiovascular diseases, including hypertension, heart failure, myocardial infarction, arrhythmia, and atherosclerosis. Furthermore, evidence from recent studies has shown that gut microbiota contributes to the development of myocarditis. Myocarditis is an inflammatory disease that often results in myocardial damage. Myocarditis is a common cause of sudden cardiac death in young adults. The incidence of myocarditis and its associated dilated cardiomyopathy has been increasing yearly. Myocarditis has gained significant attention on social media due to its association with both COVID-19 and COVID-19 vaccinations. However, the current therapeutic options for myocarditis are limited. In addition, little is known about the potential therapeutic targets of myocarditis. In this study, we review (1) the evidence on the gut-heart axis, (2) the crosslink between gut microbiota and the immune system, (3) the association between myocarditis and the immune system, (4) the impact of gut microbiota and its metabolites on myocarditis, (5) current strategies for modulating gut microbiota, (6) challenges and future directions for targeted gut microbiota in the treatment of myocarditis. The approach of targeting the gut microbiota in myocarditis is still in its infancy, and this is the study to explore the gut microbiota-immune system-myocarditis axis. Our findings are expected to pave the way for the use of gut microbiota as a potential therapeutic target in the treatment of myocarditis.
Collapse
Affiliation(s)
- Jingyue Wang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xianfeng Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Xinyu Yang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Mengmeng Bu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Zhengwei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Jiachun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Jinyue Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Haojian Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Zhao Zhai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Wei Yang
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xiaodan Wu
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Qian Tong
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Wang H, Chen K, Ning M, Wang X, Wang Z, Yue Y, Yuan Y, Yue T. Intake of Pro- and/or Prebiotics as a Promising Approach for Prevention and Treatment of Colorectal Cancer. Mol Nutr Food Res 2023; 67:e2200474. [PMID: 36349520 DOI: 10.1002/mnfr.202200474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/16/2022] [Indexed: 11/11/2022]
Abstract
Colorectal cancer (CRC) is the third most common type of cancer, posing a serious threat to human life. It is widely believed that dietary factors may be crucial modifiers of CRC risk, with pro-and/or prebiotics being especially promising. In this review, a synthesis of CRC prevention and treatment of strategies relying on usage of pro- and/or prebiotics supplements is given, as well as discuss mechanisms underlying the contribution of pro-and/or prebiotics to the suppression of colonic carcinogenesis. Furthermore, a framework for personalizing such supplements according to the composition of an individual's gut microbiome is suggested. Various factors including diversity of one's intestinal microflora, integrity of their intestinal barrier, and the presence of mutagenic/carcinogenic/genotoxic and beneficial compounds are known to have a prominent influence on the development of CRC; thus, clarifying the role of pro- and/or prebiotics will yield valuable insight toward optimizing interventions for enhanced patient outcomes in the future.
Collapse
Affiliation(s)
- Huijuan Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Ke Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Mengge Ning
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yuan Yue
- Xi'an Gaoxin No.1 High School, Xi'an, 71000, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.,College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| |
Collapse
|