1
|
Deem KD, Brisson JA. Problems with Paralogs: The Promise and Challenges of Gene Duplicates in Evo-Devo Research. Integr Comp Biol 2024; 64:556-564. [PMID: 38565319 PMCID: PMC11406157 DOI: 10.1093/icb/icae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
Gene duplicates, or paralogs, serve as a major source of new genetic material and comprise seeds for evolutionary innovation. While originally thought to be quickly lost or nonfunctionalized following duplication, now a vast number of paralogs are known to be retained in a functional state. Daughter paralogs can provide robustness through redundancy, specialize via sub-functionalization, or neo-functionalize to play new roles. Indeed, the duplication and divergence of developmental genes have played a monumental role in the evolution of animal forms (e.g., Hox genes). Still, despite their prevalence and evolutionary importance, the precise detection of gene duplicates in newly sequenced genomes remains technically challenging and often overlooked. This presents an especially pertinent problem for evolutionary developmental biology, where hypothesis testing requires accurate detection of changes in gene expression and function, often in nontraditional model species. Frequently, these analyses rely on molecular reagents designed within coding sequences that may be highly similar in recently duplicated paralogs, leading to cross-reactivity and spurious results. Thus, care is needed to avoid erroneously assigning diverged functions of paralogs to a single gene, and potentially misinterpreting evolutionary history. This perspective aims to overview the prevalence and importance of paralogs and to shed light on the difficulty of their detection and analysis while offering potential solutions.
Collapse
Affiliation(s)
- Kevin D Deem
- Department of Biology, University of Rochester, Rochester, NY, 14620
| | | |
Collapse
|
2
|
Jiang Y, Rex DA, Schuster D, Neely BA, Rosano GL, Volkmar N, Momenzadeh A, Peters-Clarke TM, Egbert SB, Kreimer S, Doud EH, Crook OM, Yadav AK, Vanuopadath M, Hegeman AD, Mayta M, Duboff AG, Riley NM, Moritz RL, Meyer JG. Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry. ACS MEASUREMENT SCIENCE AU 2024; 4:338-417. [PMID: 39193565 PMCID: PMC11348894 DOI: 10.1021/acsmeasuresciau.3c00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 08/29/2024]
Abstract
Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this Review will serve as a handbook for researchers who are new to the field of bottom-up proteomics.
Collapse
Affiliation(s)
- Yuming Jiang
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Devasahayam Arokia
Balaya Rex
- Center for
Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Dina Schuster
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
- Department
of Biology, Institute of Molecular Biology
and Biophysics, ETH Zurich, Zurich 8093, Switzerland
- Laboratory
of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Benjamin A. Neely
- Chemical
Sciences Division, National Institute of
Standards and Technology, NIST, Charleston, South Carolina 29412, United States
| | - Germán L. Rosano
- Mass
Spectrometry
Unit, Institute of Molecular and Cellular
Biology of Rosario, Rosario, 2000 Argentina
| | - Norbert Volkmar
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Amanda Momenzadeh
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Trenton M. Peters-Clarke
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California, 94158, United States
| | - Susan B. Egbert
- Department
of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Simion Kreimer
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Emma H. Doud
- Center
for Proteome Analysis, Indiana University
School of Medicine, Indianapolis, Indiana, 46202-3082, United States
| | - Oliver M. Crook
- Oxford
Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United
Kingdom
| | - Amit Kumar Yadav
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | | | - Adrian D. Hegeman
- Departments
of Horticultural Science and Plant and Microbial Biology, University of Minnesota, Twin Cities, Minnesota 55108, United States
| | - Martín
L. Mayta
- School
of Medicine and Health Sciences, Center for Health Sciences Research, Universidad Adventista del Plata, Libertador San Martin 3103, Argentina
- Molecular
Biology Department, School of Pharmacy and Biochemistry, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Anna G. Duboff
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Nicholas M. Riley
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Robert L. Moritz
- Institute
for Systems biology, Seattle, Washington 98109, United States
| | - Jesse G. Meyer
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| |
Collapse
|
3
|
Zhang Z, Zhang S, Wong HT, Li D, Feng B. Targeted Gene Insertion: The Cutting Edge of CRISPR Drug Development with Hemophilia as a Highlight. BioDrugs 2024; 38:369-385. [PMID: 38489061 PMCID: PMC11055778 DOI: 10.1007/s40259-024-00654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/17/2024]
Abstract
The remarkable advance in gene editing technology presents unparalleled opportunities for transforming medicine and finding cures for hereditary diseases. Human trials of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9)-based therapeutics have demonstrated promising results in disrupting or deleting target sequences to treat specific diseases. However, the potential of targeted gene insertion approaches, which offer distinct advantages over disruption/deletion methods, remains largely unexplored in human trials due to intricate technical obstacles and safety concerns. This paper reviews the recent advances in preclinical studies demonstrating in vivo targeted gene insertion for therapeutic benefits, targeting somatic solid tissues through systemic delivery. With a specific emphasis on hemophilia as a prominent disease model, we highlight advancements in insertion strategies, including considerations of DNA repair pathways, targeting site selection, and donor design. Furthermore, we discuss the complex challenges and recent breakthroughs that offer valuable insights for progressing towards clinical trials.
Collapse
Affiliation(s)
- Zhenjie Zhang
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Siqi Zhang
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China
| | - Hoi Ting Wong
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bo Feng
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Room 105A, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, NT, Hong Kong SAR, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
4
|
Sorourian S, Behzad Behbahani A, Forouzanfar M, Jafarinia M, Safari F. Time and Cost-Effective Genome Editing Protocol for Simultaneous Caspase 8 Associated Protein 2 Gene Knock in/out in Chinese Hamster Ovary Cells Using CRISPR-Cas9 System. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3714. [PMID: 38827341 PMCID: PMC11139449 DOI: 10.30498/ijb.2024.398567.3714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/27/2023] [Indexed: 06/04/2024]
Abstract
Background CHO cells are preferred for producing biopharmaceuticals, and genome editing technologies offer opportunities to enhance recombinant protein production. Targeting apoptosis-related genes, such as Caspases 8-Associated Protein 2 (CASP8AP2), improves CHO cell viability and productivity. Integrating robust strategies with the CRISPR-Cas9 system enables its application in CHO cell engineering. Objectives This study was performed to develop a cost-effective protocol using the CRISPR-Cas9 system combined with the HITI strategy for simultaneous CASP8AP2 gene deletion/insertion in CHO cells and to assess its impact on cell viability and protein expression. Materials and Methods We developed an efficient protocol for CHO cell engineering by combining CRISPR/Cas9 with the HITI strategy. Two distinct sgRNA sequences were designed to target the 3' UTR region of the CASP8AP2 gene using CHOPCHOP software. The gRNAs were cloned into PX459 and PX460-1 vectors and transfected into CHO cells using the cost-effective PEI reagent. A manual selection system was employed to streamline the process of single-cell cloning. MTT assays assessed gene silencing and cell viability at 24, 48, and 72 hours. Flow cytometry evaluated protein expression in CASP8AP2-silenced CHO cells. Results The study confirmed the robustness of combining CRISPR-Cas9 with the HITI strategy, achieving a high 60% efficiency in generating knockout clones. PEI transfection successfully delivered the constructs to nearly 65% of the clones, with the majority being homozygous. The protocol proved feasible for resource-limited labs, requiring only an inverted fluorescent microscope. CASP8AP2 knockout (CHO-KO) cells exhibited significantly extended cell viability compared to CHO-K1 cells when treated with NaBu, with IC50 values of 7.28 mM and 14.25 mM at 48 hours, respectively (P-value 24 hours ≤ 0.0001, 48 hours ≤ 0.0001, P-value 72 hours = 0.0007). CHO CASP8AP2-silenced cells showed a 1.3-fold increase in JRed expression compared to native cells. Conclusions CRISPR-Cas9 and HITI strategy was used to efficiently engineer CHO cells for simultaneous CASP8AP2 gene deletion/insertion, which improved cell viability and protein expression.
Collapse
Affiliation(s)
- Soofia Sorourian
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Abbas Behzad Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Forouzanfar
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Mojtaba Jafarinia
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Pasupuleti V, Vora L, Prasad R, Nandakumar DN, Khatri DK. Glioblastoma preclinical models: Strengths and weaknesses. Biochim Biophys Acta Rev Cancer 2024; 1879:189059. [PMID: 38109948 DOI: 10.1016/j.bbcan.2023.189059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Glioblastoma multiforme is a highly malignant brain tumor with significant intra- and intertumoral heterogeneity known for its aggressive nature and poor prognosis. The complex signaling cascade that regulates this heterogeneity makes targeted drug therapy ineffective. The development of an optimal preclinical model is crucial for the comprehension of molecular heterogeneity and enhancing therapeutic efficacy. The ideal model should establish a relationship between various oncogenes and their corresponding responses. This review presents an analysis of preclinical in vivo and in vitro models that have contributed to the advancement of knowledge in model development. The experimental designs utilized in vivo models consisting of both immunodeficient and immunocompetent mice induced with intracranial glioma. The transgenic model was generated using various techniques, like the viral vector delivery system, transposon system, Cre-LoxP model, and CRISPR-Cas9 approaches. The utilization of the patient-derived xenograft model in glioma research is valuable because it closely replicates the human glioma microenvironment, providing evidence of tumor heterogeneity. The utilization of in vitro techniques in the initial stages of research facilitated the comprehension of molecular interactions. However, these techniques are inadequate in reproducing the interactions between cells and extracellular matrix (ECM). As a result, bioengineered 3D-in vitro models, including spheroids, scaffolds, and brain organoids, were developed to cultivate glioma cells in a three-dimensional environment. These models have enabled researchers to understand the influence of ECM on the invasive nature of tumors. Collectively, these preclinical models effectively depict the molecular pathways and facilitate the evaluation of multiple molecules while tailoring drug therapy.
Collapse
Affiliation(s)
- Vasavi Pasupuleti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK.
| | - Renuka Prasad
- Department of Anatomy, Korea University College of Medicine, Moonsuk Medical Research Building, 516, 5th floor, 73 Inchon-ro, Seongbuk-gu, Seoul 12841, Republic of Korea
| | - D N Nandakumar
- Department of Neurochemistry National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India.
| |
Collapse
|
6
|
Subburaj S, Agapito-Tenfen SZ. Establishment of targeted mutagenesis in soybean protoplasts using CRISPR/Cas9 RNP delivery via electro-transfection. FRONTIERS IN PLANT SCIENCE 2023; 14:1255819. [PMID: 37841627 PMCID: PMC10570537 DOI: 10.3389/fpls.2023.1255819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023]
Abstract
The soybean (Glycine max L.) is an important crop with high agronomic value. The improvement of agronomic traits through gene editing techniques has broad application prospects in soybean. The polyethylene glycol (PEG)-mediated cell transfection has been successfully used to deliver the CRISPR/Cas9-based ribonucleoprotein (RNP) into soybean protoplasts. However, several downstream analyses or further cell regeneration protocols might be hampered by PEG contamination within the samples. Here in this study, we attempted to transfect CRISPR/Cas9 RNPs into trifoliate leaf-derived soybean protoplasts using Neon electroporation to overcome the need for PEG transfection for the first time. We investigated different electroporation parameters including pulsing voltage (V), strength and duration of pulses regarding protoplast morphology, viability, and delivery of CRISPR/Cas9. Electroporation at various pulsing voltages with 3 pulses and 10 ms per pulse was found optimal for protoplast electro-transfection. Following electro-transfection at various pulsing voltages (500 V, 700 V, 1,000 V, and 1,300 V), intact protoplasts were observed at all treatments. However, the relative frequency of cell viability and initial cell divisions decreased with increasing voltages. Confocal laser scanning microscopy (CLSM) confirmed that the green fluorescent protein (GFP)-tagged Cas9 was successfully internalized into the protoplasts. Targeted deep sequencing results revealed that on-target insertion/deletion (InDel) frequencies were increased with increasing voltages in protoplasts electro-transfected with CRISPR/Cas9 RNPs targeting constitutive pathogen response 5 (CPR5). InDel patterns ranged from +1 bp to -6 bp at three different target sites in CPR5 locus with frequencies ranging from 3.8% to 8.1% following electro-transfection at 1,300 V and 2.1% to 3.8% for 700 V and 1,000 V, respectively. Taken together, our results demonstrate that the CRISPR/Cas9 RNP system can be delivered into soybean protoplasts by the Neon electroporation system for efficient and effective gene editing. The electro-transfection system developed in this study would also further facilitate and serve as an alternative delivery method for DNA-free genome editing of soybean and other related species for genetic screens and potential trait improvement.
Collapse
Affiliation(s)
| | - Sarah Zanon Agapito-Tenfen
- NORCE Norwegian Research Centre AS, Climate & Environment Department, Siva Innovasjonssenter, Tromsø, Norway
| |
Collapse
|
7
|
Liu H, Chen W, Li Y, Sun L, Chai Y, Chen H, Nie H, Huang C. CRISPR/Cas9 Technology and Its Utility for Crop Improvement. Int J Mol Sci 2022; 23:10442. [PMID: 36142353 PMCID: PMC9499353 DOI: 10.3390/ijms231810442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The rapid growth of the global population has resulted in a considerable increase in the demand for food crops. However, traditional crop breeding methods will not be able to satisfy the worldwide demand for food in the future. New gene-editing technologies, the most widely used of which is CRISPR/Cas9, may enable the rapid improvement of crop traits. Specifically, CRISPR/Cas9 genome-editing technology involves the use of a guide RNA and a Cas9 protein that can cleave the genome at specific loci. Due to its simplicity and efficiency, the CRISPR/Cas9 system has rapidly become the most widely used tool for editing animal and plant genomes. It is ideal for modifying the traits of many plants, including food crops, and for creating new germplasm materials. In this review, the development of the CRISPR/Cas9 system, the underlying mechanism, and examples of its use for editing genes in important crops are discussed. Furthermore, certain limitations of the CRISPR/Cas9 system and potential solutions are described. This article will provide researchers with important information regarding the use of CRISPR/Cas9 gene-editing technology for crop improvement, plant breeding, and gene functional analyses.
Collapse
Affiliation(s)
- Hua Liu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wendan Chen
- Beijing Key Laboratory of Forest Food Processing and Safety, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yushu Li
- Beijing Vocational College of Agriculture, Beijing 100097, China
| | - Lei Sun
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yuhong Chai
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Haixia Chen
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Haochen Nie
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Conglin Huang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
8
|
Christelle M, Lise M, Ben M'Barek K. Challenges of cell therapies for retinal diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:49-77. [DOI: 10.1016/bs.irn.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|