1
|
Li Y, Chen L, Li S, Song H, Chen Y, Wang S. The m6A reader IGF2BP1 contributes to the activation of hepatic stellate cells through facilitating TUBB4B mRNA stabilization. J Gastroenterol Hepatol 2024; 39:2916-2925. [PMID: 39403946 DOI: 10.1111/jgh.16765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024]
Abstract
The m6A reader insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1) is involved in multiple pathophysiological processes through enhanced expression of the proteins encoded by their target mRNAs. However, the functional role of IGF2BP1-mediated m6A in liver fibrosis remains elusive. Here, we report that IGF2BP1 is highly expressed in activated hepatic stellate cells (HSCs), the major driver of fibrogenesis, and TUBB4B is identified as a potential target of IGF2BP1 by re-analysis of the RNA-seq, RIP-seq, and m6A-seq data. The relevant findings were subsequently demonstrated by a series of molecular and cellular evidences. The knockdown of IGF2BP1 or TUBB4B and pharmacological inhibition of TUBB4B by mebendazole treatments significantly suppress the proliferation, migration, and activation of HSCs. Mechanistically, IGF2BP1 upregulates TUBB4B expression through stabilizing TUBB4B in an m6A-dependent manner, and TUBB4B induces liver fibrosis by activating the FAK signaling pathway. Collectively, our results indicate that targeting IGF2BP1/TUBB4B/FAK axis in HSCs could be a promising therapeutic approach for liver fibrosis.
Collapse
Affiliation(s)
- Yanshan Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ling Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Shuyi Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Haoxin Song
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yijun Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Shuzhen Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Wu X, Zhang Z, Qiu Z, Wu X, Chen J, Liu L, Liu X, Zhao S, Yang Y, Zhao Y. TNIK in disease: from molecular insights to therapeutic prospects. Apoptosis 2024:10.1007/s10495-024-01987-w. [PMID: 38853204 DOI: 10.1007/s10495-024-01987-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
TRAF2 and NCK interacting kinase (TNIK), a critical interacting protein kinase, is currently receiving wide attention. TNIK is found in various human body organs and tissues and participates in cell motility, proliferation, and differentiation. On the one hand, its aberrant expression is related to the onset and progression of numerous malignant tumors. On the other hand, TNIK is important in neuronal growth, proliferation, differentiation, and synaptic formation. Thus, the novel therapeutic strategies for targeting TNIK offer a promising direction for cancer, neurological or psychotic disorders. Here, we briefly summarized the biological information of TNIK, reviewed the role and regulatory mechanism in cancer and neuropsychiatric diseases, and introduced the research progress of inhibitors targeting TNIK. Taken together, this review hopes to contribute to the in-depth understanding of the function and regulatory mechanism of TNIK, which is of great significance for revealing the role of TNIK in the occurrence and treatment of diseases.
Collapse
Affiliation(s)
- Xue Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Zhe Zhang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Zhenye Qiu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Xiaopeng Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Junmin Chen
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Lu Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Xiaoyi Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Shiyan Zhao
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China.
| | - Ye Zhao
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
3
|
Brownjohn PW, Zoufir A, O’Donovan DJ, Sudhahar S, Syme A, Huckvale R, Porter JR, Bange H, Brennan J, Thompson NT. Computational drug discovery approaches identify mebendazole as a candidate treatment for autosomal dominant polycystic kidney disease. Front Pharmacol 2024; 15:1397864. [PMID: 38846086 PMCID: PMC11154008 DOI: 10.3389/fphar.2024.1397864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a rare genetic disorder characterised by numerous renal cysts, the progressive expansion of which can impact kidney function and lead eventually to renal failure. Tolvaptan is the only disease-modifying drug approved for the treatment of ADPKD, however its poor side effect and safety profile necessitates the need for the development of new therapeutics in this area. Using a combination of transcriptomic and machine learning computational drug discovery tools, we predicted that a number of existing drugs could have utility in the treatment of ADPKD, and subsequently validated several of these drug predictions in established models of disease. We determined that the anthelmintic mebendazole was a potent anti-cystic agent in human cellular and in vivo models of ADPKD, and is likely acting through the inhibition of microtubule polymerisation and protein kinase activity. These findings demonstrate the utility of combining computational approaches to identify and understand potential new treatments for traditionally underserved rare diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hester Bange
- Crown Bioscience Netherlands B.V., Biopartner Center Leiden JH, Leiden, Netherlands
| | | | | |
Collapse
|
4
|
Aliabadi A, Haghshenas MR, Kiani R, Koohi-Hosseinabadi O, Purkhosrow A, Pirsalami F, Panjehshahin MR, Erfani N. In vitro and in vivo anticancer activity of mebendazole in colon cancer: a promising drug repositioning. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2379-2388. [PMID: 37837472 DOI: 10.1007/s00210-023-02722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/13/2023] [Indexed: 10/16/2023]
Abstract
Colon cancer is one of the most common cancers and one of the main causes of death worldwide. Therefore, new treatment methods with better efficiency and fewer risks are very necessary. Mebendazole (MBZ), a drug commonly used for helminthic infections, has recently received attention as a suitable candidate for the treatment of various cancers. This study aimed to investigate, in vitro and in vivo, anticancer activity and selectivity Index of MBZ on colon cancer. HT-29 (human colorectal adenocarcinoma) and MCF-10 (non-tumorigenic epithelial) cell lines were treated with MBZ and Doxorubicin (DOX; positive control drug). IC50 values were estimated using methyl thiazole diphenyl-tetrazolium bromide (MTT) assay. We employed flow cytometry using annexin V-FITC and propidium iodide dyes. For the animal study, colon cancer was subcutaneously induced by CT26 cells (mouse colon cancer) in Bulb/C mice. The mice were treated with 0.05 of LD50, intraperitoneal, every other day for 35 days. Finally, the survival rate, tumor volume, and tumor weight were calculated. Our results demonstrated that IC50 values after 72 h for HT29 and MCF-10 cell lines were 0.29 ± 0.04 µM and 0.80 ± 0.02 µM, respectively. MBZ was more selective than DOX in inhibiting the proliferation of cancer cells compared to normal cells (2. 75 vs. 2.45). Annexin V/PI staining demonstrated that MBZ treatment at IC50 concentrations induced (78 ± 12%) apoptosis in the HT29 cancer cell line after 48 h (P ≤ 0.0001). Also, in mice bearing colon cancer, MBZ significantly reduced the tumor volume (1177 ± 1109 mm3; P ≤ 0.001) and tumor weight (2.30 ± 1.97 g; P ≤ 0.0001) compared to the negative control group (weight 12.45 ± 2.0 g; volume 7346 ± 1077). Also, MBZ increases mean survival time (MST) and increase life span (ILS) percentage in the animal study (51.2 ± 37% vs 93%, respectively). This study suggests that mebendazole strongly and selectively inhibits proliferation and induces apoptosis in colon cancer cells. It may be, accordingly, a promising drug for clinical research and application.
Collapse
Affiliation(s)
- Amin Aliabadi
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Haghshenas
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razie Kiani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Azar Purkhosrow
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatema Pirsalami
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Panjehshahin
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Nasrollah Erfani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Fatemi N, Karimpour M, Bahrami H, Zali MR, Chaleshi V, Riccio A, Nazemalhosseini-Mojarad E, Totonchi M. Current trends and future prospects of drug repositioning in gastrointestinal oncology. Front Pharmacol 2024; 14:1329244. [PMID: 38239190 PMCID: PMC10794567 DOI: 10.3389/fphar.2023.1329244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Gastrointestinal (GI) cancers comprise a significant number of cancer cases worldwide and contribute to a high percentage of cancer-related deaths. To improve survival rates of GI cancer patients, it is important to find and implement more effective therapeutic strategies with better prognoses and fewer side effects. The development of new drugs can be a lengthy and expensive process, often involving clinical trials that may fail in the early stages. One strategy to address these challenges is drug repurposing (DR). Drug repurposing is a developmental strategy that involves using existing drugs approved for other diseases and leveraging their safety and pharmacological data to explore their potential use in treating different diseases. In this paper, we outline the existing therapeutic strategies and challenges associated with GI cancers and explore DR as a promising alternative approach. We have presented an extensive review of different DR methodologies, research efforts and examples of repurposed drugs within various GI cancer types, such as colorectal, pancreatic and liver cancers. Our aim is to provide a comprehensive overview of employing the DR approach in GI cancers to inform future research endeavors and clinical trials in this field.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Karimpour
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoda Bahrami
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Chaleshi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Totonchi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
6
|
Sukiennik J, Olczak A, Gobis K, Korona-Głowniak I, Suśniak K, Fruziński A, Szczesio M. Structures and biological activity of three 2-(pyridin-2-yl)-1H-benzimidazole derivatives. Acta Crystallogr C Struct Chem 2023; 79:504-512. [PMID: 37937944 DOI: 10.1107/s2053229623009452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023] Open
Abstract
Two new 2-(pyridin-2-yl)-1H-benzimidazole derivatives, namely, 2-(4-phenoxypyridin-2-yl)-1H-benzimidazole, C18H13N3O, and 2-[4-(4-fluorophenoxy)pyridin-2-yl]-1H-benzimidazole, C18H12FN3O, were synthesized and characterized by NMR spectroscopy. Crystal structure, biological activity and ADME analyses were performed for these two new compounds and a third compound, namely, 5,6-dimethyl-2-[4-(4-phenylpiperazin-1-yl)pyridin-2-yl]-1H-benzimidazole methanol monosolvate, C24H25N5·CH3OH, the synthesis of which had been described previously. All three compounds have a similar chain hydrogen-bonding pattern. One of them (the fluorophenoxy derivative) showed good antimicrobial activity against Gram-positive bacteria. The ADME analysis indicates that the compounds could be good drug candidates.
Collapse
Affiliation(s)
- Jarosław Sukiennik
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Łódź University of Technology, Zeromskiego 116, 90-924 Łódź, Poland
| | - Andrzej Olczak
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Łódź University of Technology, Zeromskiego 116, 90-924 Łódź, Poland
| | - Katarzyna Gobis
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 107 Gen. Hallera Ave, 80-416 Gdańsk, Poland
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 1 Chodźki St, 20-093 Lublin, Poland
| | - Katarzyna Suśniak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 1 Chodźki St, 20-093 Lublin, Poland
| | - Andrzej Fruziński
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Łódź University of Technology, Zeromskiego 116, 90-924 Łódź, Poland
| | - Małgorzata Szczesio
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Łódź University of Technology, Zeromskiego 116, 90-924 Łódź, Poland
| |
Collapse
|
7
|
Ioakeim-Skoufa I, Tobajas-Ramos N, Menditto E, Aza-Pascual-Salcedo M, Gimeno-Miguel A, Orlando V, González-Rubio F, Fanlo-Villacampa A, Lasala-Aza C, Ostasz E, Vicente-Romero J. Drug Repurposing in Oncology: A Systematic Review of Randomized Controlled Clinical Trials. Cancers (Basel) 2023; 15:cancers15112972. [PMID: 37296934 DOI: 10.3390/cancers15112972] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/19/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Quality pharmacological treatment can improve survival in many types of cancer. Drug repurposing offers advantages in comparison with traditional drug development procedures, reducing time and risk. This systematic review identified the most recent randomized controlled clinical trials that focus on drug repurposing in oncology. We found that only a few clinical trials were placebo-controlled or standard-of-care-alone-controlled. Metformin has been studied for potential use in various types of cancer, including prostate, lung, and pancreatic cancer. Other studies assessed the possible use of the antiparasitic agent mebendazole in colorectal cancer and of propranolol in multiple myeloma or, when combined with etodolac, in breast cancer. We were able to identify trials that study the potential use of known antineoplastics in other non-oncological conditions, such as imatinib for severe coronavirus disease in 2019 or a study protocol aiming to assess the possible repurposing of leuprolide for Alzheimer's disease. Major limitations of these clinical trials were the small sample size, the high clinical heterogeneity of the participants regarding the stage of the neoplastic disease, and the lack of accounting for multimorbidity and other baseline clinical characteristics. Drug repurposing possibilities in oncology must be carefully examined with well-designed trials, considering factors that could influence prognosis.
Collapse
Affiliation(s)
- Ignatios Ioakeim-Skoufa
- WHO Collaborating Centre for Drug Statistics Methodology, Department of Drug Statistics, Division of Health Data and Digitalisation, Norwegian Institute of Public Health, NO-0213 Oslo, Norway
- EpiChron Research Group, Aragon Health Research Institute (IIS Aragón), Miguel Servet University Hospital, ES-50009 Zaragoza, Spain
- Research Network on Chronicity, Primary Care, and Health Promotion (RICAPPS), Institute of Health Carlos III (ISCIII), ES-28029 Madrid, Spain
- Drug Utilization Work Group, Spanish Society of Family and Community Medicine (semFYC), ES-08009 Barcelona, Spain
- Department of Pharmacology, Physiology, and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, ES-50009 Zaragoza, Spain
| | - Natalia Tobajas-Ramos
- Department of Pharmacology, Physiology, and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, ES-50009 Zaragoza, Spain
| | - Enrica Menditto
- Centro Interdipartimentale di Ricerca in Farmacoeconomia e Farmacoutilizzazione (CIRFF), Center of Drug Utilization and Pharmacoeconomics, Department of Pharmacy, University of Naples Federico II, IT-80131 Naples, Italy
| | - Mercedes Aza-Pascual-Salcedo
- EpiChron Research Group, Aragon Health Research Institute (IIS Aragón), Miguel Servet University Hospital, ES-50009 Zaragoza, Spain
- Research Network on Chronicity, Primary Care, and Health Promotion (RICAPPS), Institute of Health Carlos III (ISCIII), ES-28029 Madrid, Spain
- Primary Care Pharmacy Service Zaragoza III, Aragon Health Service (SALUD), ES-50017 Zaragoza, Spain
| | - Antonio Gimeno-Miguel
- EpiChron Research Group, Aragon Health Research Institute (IIS Aragón), Miguel Servet University Hospital, ES-50009 Zaragoza, Spain
- Research Network on Chronicity, Primary Care, and Health Promotion (RICAPPS), Institute of Health Carlos III (ISCIII), ES-28029 Madrid, Spain
| | - Valentina Orlando
- Centro Interdipartimentale di Ricerca in Farmacoeconomia e Farmacoutilizzazione (CIRFF), Center of Drug Utilization and Pharmacoeconomics, Department of Pharmacy, University of Naples Federico II, IT-80131 Naples, Italy
| | - Francisca González-Rubio
- EpiChron Research Group, Aragon Health Research Institute (IIS Aragón), Miguel Servet University Hospital, ES-50009 Zaragoza, Spain
- Drug Utilization Work Group, Spanish Society of Family and Community Medicine (semFYC), ES-08009 Barcelona, Spain
| | - Ana Fanlo-Villacampa
- Department of Pharmacology, Physiology, and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, ES-50009 Zaragoza, Spain
| | - Carmen Lasala-Aza
- Pharmacy Service, Virgen de la Victoria University Hospital, ES-29010 Malaga, Spain
| | - Ewelina Ostasz
- Rehabilitation Centre Vikersund Bad AS, NO-3370 Vikersund, Norway
| | - Jorge Vicente-Romero
- Department of Pharmacology, Physiology, and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, ES-50009 Zaragoza, Spain
| |
Collapse
|
8
|
El-Tanani M, Ahmed KAA, Shakya AK, Ammari WG, Al-Shudifat AE. Phase II, Double-Blinded, Randomized, Placebo-Controlled Clinical Trial Investigating the Efficacy of Mebendazole in the Management of Symptomatic COVID-19 Patients. Pharmaceuticals (Basel) 2023; 16:799. [PMID: 37375747 PMCID: PMC10300804 DOI: 10.3390/ph16060799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The outbreak of the COVID-19 pandemic has spread throughout the world, affecting almost all nations and territories. The current double-blind, randomized, placebo-controlled, phase II clinical trial sought to evaluate the clinical efficacy and safety of mebendazole as an adjuvant therapy for outpatients with COVID-19. The patients were recruited and divided into two groups: a Mebendazole-treated group and placebo group. The mebendazole and placebo groups were matched for age, sex, and complete blood count (CBC) with differential and liver and kidney function tests at baseline. On the third day, the C-reactive protein (CRP) levels were lower (2.03 ± 1.45 vs. 5.45 ± 3.95, p < 0.001) and the cycle threshold (CT) levels were higher (27.21 ± 3.81 vs. 24.40 ± 3.09, p = 0.046) significantly in the mebendazole group than in the placebo group on the third day. Furthermore, CRP decreased and CT dramatically increased on day three compared to the baseline day in the mebendazole group (p < 0.001 and p = 0.008, respectively). There was a significant inverse correlation between lymphocytes and CT levels in the mebendazole group (r = -0.491, p = 0.039) but not in the placebo group (r = 0.051, p = 0.888). Mebendazole therapy increased innate immunity and returned inflammation to normal levels in COVID-19 outpatients faster than it did in the placebo group in this clinical trial. Our findings add to the growing body of research on the clinical and microbiological benefits of repurposing antiparasitic therapy, specifically mebendazole, for SARS-CoV-2 infection and other viral infections.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre (PDRC), Al-Ahliyya Amman University, Amman 19328, Jordan
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Khaled Abdul-Aziz Ahmed
- Pharmacological and Diagnostic Research Centre (PDRC), Al-Ahliyya Amman University, Amman 19328, Jordan
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ashok K. Shakya
- Pharmacological and Diagnostic Research Centre (PDRC), Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Wesam G. Ammari
- Pharmacological and Diagnostic Research Centre (PDRC), Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Abdel-Elah Al-Shudifat
- Department of Internal and Family Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| |
Collapse
|
9
|
Montecinos F, Sackett DL. Structural Changes, Biological Consequences, and Repurposing of Colchicine Site Ligands. Biomolecules 2023; 13:biom13050834. [PMID: 37238704 DOI: 10.3390/biom13050834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Microtubule-targeting agents (MTAs) bind to one of several distinct sites in the tubulin dimer, the subunit of microtubules. The binding affinities of MTAs may vary by several orders of magnitude, even for MTAs that specifically bind to a particular site. The first drug binding site discovered in tubulin was the colchicine binding site (CBS), which has been known since the discovery of the tubulin protein. Although highly conserved throughout eukaryotic evolution, tubulins show diversity in their sequences between tubulin orthologs (inter-species sequence differences) and paralogs (intraspecies differences, such as tubulin isotypes). The CBS is promiscuous and binds to a broad range of structurally distinct molecules that can vary in size, shape, and affinity. This site remains a popular target for the development of new drugs to treat human diseases (including cancer) and parasitic infections in plants and animals. Despite the rich knowledge about the diversity of tubulin sequences and the structurally distinct molecules that bind to the CBS, a pattern has yet to be found to predict the affinity of new molecules that bind to the CBS. In this commentary, we briefly discuss the literature evidencing the coexistence of the varying binding affinities for drugs that bind to the CBS of tubulins from different species and within species. We also comment on the structural data that aim to explain the experimental differences observed in colchicine binding to the CBS of β-tubulin class VI (TUBB1) compared to other isotypes.
Collapse
Affiliation(s)
- Felipe Montecinos
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dan L Sackett
- Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Graff BT, Palanivel C, Jenkins CB, Baranowska-Kortylewicz J, Yan Y. Benzimidazole carbamate induces cytotoxicity in breast cancer cells via two distinct cell death mechanisms. Cell Death Discov 2023; 9:162. [PMID: 37179350 PMCID: PMC10183037 DOI: 10.1038/s41420-023-01454-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Metastatic breast cancer (mBC) is responsible for >90% of breast cancer-related deaths. Microtubule-targeting agents (MTAs) are the front-line treatment for mBC. However, the effectiveness of MTAs is frequently limited by the primary or acquired resistance. Furthermore, recurrent mBC derived from cancer cells that survived MTA treatment are typically more chemoresistant. The overall response rates for the second- and third-line MTAs in mBC patients previously treated with MTAs are 12-35%. Thus, there is an ongoing search for novel MTAs with a distinct mode of action that can circumvent chemoresistance mechanisms. Our results show that methyl N-(6-benzoyl-1H-benzimidazol-2-yl)carbamate (BCar), a microtubule-disrupting anthelmintic that binds to the colchicine binding site separate from the binding sites of clinically used MTAs, has the potential to treat MTA-resistant mBC. We have comprehensively evaluated the cellular effects of BCar in a panel of human breast cancer (BC) cell lines and normal breast cells. BCar effects on the clonogenic survival, cell cycle, apoptosis, autophagy, senescence, and mitotic catastrophe were measured. Approximately 25% of BCs harbor mutant p53. For this reason, the p53 status was included as a variable. The results show that BC cells are >10x more sensitive to BCar than normal mammary epithelial cells (HME). p53-mutant BC cells are significantly more sensitive to BCar treatment than p53 wild-type BC cells. Furthermore, BCar appears to kill BC cells primarily via either p53-dependent apoptosis or p53-independent mitotic catastrophe. When compared to docetaxel and vincristine, two clinical MTAs, BCar is fairly innocuous in HME cells, providing a much wider therapeutic window than docetaxel and vincristine. Together, the results strongly support the notion that BCar-based therapeutics may serve as a new line of MTAs for mBC treatment.
Collapse
Affiliation(s)
- Brendan T Graff
- Department of Radiation Oncology, College of Medicine University of Nebraska Medical Center Omaha, Nebraska, USA
| | - Chitra Palanivel
- Department of Radiation Oncology, College of Medicine University of Nebraska Medical Center Omaha, Nebraska, USA
| | - Christopher B Jenkins
- Department of Radiation Oncology, College of Medicine University of Nebraska Medical Center Omaha, Nebraska, USA
| | - Janina Baranowska-Kortylewicz
- Department of Pharmaceutical Sciences, College of Pharmacy University of Nebraska Medical Center Omaha, Nebraska, USA.
| | - Ying Yan
- Department of Radiation Oncology, College of Medicine University of Nebraska Medical Center Omaha, Nebraska, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine University of Nebraska Medical Center Omaha, Nebraska, USA.
| |
Collapse
|
11
|
Meco D, Attinà G, Mastrangelo S, Navarra P, Ruggiero A. Emerging Perspectives on the Antiparasitic Mebendazole as a Repurposed Drug for the Treatment of Brain Cancers. Int J Mol Sci 2023; 24:ijms24021334. [PMID: 36674870 PMCID: PMC9862092 DOI: 10.3390/ijms24021334] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Repurposing approved non-antitumor drugs is a promising and affordable strategy in drug discovery to identify new therapeutic uses different from the original medical indication that may help increase the number of possible, effective anticancer drugs. The use of drugs in ways other than their original FDA-approved indications could offer novel avenues such as bypassing the chemoresistance and recurrence seen with conventional therapy and treatment; moreover, it can offer a safe and economic strategy for combination therapy. Recent works have demonstrated the anticancer properties of the FDA-approved drug Mebendazole. This synthetic benzimidazole proved effective against a broad spectrum of intestinal Helminthiasis. Mebendazole can penetrate the blood-brain barrier and has been shown to inhibit the malignant progression of glioma by targeting signaling pathways related to cell proliferation, apoptosis, or invasion/migration, or by increasing the sensitivity of glioma cells to conventional chemotherapy or radiotherapy. Moreover, several preclinical models and ongoing clinical trials explore the efficacy of Mebendazole in multiple cancers, including acute myeloid leukemia, brain cancer, oropharyngeal squamous cell carcinoma, breast cancer, gastrointestinal cancer, lung carcinoma, adrenocortical carcinoma, prostate cancer, and head and neck cancer. The present review summarizes central literature regarding the anticancer effects of MBZ in cancer cell lines, animal tumor models, and clinical trials to suggest possible strategies for safe and economical combinations of anticancer therapies in brain cancer. Mebendazole might be an excellent candidate for the treatment of brain tumors because of its efficacy both when used as monotherapy and in combination as an enhancement to standard chemotherapeutics and radiotherapy, due to its effectiveness on tumor angiogenesis inhibition, cell cycle arrest, apoptosis induction, and targeting of critical pathways involved in cancer such as Hedgehog signaling. Therefore, attention to MBZ repurposing has recently increased because of its potential therapeutic versatility and significant clinical implications, such as reducing medical care costs and optimizing existing therapies. Using new treatments is essential, particularly when current therapeutics for patients with brain cancer fail.
Collapse
Affiliation(s)
- Daniela Meco
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giorgio Attinà
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Pierluigi Navarra
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence: ; Tel.: +39-06-3058203; Fax: +39-06-3052751
| |
Collapse
|
12
|
Babić B, Andrić D, Farkaš A, Vuk D, Ašperger D, Dolar D. Behavior of Mebendazole during NF/RO Adsorption and Photolysis. MEMBRANES 2022; 12:888. [PMID: 36135907 PMCID: PMC9503556 DOI: 10.3390/membranes12090888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The idea of using drugs from the benzimidazole group as potential antitumor agents is becoming increasingly popular and widespread in research. However, their use as antiparasitics and in cancer treatment will increase their already recorded occurrence in the aquatic environment. In this study, the removal of the anthelmintic mebendazole from aqueous solution was investigated using nanofiltration and reverse osmosis membranes, adsorption on granular activated carbon (GAC), and photolytic degradation. The dense NF90 and reverse osmosis XLE membranes showed almost complete removal (>97.7%), while the NF270 membrane showed a large dependence of removal on initial concentration from 41.9% to 96.6%. Adsorption in the column resulted in complete removal of mebendazole at the highest GAC height used (40 cm) from the solution with the lowest concentration (1 mg/L). Photolytic degradation by artificial light for 2 and 12 h resulted in photodegradation of mebendazole in the range of 23.5−61.4%, forming a new degradation or transformation compound with an m/z ratio of 311. Mebendazole is a photosensitive drug whose photodegradation follows first-order kinetics and depends on the drug concentration. Toxicity was studied with Vibrio fischeri before and after photolysis, and showed a decrease in inhibition after 12 h.
Collapse
Affiliation(s)
- Bruna Babić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Darko Andrić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Anamarija Farkaš
- The Institute for Development and International Relations, Ljudevita Farkaša Vukotinovića 2, 10000 Zagreb, Croatia
| | - Dragana Vuk
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Danijela Ašperger
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Davor Dolar
- Department of Physical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| |
Collapse
|
13
|
Li Q, Demir S, Del Río-Álvarez Á, Maxwell R, Wagner A, Carrillo-Reixach J, Armengol C, Vokuhl C, Häberle B, von Schweinitz D, Schmid I, Cairo S, Kappler R. Targeting the Unwindosome by Mebendazole Is a Vulnerability of Chemoresistant Hepatoblastoma. Cancers (Basel) 2022; 14:cancers14174196. [PMID: 36077733 PMCID: PMC9454988 DOI: 10.3390/cancers14174196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Resistance to conventional chemotherapy remains a huge challenge in the clinical management of hepatoblastoma, the most common liver tumor in childhood. By integrating the gene expression data of hepatoblastoma patients into the perturbation prediction tool Connectivity Map, we identified the clinical widely used anthelmintic mebendazole as a drug to circumvent chemoresistance in permanent and patient-derived xenograft cell lines that are resistant to cisplatin, the therapeutic backbone of hepatoblastoma treatment. Viability assays clearly indicated a potent reduction of tumor cell growth upon mebendazole treatment in a dose-dependent manner. The combination of mebendazole and cisplatin revealed a strong synergistic effect, which was comparable to the one seen with cisplatin and doxorubicin, the current treatment for high-risk hepatoblastoma patients. Moreover, mebendazole treatment resulted in reduced colony and tumor spheroid formation capabilities, cell cycle arrest, and induction of apoptosis of hepatoblastoma cells. Mechanistically, mebendazole causes blockage of microtubule formation and transcriptional downregulation of genes encoding the unwindosome, which are highly expressed in chemoresistant tumors. Most importantly, mebendazole significantly reduced tumor growth in a subcutaneous xenograft transplantation mouse model without side effects. In conclusion, our results strongly support the clinical use of mebendazole in the treatment of chemoresistant hepatoblastoma and highlight the potential theranostic value of unwindosome-associated genes.
Collapse
Affiliation(s)
- Qian Li
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Salih Demir
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Álvaro Del Río-Álvarez
- Childhood Liver Oncology Group, Health Sciences Research Institute Germans Trias i Pujol IGTP, 08916 Badalona, Spain
| | - Rebecca Maxwell
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Alexandra Wagner
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Juan Carrillo-Reixach
- Childhood Liver Oncology Group, Health Sciences Research Institute Germans Trias i Pujol IGTP, 08916 Badalona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), 28029 Madrid, Spain
| | - Carolina Armengol
- Childhood Liver Oncology Group, Health Sciences Research Institute Germans Trias i Pujol IGTP, 08916 Badalona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), 28029 Madrid, Spain
| | - Christian Vokuhl
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Beate Häberle
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Dietrich von Schweinitz
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Irene Schmid
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | | | - Roland Kappler
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
- Correspondence: ; Tel.: +49-89-4400-57810
| |
Collapse
|