1
|
Deng Z, Long D, Li C, Liu H, Li W, Zhong Y, Mo X, Li R, Yang Z, Kang Y, Mao G. IRF1-mediated upregulation of PARP12 promotes cartilage degradation by inhibiting PINK1/Parkin dependent mitophagy through ISG15 attenuating ubiquitylation and SUMOylation of MFN1/2. Bone Res 2024; 12:63. [PMID: 39465252 PMCID: PMC11514270 DOI: 10.1038/s41413-024-00363-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/02/2024] [Accepted: 08/09/2024] [Indexed: 10/29/2024] Open
Abstract
Osteoarthritis (OA) is an age-related cartilage-degenerating joint disease. Mitochondrial dysfunction has been reported to promote the development of OA. Poly (ADP-ribose) polymerase family member 12 (PARP12) is a key regulator of mitochondrial function, protein translation, and inflammation. However, the role of PARP12 in OA-based cartilage degradation and the underlying mechanisms are relatively unknown. Here, we first demonstrated that PARP12 inhibits mitophagy and promotes OA progression in human OA cartilage and a monosodium iodoacetate-induced rat OA model. Using mass spectrometry and co-immunoprecipitation assay, PARP12 was shown to interact with ISG15, upregulate mitofusin 1 and 2 (MFN1/2) ISGylation, which downregulated MFN1/2 ubiquitination and SUMOylation, thereby inhibiting PINK1/Parkin-dependent chondrocyte mitophagy and promoting cartilage degradation. Moreover, inflammatory cytokine-induced interferon regulatory factor 1 (IRF1) activation was required for the upregulation of PARP12 expression, and it directly bound to the PARP12 promoter to activate transcription. XAV-939 inhibited PARP12 expression and suppressed OA pathogenesis in vitro and in vivo. Clinically, PARP12 can be used to predict the severity of OA; thus, it represents a new target for the study of mitophagy and OA progression. In brief, the IRF1-mediated upregulation of PARP12 promoted cartilage degradation by inhibiting PINK1/Parkin-dependent mitophagy via ISG15-based attenuation of MFN1/2 ubiquitylation and SUMOylation. Our data provide new insights into the molecular mechanisms underlying PARP12-based regulation of mitophagy and can facilitate the development of therapeutic strategies for the treatment of OA.
Collapse
Affiliation(s)
- Zengfa Deng
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Dianbo Long
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Changzhao Li
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Hailong Liu
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Wei Li
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yanlin Zhong
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiaolin Mo
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ruiyun Li
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zibo Yang
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Yan Kang
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Guping Mao
- Department of Sports Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
2
|
Ke T, Lai J, Li X, Liu F, Liu W, Zhong C. Association between the body roundness index and osteoarthritis: evidence from NHANES. Front Med (Lausanne) 2024; 11:1472196. [PMID: 39512614 PMCID: PMC11540616 DOI: 10.3389/fmed.2024.1472196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024] Open
Abstract
Background The body roundness index (BRI) is a quantitative measure used to evaluate the presence of obesity and the distribution of body fat. However, the relationship between the BRI and osteoarthritis (OA) is still unclear. This study aimed to examine the relationship between the BRI and the occurrence of OA. Methods This study was a cross-sectional analysis used to analyze data from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2018. A variety of variables were included in this investigation, which employed logistic regression analysis to assess the correlation between the BRI and OA. The robustness of the results and the impact of stratification variables were evaluated using subgroup and sensitivity analyses. To evaluate the ability of the BRI to predict OA, receiver operating characteristic (ROC) analysis was performed. Results The analysis included 19,717 participants. Participants with OA had a significantly greater BRI than those without OA. Logistic regression analysis revealed a statistically significant positive correlation between the BRI and OA (OR = 1.18, 95% CI = 1.15-1.21, p-value <0.001). Despite the complete adjustment for covariates, this association remained stable (OR = 1.10, 95% CI = 1.04-1.17, p-value = 0.002). The results were corroborated by subgroup and sensitivity analyses, which demonstrated their robustness. Moreover, the BRI exhibited greater predictive accuracy for OA than did BMI. Conclusion The BRI and OA are significantly associated in adults in the United States. The risk of developing OA may be increased by elevated levels of the BRI. Monitoring levels of the BRI is essential to prevent or reduce the prevalence and advancement of OA.
Collapse
Affiliation(s)
| | | | | | | | - Wei Liu
- Department of Orthopedics, Gaozhou People’s Hospital, Maoming, China
| | - Chengfan Zhong
- Department of Orthopedics, Gaozhou People’s Hospital, Maoming, China
| |
Collapse
|
3
|
Zhu C, Zhang L, Ding X, Wu W, Zou J. Non-coding RNAs as regulators of autophagy in chondrocytes: Mechanisms and implications for osteoarthritis. Ageing Res Rev 2024; 99:102404. [PMID: 38971322 DOI: 10.1016/j.arr.2024.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease with multiple causative factors such as aging, mechanical injury, and obesity. Autophagy is a complex dynamic process that is involved in the degradation and modification of intracellular proteins and organelles under different pathophysiological conditions. Autophagy, as a cell survival mechanism under various stress conditions, plays a key role in regulating chondrocyte life cycle metabolism and cellular homeostasis. Non-coding RNAs (ncRNAs) are heterogeneous transcripts that do not possess protein-coding functions, but they can act as effective post-transcriptional and epigenetic regulators of gene and protein expression, thus participating in numerous fundamental biological processes. Increasing evidence suggests that ncRNAs, autophagy, and their crosstalk play crucial roles in OA pathogenesis. Therefore, we summarized the complex role of autophagy in OA chondrocytes and focused on the regulatory role of ncRNAs in OA-associated autophagy to elucidate the complex pathological mechanisms of the ncRNA-autophagy network in the development of OA, thus providing new research targets for the clinical diagnosis and treatment of OA.
Collapse
Affiliation(s)
- Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Lingli Zhang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoqing Ding
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Wei Wu
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China.
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
4
|
Li Y, Zhao J, Guo S, He D. siRNA therapy in osteoarthritis: targeting cellular pathways for advanced treatment approaches. Front Immunol 2024; 15:1382689. [PMID: 38895116 PMCID: PMC11184127 DOI: 10.3389/fimmu.2024.1382689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Osteoarthritis (OA) is a common joint disorder characterized by the degeneration of cartilage and inflammation, affecting millions worldwide. The disease's complex pathogenesis involves various cell types, such as chondrocytes, synovial cells, osteoblasts, and immune cells, contributing to the intricate interplay of factors leading to tissue degradation and pain. RNA interference (RNAi) therapy, particularly through the use of small interfering RNA (siRNA), emerges as a promising avenue for OA treatment due to its capacity for specific gene silencing. siRNA molecules can modulate post-transcriptional gene expression, targeting key pathways involved in cellular proliferation, apoptosis, senescence, autophagy, biomolecule secretion, inflammation, and bone remodeling. This review delves into the mechanisms by which siRNA targets various cell populations within the OA milieu, offering a comprehensive overview of the potential therapeutic benefits and challenges in clinical application. By summarizing the current advancements in siRNA delivery systems and therapeutic targets, we provide a solid theoretical foundation for the future development of novel siRNA-based strategies for OA diagnosis and treatment, paving the way for innovative and more effective approaches to managing this debilitating disease.
Collapse
Affiliation(s)
- Yunshen Li
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Grol MW. The evolving landscape of gene therapy strategies for the treatment of osteoarthritis. Osteoarthritis Cartilage 2024; 32:372-384. [PMID: 38199296 DOI: 10.1016/j.joca.2023.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/05/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
OBJECTIVES Significant advances have been made in our understanding of osteoarthritis (OA) pathogenesis; however, no disease-modifying therapies have been identified. This review will summarize the gene therapy landscape, its initial successes for OA, and possible challenges using recent studies and examples of gene therapies in clinical trials. DESIGN This narrative review has three major sections: 1) vector systems for OA gene therapy, 2) current and emerging targets for OA gene therapy, and 3) considerations and future directions. RESULTS Gene therapy is the strategy by which nucleic acids are delivered to treat and reverse disease progression. Specificity and prolonged expression of these nucleic acids are achieved by manipulating promoters, genes, and vector systems. Certain vector systems also allow for the development of combinatorial nucleic acid strategies that can be delivered in a single intraarticular injection - an approach likely required to treat the complexity of OA pathogenesis. Several viral and non-viral vector-based gene therapies are in clinical trials for OA, and many more are being evaluated in the preclinical arena. CONCLUSIONS In a post-coronavirus disease 2019 (COVID-19) era, the future of gene therapy for OA is certainly promising; however, the majority of preclinical validation continues to focus heavily on post-traumatic models and changes in only cartilage and subchondral bone. To ensure successful translation, new candidates in the preclinical arena should be examined against all joint tissues as well as pain using diverse models of injury-, obesity-, and age-induced disease. Lastly, consideration must be given to strategies for repeat administration and the cost of treatment owing to the chronic nature of OA.
Collapse
Affiliation(s)
- Matthew W Grol
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
6
|
Chen H, Wang Z, Gong L, Chen J, Huang Y, Guo W, Zhang Q, Li Y, Bao G, Li D, Chen Y. Attenuation effect of a polysaccharide from large leaf yellow tea by activating autophagy. Int J Biol Macromol 2024; 265:130697. [PMID: 38490395 DOI: 10.1016/j.ijbiomac.2024.130697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Chemotherapy, the most common class of anticancer drugs, is considerably limited owing to its adverse side effects. In this study, we aimed to evaluate the protective effect and mechanism of action of large-leaf yellow tea polysaccharides (ULYTP-1, 1.29 × 104 Da) against chemotherapeutic 5-fluorouracil (5-Fu). Structural characterisation revealed that ULYTP-1 was a β-galactopyranouronic acid. Furthermore, ULYTP-1 promoted autolysosome formation, activating autophagy and reducing the oxidative stress and inflammation caused by 5-Fu. Our in vivo study of 4 T1 tumour-bearing mice revealed that ULYTP-1 also attenuated 5-Fu toxicity through modulation of the gut microbiota. Moreover, ULYTP-1 effectively protected immune organs and the liver from 5-Fu toxicity, while promoting its tumour-inhibitory properties. The current findings provide a new strategy for optimising chemotherapy regimens in the clinic.
Collapse
Affiliation(s)
- Hao Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Zhuang Wang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Lei Gong
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Jielin Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yuzhe Huang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Wenqiang Guo
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Qiang Zhang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yong Li
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Guanhu Bao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Yan Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
7
|
Liu L, Wang J, Liu L, Shi W, Gao H, Liu L. The dysregulated autophagy in osteoarthritis: Revisiting molecular profile. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024:S0079-6107(24)00034-8. [PMID: 38531488 DOI: 10.1016/j.pbiomolbio.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/21/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
The risk factors of osteoarthritis (OA) are different and obesity, lifestyle, inflammation, cell death mechanisms and diabetes mellitus are among them. The changes in the biological mechanisms are considered as main regulators of OA pathogenesis. The dysregulation of autophagy is observed in different human diseases. During the pathogenesis of OA, the autophagy levels (induction or inhibition) change. The supportive and pro-survival function of autophagy can retard the progression of OA. The protective autophagy prevents the cartilage degeneration. Moreover, autophagy demonstrates interactions with cell death mechanisms and through inhibition of apoptosis and necroptosis, it improves OA. The non-coding RNA molecules can regulate autophagy and through direct and indirect control of autophagy, they dually delay/increase OA pathogenesis. The mitochondrial integrity can be regulated by autophagy to alleviate OA. Furthermore, therapeutic compounds, especially phytochemicals, stimulate protective autophagy in chondrocytes to prevent cell death. The protective autophagy has ability of reducing inflammation and oxidative damage, as two key players in the pathogenesis of OA.
Collapse
Affiliation(s)
- Liang Liu
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| | - Jie Wang
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| | - Lu Liu
- Department of Internal Medicine, Tianbao Central Health Hospital, Xintai City, Shandong Province, Shandong, Xintai, 271200, China
| | - Wenling Shi
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China
| | - Huajie Gao
- Operating Room of Qingdao University Affiliated Hospital, Qingdao, Pingdu, 266000, China
| | - Lun Liu
- Department of Joint Surgery, Affiliated Hospital of Qingdao University, Qingdao, Pingdu, 266000, China.
| |
Collapse
|
8
|
Wu M, Song W, Zhang M, Teng L, Tang Q, Zhu L. Potential mechanisms of exercise for relieving inflammatory pain: a literature review of animal studies. Front Aging Neurosci 2024; 16:1359455. [PMID: 38389561 PMCID: PMC10881774 DOI: 10.3389/fnagi.2024.1359455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Inflammatory pain (IP) is one of the most prevalent and intractable human conditions, and it leads to progressive dysfunction and reduced quality of life. Additionally, IP is incredibly challenging to treat successfully with drugs or surgery. The development of IP is complex and multifactorial, and peripheral and central sensitization may influence chronicity and treatment resistance in IP. Understanding the mechanisms underlying IP is vital for developing novel therapies. Strong evidence suggests that exercise can be a first-line relief for patients with IP during rehabilitation. However, the mechanisms through which exercise improves IP remain unclear. Here, we reviewed the current animal experimental evidence for an exercise intervention in IP and proposed biological mechanisms for the effects of synaptic plasticity in the anterior cingulate cortex, endocannabinoids, spinal dorsal horn excitability balance, immune cell polarization balance, cytokines, and glial cells. This information will contribute to basic science and strengthen the scientific basis for exercise therapy prescriptions for IP in clinical practice.
Collapse
Affiliation(s)
- Minmin Wu
- Department of Rehabilitation Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wenjing Song
- Department of Rehabilitation Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mei Zhang
- Department of Rehabilitation Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lili Teng
- Department of Rehabilitation Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Tang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Luwen Zhu
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
9
|
Deng X, Qu Y, Li M, Wu C, Dai J, Wei K, Xu H. Sakuranetin reduces inflammation and chondrocyte dysfunction in osteoarthritis by inhibiting the PI3K/AKT/NF-κB pathway. Biomed Pharmacother 2024; 171:116194. [PMID: 38262147 DOI: 10.1016/j.biopha.2024.116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative disease that impairs limb function, and its pathogenesis is closely related to inflammation. Sakuranetin (SK) is a cherry flavonoid phytoalexin with potent anti-inflammatory, anti-oxidant, and ant-ifungal properties. In recent studies, flavonoid and phytoalexin-related medicines have shown promise in the treatment of OA. However, the effects of SK on chondrocyte inflammation and the chondrogenesis process have remained unexplored, as have its functions in OA treatment. This study sought to confirm the therapeutic effects of SK in the OA rat model and reveal the potential mechanisms for protecting chondrocytes. The relevant mechanisms of SK were analyzed by network pharmacology analysis. Chondrocytes were subjected to IL-1β intervention to simulate an inflammatory environment and received SK treatment. Then, anabolism, catabolism, and inflammatory markers were detected by western blot, qPCR, elisa, and immunofluorescence. Chondrogenic ability was evaluated by micromass and 3D culture assays. The rats were treated with destabilization of the medial meniscus (DMM) surgery to establish an OA model and SK intra-articular injections subsequently. Histological staining, immunohistochemistry, and micro-CT were performed to analyze the structural and morphological changes of cartilage and subchondral bone. In chondrocytes, IL-1β treatment reduced chondrogenic ability, promoted catabolism, and exacerbated inflammation by triggering the PI3K/AKT/NF-κB pathway, whereas SK treatment partially rescued these negative effects. In vivo, SK treatment effectively alleviated the degeneration of cartilage and subchondral bone, thereby delaying the progression of OA. In summary, SK alleviates chondrocyte inflammation and promotes chondrogenesis by inhibiting the PI3K/AKT/NF-κB pathway, thereby improving OA progression.
Collapse
Affiliation(s)
- Xiaofeng Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yunkun Qu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Mengwei Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chunyu Wu
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| | - Jun Dai
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Kang Wei
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Haoran Xu
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China; Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Shang X, Hao X, Hou W, Liu J, Chi R, Deng X, Pan C, Xu T. Exercise-induced modulation of myokine irisin on muscle-bone unit in the rat model of post-traumatic osteoarthritis. J Orthop Surg Res 2024; 19:49. [PMID: 38195597 PMCID: PMC10777589 DOI: 10.1186/s13018-024-04532-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND AND AIM Post-traumatic osteoarthritis (PTOA) is a subtype of osteoarthritis (OA). Exercise may produce and release the myokine irisin through muscle fiber contraction. However, the effect of exercise-promoted irisin production on the internal interactions of the muscle-bone unit in PTOA studies remains unclear. METHODS Eighteen 8-week-old Sprague-Dawley (SD) rats were randomly divided into three groups: Sham/sedentary (Sham/Sed), PTOA/sedentary (PTOA/Sed), and PTOA/treadmill-walking (PTOA/TW). The PTOA model was established by transection of anterior cruciate ligament (ACLT) and destabilization of medial meniscus (DMM). After 4 weeks of modeling, the PTOA/TW group underwent treadmill exercise (15 m/min, 30 min/d, 5 d/ week, 8 weeks), and the other two groups were free to move in the cage. Evaluation and correlation analysis of muscle, cartilage, subchondral bone and serological indexes were performed after euthanasia. RESULTS Eight weeks of treadmill exercise effectively alleviated the trauma-induced OA phenotype, thereby maintaining cartilage and subchondral bone integrity in PTOA, and reducing quadriceps atrophy and myofibril degradation. Exercise reversed the down-regulated expression of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and fibronectin type III structural domain protein 5 (FNDC5) in muscle tissue of PTOA rats, and increased the blood irisin level, and the irisin level was positively correlated with the expression of PGC-1α and FNDC5. In addition, correlation analysis showed that irisin metabolism level was strongly negatively correlated with Osteoarthritis Research Society International (OARSI) and subchondral bone loss, indicating that irisin may be involved in cartilage biology and PTOA-related changes in cartilage and subchondral bone. Moreover, the metabolic level of irisin was strongly negatively correlated with muscle fiber cross-sectional area (CSA), Atrogin-1 and muscle ring-finger protein-1(MuRF-1) expression, suggesting that irisin may alleviate muscle atrophy through autocrine action. CONCLUSION Treadmill exercise can alleviate the atrophy and degeneration of muscle fibers in PTOA rats, reduce the degradation of muscle fibrin, promote the expression of serum irisin, and alleviate the degeneration of articular cartilage and subchondral bone loss in PTOA rats. These results indicate that treadmill exercise can affect the process of PTOA by promoting the expression of myokine irisin in rat muscle-bone unit.
Collapse
Affiliation(s)
- Xingru Shang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Xiaoxia Hao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Wenjie Hou
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Jiawei Liu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Ruimin Chi
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Xiaofeng Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Chunran Pan
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China.
| |
Collapse
|
11
|
Huang P, Lin J, Shen H, Zhao X. PSD95 as a New Potential Therapeutic Target of Osteoarthritis: A Study of the Identification of Hub Genes through Self-Contrast Model. Int J Mol Sci 2023; 24:14682. [PMID: 37834131 PMCID: PMC10572132 DOI: 10.3390/ijms241914682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Osteoarthritis (OA) is a worldwide joint disease. However, the precise mechanism causing OA remains unclear. Our primary aim was to identify vital biomarkers associated with the mechano-inflammatory aspect of OA, providing potential diagnostic and therapeutic targets for OA. Thirty OA patients who underwent total knee arthroplasty were recruited, and cartilage samples were obtained from both the lateral tibial plateau (LTP) and medial tibial plateau (MTP). GO and KEGG enrichment analyses were performed, and the protein-protein interaction (PPI) assessment was conducted for hub genes. The effect of PSD95 inhibition on cartilage degeneration was also conducted and analyzed. A total of 1247 upregulated and 244 downregulated DEGs were identified. Significant differences were observed between MTP and LTP in mechanical stress-related genes and activated sensory neurons based on a self-contrast model of human knee OA. Cluster analysis identified DLG4 as the hub gene. Cyclic loading stress increased PSD95 (encoded by DLG4) expression in LTP cartilage, and PSD95 inhibitors could alleviate OA progression. This study suggests that inhibiting PSD95 could be a potential therapeutic strategy for preventing articular cartilage degradation.
Collapse
Affiliation(s)
- Ping Huang
- Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (P.H.); (J.L.)
| | - Jieming Lin
- Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (P.H.); (J.L.)
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiang Zhao
- Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (P.H.); (J.L.)
| |
Collapse
|