1
|
Tian J, Dong M, Sun X, Jia X, Zhang G, Zhang Y, Lin Z, Xiao J, Zhang X, Lu H. Vericiguat in heart failure with reduced ejection fraction patients on guideline-directed medical therapy: Insights from a 6-month real-world study. Int J Cardiol 2024; 417:132524. [PMID: 39244100 DOI: 10.1016/j.ijcard.2024.132524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Vericiguat has demonstrated efficacy in improving the prognosis of patients with heart failure with reduced ejection fraction (HFrEF) following recent clinical deterioration. However, its real-world impact on reducing N-terminal B-type natriuretic peptide (NT-proBNP) levels and improving ventricular remodeling remains uncertain in stable HFrEF patients receiving guideline-directed medical therapy (GDMT) over the short term. METHODS This multicenter, observational cohort study included 200 HFrEF patients. Patients were grouped based on their preference for vericiguat use. We evaluated the impact of vericiguat on HFrEF patients by analyzing the difference in the proportion of patients with NT-proBNP levels ≤1000 pg/ml between two groups after a 6-month follow-up, using logistic regression and covariance analysis. Changes in echocardiographic parameters, left ventricular reverse remodeling (LVRR) ratio, and safety outcomes were also evaluated. RESULTS During the 6-month follow-up, 105 patients (82.68 %) in the vericiguat group and 46 patients (63.01 %) in the control group reached the primary endpoint. Multivariate logistic regression confirmed vericiguat as a significant factor in reducing NT-proBNP levels (Model 2: odds ratio (OR) = 2.67, 95 % confidence interval (CI): 1.24-5.77, P = 0.013), but it showed no significant association with LVRR (Model 2: OR = 0.52, 95 % CI: 0.24-1.13, P = 0.097). The safety analysis indicated a higher incidence of mild to moderate gastrointestinal symptoms in the vericiguat group compared to the control group (23.62 % vs. 2.74 %, P < 0.001). CONCLUSIONS Vericiguat significantly reduced NT-proBNP levels in patients with chronic HErEF under GDMT but was ineffective for LVRR during the 6-month follow-up.
Collapse
Affiliation(s)
- Jiangyue Tian
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Mei Dong
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoqian Sun
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoning Jia
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Guihua Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yanling Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zongwei Lin
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Xiao
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinyu Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Huixia Lu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
2
|
Sun S, Shi F, Zhao G, Zhang H. Multi-faceted potential of sophoridine compound's anti-arrhythmic and antioxidant effects through ROS/CaMKII pathway. Heliyon 2024; 10:e37542. [PMID: 39347430 PMCID: PMC11437953 DOI: 10.1016/j.heliyon.2024.e37542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Cardiac arrhythmias remain a significant cause of mortality and morbidity, for novel antiarrhythmic therapies. This study states that the first report of sophoridine (SPN), a quinolizidine alkaloid derived from traditional Chinese herbs, shows promise as a potential candidate due to its anti-arrhythmic and antioxidant properties. The study found that cell viability in H9C2 rat cardiomyocytes remained stable even when treated with SPN at a higher dosage of 100 μg/ml. This phenomenon was accompanied by increases in mitochondria-derived reactive oxygen species (ROS) and calcium/calmodulin-dependent protein kinase II (CaMKII) signaling, at 50 and 100 μg/ml. Glucose fluctuations regulate ventricular arrhythmias caused by SPN by activating the ROS/CaMKII pathway. Experimental models using zebrafish provided additional evidence supporting the regulatory effects of SPN on heart rate. In addition, the administration of SPN resulted in substantial deregulation of crucial genes involved in heart development (nppa, nppb, tnnt2a) at the transcriptional level in zebrafish. These findings provide insight into the various pharmacological properties of SPN and this opens up new possibilities for anti-arrhythmic treatment strategies.
Collapse
Affiliation(s)
- Shuai Sun
- Department of Cardiology, Shanxi Provincial People's Hospital, Taiyuan, 030001, China
| | - Fangdi Shi
- Department of Cardiology, Shanxi Provincial People's Hospital, Taiyuan, 030001, China
| | - Gang Zhao
- Department of Cardiology, Shanxi Provincial People's Hospital, Taiyuan, 030001, China
| | - Hong Zhang
- Department of Cardiology, Shanxi Provincial People's Hospital, Taiyuan, 030001, China
| |
Collapse
|
3
|
Cacciapuoti F, Mauro C, Capone V, Chianese S, Tarquinio LG, Gottilla R, Marsico F, Crispo S, Cacciapuoti F. The Role of Vericiguat in Early Phases of Anterior Myocardial Infarction: A Potential Game-Changer? MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1595. [PMID: 39459382 PMCID: PMC11510088 DOI: 10.3390/medicina60101595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
Anterior myocardial infarction is a critical condition with significant implications for cardiac function and patient prognosis. Despite advancements in reperfusion therapies, optimizing recovery during the early phases of myocardial infarction remains challenging. Anterior myocardial infarction can lead to substantial long-term effects on a patient's health due to extensive damage to the heart muscle, particularly the left ventricle, impacting both quality of life and overall prognosis. Vericiguat, a soluble guanylate cyclase stimulator, has shown promise in heart failure, but its role in early anterior myocardial infarction has not yet been fully explored. By enhancing soluble guanylate cyclase activity, vericiguat may increase cyclic guanosine monophosphate production, leading to vasodilation, inhibition of platelet aggregation, and potential cardioprotective effects. Currently, treatment options for anterior myocardial infarction primarily focus on reperfusion strategies and managing complications. However, there is a critical need for adjunctive therapies that specifically target the pathophysiological changes occurring in the early phases of myocardial infarction. Vericiguat's mechanism of action offers a novel approach to improving vascular function and myocardial health, potentially contributing to innovative treatment strategies that could transform the care and prognosis of patients with anterior myocardial infarction.
Collapse
Affiliation(s)
- Federico Cacciapuoti
- Department of Internal Medicine, “L. Vanvitelli” University, 80131 Naples, Italy
| | - Ciro Mauro
- Division of Cardiology, “A. Cardarelli” Hospital, Via A. Cardarelli, 6, 80131 Naples, Italy
| | - Valentina Capone
- Division of Cardiology, “A. Cardarelli” Hospital, Via A. Cardarelli, 6, 80131 Naples, Italy
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
| | - Salvatore Chianese
- Division of Cardiology, “A. Cardarelli” Hospital, Via A. Cardarelli, 6, 80131 Naples, Italy
| | - Luca Gaetano Tarquinio
- Post-Graduate School of Emergency Medicine, “L. Vanvitelli” University, 80131 Naples, Italy
| | - Rossella Gottilla
- Division of Cardiology, “A. Cardarelli” Hospital, Via A. Cardarelli, 6, 80131 Naples, Italy
| | - Fabio Marsico
- Division of Cardiology, “A. Cardarelli” Hospital, Via A. Cardarelli, 6, 80131 Naples, Italy
| | - Salvatore Crispo
- Division of Cardiology, “A. Cardarelli” Hospital, Via A. Cardarelli, 6, 80131 Naples, Italy
| | - Fulvio Cacciapuoti
- Division of Cardiology, “A. Cardarelli” Hospital, Via A. Cardarelli, 6, 80131 Naples, Italy
| |
Collapse
|
4
|
Jiayu L, Xiaofeng L, Jinhong C, Fangjun D, Boya F, Xin Z, Zidong C, Rui T, Lu Y, Shule Q, Runying W, Wuxun D. Study on the mechanisms and Pharmacodynamic substances of Lian-Gui-Ning-Xin-Tang on Arrhythmia Therapy based on Pharmacodynamic-Pharmacokinetic associations. Heliyon 2024; 10:e36104. [PMID: 39253118 PMCID: PMC11381611 DOI: 10.1016/j.heliyon.2024.e36104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
Background The Chinese herbal compound Lian-Gui-Ning-Xin-Tang (LGNXT), composed of 9 herbs, has a significant antiarrhythmic effect. Previous studies have confirmed that preventing intracellular Ca2+ overload and maintaining intracellular Ca2+ homeostasis may be the important antiarrhythmic mechanisms of LGNXT. Recent studies are focused on elucidating the mechanisms and pharmacodynamic substances of LGNXT. Purpose 1) To investigate the antiarrhythmic mechanisms of LGNXT; 2) to explore the association of pharmacodynamics (PD) and pharmacokinetics (PK) of the potential pharmacodynamic substances in LGNXT to further verify the mechanisms of action. Methods First, pharmacodynamic studies were conducted to determine the effect of LGNXT in arrhythmia at the electrophysiological, molecular, and tissue levels, and the "effect-time" relationship of LGNXT was further proposed. Next, an HPLC-MS/MS method was established to identify the "dose-time" relationship of the 9 potential compounds. Combining the "effect-time" and "dose-time" curves, the active ingredients closely related to the inhibition of inflammation, oxidative stress, and energy metabolism were identified to further verify the mechanisms and pharmacodynamic substances of LGNXT. Results Pretreatment with LGNXT could delay the occurrence of arrhythmias and reduce their duration and severity. LGNXT exerted antiarrhythmic effects by inhibiting MDA, LPO, IL-6, and cAMP; restoring Cx43 coupling function; and upregulating SOD, Ca2+-ATPase, and Na+-K+-ATPase levels. PK-PD association showed that nobiletin, methylophiopogonanone A, trigonelline, cinnamic acid, liquiritin, dehydropolisic acid, berberine, and puerarin were the main pharmacodynamic substances responsible for inhibiting the inflammatory response in arrhythmia. Methylophiopogonanone A, dehydropalingic acid, nobiletin, trigonelline, berberine, and puerarin in LGNXT exerted antiarrhythmic effects by inhibiting oxidative stress. Dehydropalingic acid, berberine, cinnamic acid, liquiritin, puerarin, trigonelline, methylophiopogonanone A, nobiletin, and tetrahydropalmatine exerted antiarrhythmic effects by inhibiting the energy-metabolism process. Conclusions LGNXT had a positive intervention effect on arrhythmias, especially ventricular tachyarrhythmias, which could inhibit inflammation, oxidative stress, and energy metabolism; positively stabilize the structure, and remodify the function of myocardial cell membranes. Additionally, the PD-PK association study revealed that methylophiopogonanone A, berberine, trigonelline, liquiritin, puerarin, tetrahydropalmatine, nobiletin, dehydropachymic acid, and cinnamic acid directly targeted inflammation, oxidative stress, and energy metabolism, which could be considered the pharmacodynamic substances of LGNXT. Thus, the antiarrhythmic mechanisms of LGNXT were further elucidated.
Collapse
Affiliation(s)
- Liang Jiayu
- Department of TCM, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Hangzhou 310003, China
| | - Li Xiaofeng
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin 300150, China
| | - Chen Jinhong
- School of Rehabilitation Medicine, Shandong Second Medical University, Shandong Weifang, 261053, China
| | - Deng Fangjun
- Department of Cardiology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300091, China
| | - Fan Boya
- Department of Medical qualification examination, National Administration of Traditional Chinese Medicine TCM Qualification Certification Center, Beijing 100120, China
| | - Zhen Xin
- Graduate School, Tianjin University of TCM, Tianjin 301617, China
| | - Cong Zidong
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin 300150, China
| | - Tao Rui
- Department of TCM, Tianjin University of TCM, Tianjin, 301617, China
| | - Yu Lu
- Graduate School, Tianjin University of TCM, Tianjin 301617, China
| | - Qian Shule
- Graduate School, Tianjin University of TCM, Tianjin 301617, China
| | - Wang Runying
- Graduate School, Tianjin University of TCM, Tianjin 301617, China
| | - Du Wuxun
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin 300150, China
| |
Collapse
|
5
|
Chen C, Lv J, Liu C. Vericiguat in patients with heart failure across the spectrum of left ventricular ejection fraction: a patient-level, pooled meta-analysis of VITALITY-HFpEF and VICTORIA. Front Endocrinol (Lausanne) 2024; 15:1335531. [PMID: 38524633 PMCID: PMC10957528 DOI: 10.3389/fendo.2024.1335531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/12/2024] [Indexed: 03/26/2024] Open
Abstract
Vericiguat, the newest soluble guanylate cyclase (sGC) drug, is potentially beneficial in treating heart failure (HF). However, most studies have only confirmed the significant impact of sGC in patients with reduced left ventricular ejection fraction (LVEF). Therefore, the main objective of this meta-analysis was to comparatively analyze the effects of Vericiguat in the entire LVEF range based on previous studies. According to PubMed, Web of Science, Cochrane, and Embase databases, randomized controlled studies in the full LVEF stage range were screened, and two extensive clinical studies on Vericiguat, namely VICTORIA (LVEF<45%) and VITALITY-HFpEF (LVEF≥45%) were identified for analysis and systematic evaluation. We separately assessed the rates of primary outcomes, cardiovascular death, and serious adverse events in both studies. The results of our research confirmed that although the criteria for the primary outcome were not the same in the two extensive studies, it was evident that there was no difference in the primary outcome between the experimental Vericiguat group and the placebo group in the VITALITY-HFpEF (LVEF≥45%) (P=0.45), whereas the primary outcome of VICTORIA (LVEF<45%) was significantly improved with the administration of Vericiguat showing a significant improvement (RR 0.93; 95% CI 0.87 to 1.00), but the effect of Vericiguat on cardiovascular mortality was not significant across the full range of LVEF (RR 0.97; 95% CI 0.86 to 1.09), and the incidence of total serious adverse events did not differ significantly between the two studies (RR 0.96; 95% CI 0.89 to 1.03). Surprisingly, partial subgroups analysis of serious adverse events found that vericiguat treatment reduced the incidence of all-cause death, Cardiac disorders, Hypotension, and Hypertension in patients with LVEF<45%, with a particular effect on the incidence of Cardiac disorders. Taken together, Vericiguat had a significant benefit in HF patients with LVEF<45%, especially in patients with LVEF<24%; it had a less pronounced effect in HF patients with LVEF ≥45%, but no adverse effects were observed.
Collapse
Affiliation(s)
| | | | - Changzhao Liu
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei, China
| |
Collapse
|
6
|
Zaher W, Della Rocca DG, Pannone L, Boveda S, de Asmundis C, Chierchia GB, Sorgente A. Anti-Arrhythmic Effects of Heart Failure Guideline-Directed Medical Therapy and Their Role in the Prevention of Sudden Cardiac Death: From Beta-Blockers to Sodium-Glucose Cotransporter 2 Inhibitors and Beyond. J Clin Med 2024; 13:1316. [PMID: 38592135 PMCID: PMC10931968 DOI: 10.3390/jcm13051316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024] Open
Abstract
Sudden cardiac death (SCD) accounts for a substantial proportion of mortality in heart failure with reduced ejection fraction (HFrEF), frequently triggered by ventricular arrhythmias (VA). This review aims to analyze the pathophysiological mechanisms underlying VA and SCD in HFrEF and evaluate the effectiveness of guideline-directed medical therapy (GDMT) in reducing SCD. Beta-blockers, angiotensin receptor-neprilysin inhibitors, and mineralocorticoid receptor antagonists have shown significant efficacy in reducing SCD risk. While angiotensin-converting enzyme inhibitors and angiotensin receptor blockers exert beneficial impacts on the renin-angiotensin-aldosterone system, their direct role in SCD prevention remains less clear. Emerging treatments like sodium-glucose cotransporter 2 inhibitors show promise but necessitate further research for conclusive evidence. The favorable outcomes of those molecules on VA are notably attributable to sympathetic nervous system modulation, structural remodeling attenuation, and ion channel stabilization. A multidimensional pharmacological approach targeting those pathophysiological mechanisms offers a complete and synergy approach to reducing SCD risk, thereby highlighting the importance of optimizing GDMT for HFrEF. The current landscape of HFrEF pharmacotherapy is evolving, with ongoing research needed to clarify the full extent of the anti-arrhythmic benefits offered by both existing and new treatments.
Collapse
Affiliation(s)
- Wael Zaher
- Department of Cardiology, Centre Hospitalier EpiCURA, Route de Mons 63, 7301 Hornu, Belgium;
| | - Domenico Giovanni Della Rocca
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Laarbeeklan 101, Jette, 1090 Brussels, Belgium; (D.G.D.R.); (L.P.); (C.d.A.); (G.-B.C.)
| | - Luigi Pannone
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Laarbeeklan 101, Jette, 1090 Brussels, Belgium; (D.G.D.R.); (L.P.); (C.d.A.); (G.-B.C.)
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, 31076 Toulouse, France;
| | - Carlo de Asmundis
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Laarbeeklan 101, Jette, 1090 Brussels, Belgium; (D.G.D.R.); (L.P.); (C.d.A.); (G.-B.C.)
| | - Gian-Battista Chierchia
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Laarbeeklan 101, Jette, 1090 Brussels, Belgium; (D.G.D.R.); (L.P.); (C.d.A.); (G.-B.C.)
| | - Antonio Sorgente
- Department of Cardiology, Centre Hospitalier EpiCURA, Route de Mons 63, 7301 Hornu, Belgium;
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Laarbeeklan 101, Jette, 1090 Brussels, Belgium; (D.G.D.R.); (L.P.); (C.d.A.); (G.-B.C.)
| |
Collapse
|
7
|
Yang F, Zhang XL, Liu HH, Qian LL, Wang RX. Post translational modifications of connexin 43 in ventricular arrhythmias after myocardial infarction. Mol Biol Rep 2024; 51:329. [PMID: 38393658 DOI: 10.1007/s11033-024-09290-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Ventricular arrhythmias are the leading cause of sudden cardiac death in patients after myocardial infarction (MI). Connexin43 (Cx43) is the most important gap junction channel-forming protein in cardiomyocytes. Dysfunction of Cx43 contributes to impaired myocardial conduction and the development of ventricular arrhythmias. Following an MI, Cx43 undergoes structural remodeling, including expression abnormalities, and redistribution. These alterations detrimentally affect intercellular communication and electrical conduction within the myocardium, thereby increasing the susceptibility to post-infarction ventricular arrhythmias. Emerging evidence suggests that post-translational modifications play essential roles in Cx43 regulation after MI. Therefore, Cx43-targeted management has the potential to be a promising protective strategy for the prevention and treatment of post infarction ventricular arrhythmias. In this article, we primarily reviewed the regulatory mechanisms of Cx43 mediated post-translational modifications on post-infarction ventricular arrhythmias. Furthermore, Cx43-targeted therapy have also been discussed, providing insights into an innovative treatment strategy for ventricular arrhythmias after MI.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cardiology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
| | - Xiao-Lu Zhang
- Department of Cardiology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
| | - Huan-Huan Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China.
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|