1
|
Cao J, Chen H, Zhang Y, Kang Y, Zhou S, Liao Z, Gao L, Yin J, Jing Y. Androgen deprivation exacerbates AD pathology by promoting the loss of microglia in an age-dependent manner. Life Sci 2024; 355:122973. [PMID: 39142510 DOI: 10.1016/j.lfs.2024.122973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/25/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
AIMS Microglial cells are integral to the pathogenesis of Alzheimer's disease (AD). The observed sex disparity in AD prevalence, with a notable predominance in women, implies a potential influence of sex hormones, such as androgens, on disease mechanisms. Despite this, the specific effects of androgens on microglia remain unclear. This study is designed to delineate the interplay between androgens and the survival and inflammatory profile of microglial cells, as well as to explore their contribution to the progression of AD. METHODS AND KEY FINDINGS To create a chronic androgen deficiency model, 3-month-old wild-type (WT) mice and APP/PS1 mice underwent bilateral orchiectomy (ORX), with age-matched sham-operated controls. Cognitive and memory were evaluated at 5 and 12 months, paralleled by assessments of amyloid-beta (Aβ) and microglial morphology in hippocampal and cortical areas. The ORX treatment in mice resulted in diminished microglial populations and morphological alterations, alongside an increase in Aβ plaques and a concomitant decline in cognitive performance that exacerbated over time. In vitro, dihydrotestosterone (DHT) was found to stimulate microglial proliferation and ameliorate Aβ1-42-induced apoptosis. SIGNIFICANCE These findings suggested that androgens may exert a protective role, maintaining the normal proliferation and functionality of microglial cells. This preservation could potentially slow the progression of AD. As a result, our study provided a conceptual framework for the development of novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Jiaxin Cao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Haichao Chen
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yishu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yiting Kang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Siwei Zhou
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Zirui Liao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Liping Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Jie Yin
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yuhong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China; Key Laboratory of Preclinical Study for New Drugs of Gansu province, Lanzhou University, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
2
|
Penna DBDS, Gumiéro Costa S, Dos Santos-Rodrigues A, Pandolfo P. The association of caffeine and nandrolone decanoate modulates aversive memory and nociception in rats. Brain Res 2024; 1837:148937. [PMID: 38615923 DOI: 10.1016/j.brainres.2024.148937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Caffeine and anabolic-androgenic steroids (AAS) are commonly used to improve muscle mass and athletic performance. Nandrolone Decanoate (ND) is one of the most abused AAS worldwide, leading to behavioral changes in both humans and rodents. Caffeine, the most widely consumed psychostimulant globally, is present in various thermogenic and gym supplements. Low and moderate doses of caffeine antagonize adenosine receptors and have been linked to improved memory and pain relief. We have previously demonstrated that consuming caffeine prevents the risk-taking behavior triggered by nandrolone. In this study, we aimed to investigate the long-term effects of ND and caffeine, either alone or in combination, on passive avoidance memory and nociception. We used the step-down and hot-plate tasks in male and female Lister Hooded rats. Our results confirmed the antinociceptive effect of caffeine and indicated that chronic administration of the ND-caffeine association promotes the evocation of aversive memory in female rats.
Collapse
Affiliation(s)
- Daniel Bussinger de Souza Penna
- Institute of Biomedical Sciences, Program of Biomedical Sciences: Physiology and Pharmacology, Federal Fluminense University, Niteroi, Brazil; Institute of Biology, Program of Neurosciences, Federal Fluminense University, Niteroi, Brazil
| | - Samara Gumiéro Costa
- Institute of Biomedical Sciences, Program of Biomedical Sciences: Physiology and Pharmacology, Federal Fluminense University, Niteroi, Brazil
| | | | - Pablo Pandolfo
- Institute of Biomedical Sciences, Program of Biomedical Sciences: Physiology and Pharmacology, Federal Fluminense University, Niteroi, Brazil; Institute of Biology, Program of Neurosciences, Federal Fluminense University, Niteroi, Brazil.
| |
Collapse
|
3
|
Bradshaw JL, Wilson EN, Mabry S, Shrestha P, Gardner JJ, Cunningham RL. Impact of sex and hypoxia on brain region-specific expression of membrane androgen receptor AR45 in rats. Front Endocrinol (Lausanne) 2024; 15:1420144. [PMID: 39092288 PMCID: PMC11291194 DOI: 10.3389/fendo.2024.1420144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Background Sex differences in oxidative stress-associated cognitive decline are influenced by sex hormone levels. Notably, oxidative stress-associated neuronal cell death can be exacerbated through testosterone signaling via membrane androgen receptor AR45, which is complexed with G protein Gαq within plasma membrane-associated lipid rafts. The objective of this study was to elucidate the impact of sex on the expression of AR45 and Gαq in brain regions associated with cognitive function, specifically hippocampus subregions and entorhinal cortex. Additionally, we investigated whether chronic intermittent hypoxia (CIH), an oxidative stressor with sex-specific effects, would modulate AR45 and Gαq expression in these brain regions. Methods Adult male and female Sprague-Dawley rats were exposed to CIH or normoxia (room air) during their sleep phase for 14 days. We quantified AR45 and Gαq protein expression in various cognition-associated brain regions [dorsal hippocampal CA1, CA3, dentate gyrus (DG), and entorhinal cortex (ETC)] via western blotting. For comparisons, AR45 and Gαq protein expression were also assessed in brain regions outside the hippocampal-ETC circuit [thalamus (TH) and striatum (STR)]. Results The highest AR45 levels were expressed in the hippocampal CA1 and DG while the lowest expression was observed in the extrahippocampal STR. The highest Gαq levels were expressed in the hippocampal-associated ETC while the lowest expression was observed in the extrahippocampal TH. Females expressed higher levels of AR45 in the hippocampal DG compared to males, while no sex differences in Gαq expression were observed regardless of brain region assessed. Moreover, there was no effect of CIH on AR45 or Gαq expression in any of the brain regions examined. AR45 expression was positively correlated with Gαq expression in the CA1, DG, ETC, TH, and STR in a sex-dependent manner. Conclusion Our findings reveal enrichment of AR45 and Gαq protein expression within the hippocampal-ETC circuit, which is vulnerable to oxidative stress and neurodegeneration during cognitive decline. Nonetheless, CIH does not modulate the expression of AR45 or Gαq. Importantly, there are sex differences in AR45 expression and its association with Gαq expression in various brain regions, which may underlie sex-specific differences in cognitive and motor function-associated declines with aging.
Collapse
Affiliation(s)
- Jessica L. Bradshaw
- Department of Pharmaceutical Sciences, University of North Texas (UNT) System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - E. Nicole Wilson
- Department of Pharmaceutical Sciences, University of North Texas (UNT) System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Steve Mabry
- Department of Pharmaceutical Sciences, University of North Texas (UNT) System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Pawan Shrestha
- Department of Pharmaceutical Sciences, University of North Texas (UNT) System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Jennifer J. Gardner
- Department of Pharmaceutical Sciences, University of North Texas (UNT) System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Rebecca L. Cunningham
- Department of Pharmaceutical Sciences, University of North Texas (UNT) System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
4
|
Reiss AB, Gulkarov S, Pinkhasov A, Sheehan KM, Srivastava A, De Leon J, Katz AE. Androgen Deprivation Therapy for Prostate Cancer: Focus on Cognitive Function and Mood. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:77. [PMID: 38256338 PMCID: PMC10819522 DOI: 10.3390/medicina60010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024]
Abstract
Prostate cancer is the second leading cause of cancer death in men in the United States. Androgen deprivation therapy (ADT) is currently the primary treatment for metastatic prostate cancer, and some studies have shown that the use of anti-androgen drugs is related to a reduction in cognitive function, mood changes, diminished quality of life, dementia, and possibly Alzheimer's disease. ADT has potential physiological effects such as a reduction in white matter integrity and a negative impact on hypothalamic functions due to the lowering of testosterone levels or the blockade of downstream androgen receptor signaling by first- and second-generation anti-androgen drugs. A comparative analysis of prostate cancer patients undergoing ADT and Alzheimer patients identified over 30 shared genes, illustrating common ground for the mechanistic underpinning of the symptomatology. The purpose of this review was to investigate the effects of ADT on cognitive function, mood, and quality of life, as well as to analyze the relationship between ADT and Alzheimer's disease. The evaluation of prostate cancer patient cognitive ability via neurocognitive testing is described. Future studies should further explore the connection among cognitive deficits, mood disturbances, and the physiological changes that occur when hormonal balance is altered.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (K.M.S.); (A.S.); (J.D.L.)
| | - Shelly Gulkarov
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (K.M.S.); (A.S.); (J.D.L.)
| | - Aaron Pinkhasov
- Department of Psychiatry, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA;
| | - Katie M. Sheehan
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (K.M.S.); (A.S.); (J.D.L.)
| | - Ankita Srivastava
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (K.M.S.); (A.S.); (J.D.L.)
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (K.M.S.); (A.S.); (J.D.L.)
| | - Aaron E. Katz
- Department of Urology, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA;
| |
Collapse
|