1
|
Alarcin E, Akguner ZP, Ozturk AB, Yasayan G, Ilhan-Ayisigi E, Kazan A, Yesil-Celiktas O, Akcora DS, Akakin D, Kocaaga B, Eren G, Gunes K, Kerimoglu O, Seki HK, Guner FS. Biomimetic 3D bioprinted bilayer GelMA scaffolds for the delivery of BMP-2 and VEGF exogenous growth factors to promote vascularized bone regeneration in a calvarial defect model in vivo. Int J Biol Macromol 2025; 306:141440. [PMID: 40015394 DOI: 10.1016/j.ijbiomac.2025.141440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 02/15/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
The effective treatment of critical-sized bone defects requires a coordinated interaction between osteogenesis and angiogenesis. Inspired by natural bone tissue, we developed a bilayer vascularized bone construct using extrusion-based dual 3D bioprinting. The construct consists of two layers: a bone-mimetic layer, which includes highly methacrylated gelatin (GelMAHIGH), hyaluronic acid, alginate, osteoblast cells, and bone morphogenetic protein-2 (BMP-2) loaded polylactic-co-glycolic acid (PLGA) nanoparticles; and a vessel-mimetic layer, composed of low methacrylated gelatin (GelMALOW), alginate, endothelial cells, and vascular endothelial growth factor (VEGF)-loaded PLGA nanoparticles. These layers were designed to form hierarchical microstructures that enable sustained release of growth factor (GF) thereby stimulating both osteogenic and angiogenic processes. The nanoparticles were synthesized using a microfluidic platform, achieving a narrow size distribution. The hydrogel bioinks were systematically optimized for printability, and it was found that incorporation of nanoparticles improved their mechanical properties, surface roughness, degradability, and GF release profiles. Notably, GF release followed zero-order kinetics, ensuring consistent delivery over time. The bilayer scaffolds demonstrated superior cell proliferation and spreading compared to single-layer scaffolds, and in vivo experiments showed enhanced repair of calvarial bone defects. These findings highlight the significant clinical potential of bilayer scaffolds with sequential GF delivery for treating critical-sized bone defects.
Collapse
Affiliation(s)
- Emine Alarcin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, 34668, Istanbul, Türkiye.
| | - Zeynep Puren Akguner
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Türkiye
| | - Ayca Bal Ozturk
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Türkiye; Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, Zeytinburnu, Türkiye
| | - Gokcen Yasayan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, 34755, Istanbul, Türkiye
| | - Esra Ilhan-Ayisigi
- Department of Genetic and Bioengineering, Faculty of Engineering and Architecture, Kirsehir Ahi Evran University, Kirsehir, Türkiye
| | - Aslihan Kazan
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Türkiye
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Türkiye
| | - Dila Sener Akcora
- School of Medicine, Department of Histology and Embryology, Marmara University, 34854, Istanbul, Türkiye
| | - Dilek Akakin
- School of Medicine, Department of Histology and Embryology, Marmara University, 34854, Istanbul, Türkiye
| | - Banu Kocaaga
- Department of Chemical Engineering, Istanbul Technical University, Maslak, 34469, İstanbul, Türkiye
| | | | - Kasım Gunes
- School of Medicine, Department of Histology and Embryology, Marmara University, 34854, Istanbul, Türkiye; Department of Histology and Embryology, Faculty of Medicine, Sakarya University, Sakarya, Türkiye
| | - Oya Kerimoglu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, 34668, Istanbul, Türkiye
| | - Hatice Kubra Seki
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, 34755, Istanbul, Türkiye; Institute of Health Sciences, Marmara University, Istanbul, Türkiye
| | - F Seniha Guner
- Department of Chemical Engineering, Istanbul Technical University, Maslak, 34469, İstanbul, Türkiye; Sabancı University Nanotechnology Research and Application Center (SUNUM), Sabancı University, 34956, Istanbul, Türkiye
| |
Collapse
|
2
|
Aguilar J, Rosú SA, Ulloa J, Gunther G, Urbano BF, Tricerri MA, Sánchez SA. Studying biological events using biopolymeric matrices. Biophys Rev 2025; 17:385-394. [PMID: 40376403 PMCID: PMC12075046 DOI: 10.1007/s12551-025-01303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/07/2025] [Indexed: 05/18/2025] Open
Abstract
Traditional methodologies to study in vitro biological processes include simplified laboratory models where different parameters can be measured in a very controlled environment. The most used of these practices is cell plate-culturing in aqueous media. In this minimalistic model, essential components of the biological system might be ignored. One of them, disregarded for a long time, is the extracellular matrix (ECM). Extracellular matrix in eukaryotic cells is not only a frame for cells and biological components, but also an active partner of cellular metabolism and participates in several normal and pathological biological processes in a dynamic manner. ECM of eukaryotic cells has a very complex structure. Also, its mechanical properties (stiffness, viscoelasticity) depend on the organ it is associated with, and may vary from a very fluid (plasma) to a very solid (bones) structure. ECM structure and composition are very dynamic and experience temporal structural and topological changes, affecting all the existing interactions. When mimicking the ECM, three aspects are considered: the chemical environment and the physical and structural properties. In this review, we present two lines of research studying the role of the ECM in two biological implications: membrane fluidity heterogeneity and protein retention and aggregation. For these studies, we used biopolymeric matrices with very controlled features to evaluate the two events. We use traditional biochemical techniques and fluorescence microscopy to study the biological systems and traditional polymer techniques (rheology, SEM) to characterize the polymeric matrices.
Collapse
Affiliation(s)
- Joao Aguilar
- Laboratorio de Interacciones Macromoleculares, Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción, Chile
| | - Silvana A. Rosú
- Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata “Dr Prof. Rodolfo R. Brenner” (INIBIOLP), CONICET, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - José Ulloa
- Laboratorio de Interacciones Macromoleculares, Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción, Chile
| | - German Gunther
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Bruno F. Urbano
- Laboratorio de Interacciones Macromoleculares, Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción, Chile
| | - M. Alejandra Tricerri
- Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata “Dr Prof. Rodolfo R. Brenner” (INIBIOLP), CONICET, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Susana A. Sánchez
- Laboratorio de Interacciones Macromoleculares, Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción, Chile
| |
Collapse
|
3
|
Tan H, Wang S, He X, Yang G, Zhu Y, Yang S, Yan S, Gong C, Bai W, Hu Y, Song J, Zheng L. Microneedles Loaded with Nitric-Oxide Driven Nanomotors Improve Force-Induced Efferocytosis Impairment and Sterile Inflammation by Revitalizing Macrophage Energy Metabolism. ACS NANO 2025; 19:9390-9411. [PMID: 40025734 DOI: 10.1021/acsnano.5c01877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Mechanical force initiates sterile inflammation, a process implicated in diverse physiological and pathological processes. The timely clearance of apoptotic cells by macrophages via efferocytosis is crucial for the proper resolution of sterile inflammation and for averting excessive tissue damage. Despite this, the specific role and underlying mechanisms of mechanical force on macrophage efferocytosis remain obscure. By integrating bioinformatics and metabolomics analyses, we uncovered how mechanical force disrupts the "arginine metabolism─TCA cycle─mitochondrial function" metabolic cascade, thereby impairing macrophage efferocytosis and intensifying sterile inflammation. Notably, we discovered that elevating l-arginine levels can ameliorate these crises by restoring energy metabolism. Leveraging this insight, we engineered a microneedle drug delivery system loaded with nitric-oxide driven nanomotors (MSN-LA@MNs) for targeted delivery of l-arginine. The active component, MSN-LA, exploits the heightened expression of inducible nitric oxide synthase (iNOS) in force-loaded tissues as a chemoattractant, harnessing NO generated from iNOS-catalyzed l-arginine for autonomous propulsion. In a force-induced rat orthodontic tooth movement (OTM) model, we confirmed that MSN-LA@MNs enhance macrophage efferocytosis and, under iNOS guidance, dynamically modulate sterile inflammation levels in OTM, thus facilitating the OTM process. Collectively, our findings elucidate previously unclear mechanistic links between force, macrophage efferocytosis, and sterile inflammation from a metabolic vantage point, offering a promising targeted strategy for modulating force-related biological processes such as OTM.
Collapse
Affiliation(s)
- Hao Tan
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Shan Wang
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Xinyi He
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Guoyin Yang
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Ye Zhu
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Sihan Yang
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Shengnan Yan
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Chu Gong
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Wenya Bai
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Yun Hu
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Jinlin Song
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| | - Leilei Zheng
- College of Stomatology, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, China
| |
Collapse
|
4
|
Chen H, Peng C, Fang F, Li Y, Liu X, Hu Y, Wang G, Liu X, Shen Y. Angiogenesis within atherosclerotic plaques: Mechanical regulation, molecular mechanism and clinical diagnosis. MECHANOBIOLOGY IN MEDICINE 2025; 3:100114. [PMID: 40396135 PMCID: PMC12082165 DOI: 10.1016/j.mbm.2025.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/12/2024] [Accepted: 01/05/2025] [Indexed: 05/22/2025]
Abstract
Atherosclerosis (AS) is a disease characterized by focal cholesterol accumulation and insoluble inflammation in arterial intima, leading to the formation of an atherosclerotic plaque consisting of lipids, cells, and fibrous matrix. The presence of plaque can restrict or obstruct blood flow, resulting in arterial stenosis and local mechanical microenvironment changes including flow shear stress, vascular matrix stiffness, and plaque structural stress. Neovascularization within the atherosclerotic plaque plays a crucial role in both plaque growth and destabilization, potentially leading to plaque rupture and fatal embolism. However, the exact interactions between neovessels and plaque remain unclear. In this review, we provide a comprehensive analysis of the origin of intraplaque neovessels, the contributing factors, underlying molecular mechanisms, and associated signaling pathways. We specifically emphasize the role of mechanical factors contributing to angiogenesis in atherosclerotic plaques. Additionally, we summarize the imaging techniques and therapeutic strategies for intraplaque neovessels to enhance our understanding of this field.
Collapse
Affiliation(s)
- Hanxiao Chen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Chengxiu Peng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yuhao Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaran Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Ying Hu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Guixue Wang
- Jinfeng Laboratory, Chongqing 401329, China
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
5
|
Sun L, Li X, Zhang J, Pei J, Zhang J, Wang Y, Lin F, Zhao G. SAL protects endothelial cells from H 2O 2-induced endothelial dysfunction: Regulation of inflammation and autophagy by EZH2. Int Immunopharmacol 2024; 142:113060. [PMID: 39321703 DOI: 10.1016/j.intimp.2024.113060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
One component of the polycomb repressor complex 2 is histone methyltransferase zeste homolog 2 (EZH2), which is also called Enhancer of zeste homolog 2. It is considered a potential therapeutic target for inhibiting endothelial dysfunction.. Hence, directing efforts towards EZH2 to weaken endothelium damage and regulate vascular lesions proves to be a highly successful therapeutic approach for enhancing endothelial dysfunction. This study aimed to investigate the mechanism by which salidroside (SAL) improves hydrogen peroxide (H2O2)-induced endothelial dysfunction. The investigation involved the use of many techniques, including western blotting, real-time polymerase chain reaction (RT-PCR), a scratch test, molecular docking, and other methods. The experimental findings demonstrated that SAL has the ability to inhibit the impaired functioning of endothelial cells caused by H2O2 and decrease the levels of NF-κB p65, NLRP3, TNF-α, Beclin1, LC3, and P62 proteins. Additionally, there seems to be a targeting relationship between SAL and EZH2, and EZH2 knockdown can reproduce the protective effect of SAL on endothelial function. Overall, SAL inhibits H2O2-induced HUVEC dysfunction by regulating autophagy and inflammatory signaling pathways through EZH2.
Collapse
Affiliation(s)
- Li Sun
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Zhengzhou Sino-Crystal Diamond Co., Ltd., Zhengzhou, Henan 450001, China.
| | - Xuefang Li
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China.
| | - Jie Zhang
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China.
| | - Jiachao Pei
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China.
| | - Jianhua Zhang
- Zhengzhou Sino-Crystal Diamond Co., Ltd., Zhengzhou, Henan 450001, China.
| | - Yinghua Wang
- Zhengzhou Sino-Crystal Diamond Co., Ltd., Zhengzhou, Henan 450001, China.
| | - Fei Lin
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China.
| | - Guoan Zhao
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China.
| |
Collapse
|
6
|
Ramirez DA, Garrott K, Garlitski A, Koop B. Coronary Spasm Due to Pulsed Field Ablation: A State-of-the-Art Review. Pacing Clin Electrophysiol 2024. [PMID: 39494719 DOI: 10.1111/pace.15101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
With the ever-growing population of patients undergoing cardiac ablation with pulsed electric fields, there is a need to understand secondary effects from the therapy. Coronary artery spasm is one such effect that has recently emerged as the subject of further investigation in electrophysiology literature. This review aims to elucidate the basic anatomy underlying vascular spasm due to pulsed electric fields and the effects of irreversible electroporation on coronary arteries. This review also aims to gather the current preclinical and clinical data regarding the physiology and function of coronary arteries following electroporation.
Collapse
Affiliation(s)
- David A Ramirez
- Electrophysiology Research & Development, Boston Scientific Corporation, Marlborough, Massachusetts, USA
| | - Kara Garrott
- Electrophysiology Research & Development, Boston Scientific Corporation, Marlborough, Massachusetts, USA
| | - Ann Garlitski
- Electrophysiology Research & Development, Boston Scientific Corporation, Marlborough, Massachusetts, USA
| | - Brendan Koop
- Electrophysiology Research & Development, Boston Scientific Corporation, Marlborough, Massachusetts, USA
| |
Collapse
|
7
|
Zhang L, Feng Q, Kong W. ECM Microenvironment in Vascular Homeostasis: New Targets for Atherosclerosis. Physiology (Bethesda) 2024; 39:0. [PMID: 38984789 DOI: 10.1152/physiol.00028.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/05/2024] [Accepted: 03/23/2024] [Indexed: 07/11/2024] Open
Abstract
Alterations in vascular extracellular matrix (ECM) components, interactions, and mechanical properties influence both the formation and stability of atherosclerotic plaques. This review discusses the contribution of the ECM microenvironment in vascular homeostasis and remodeling in atherosclerosis, highlighting Cartilage oligomeric matrix protein (COMP) and its degrading enzyme ADAMTS7 as examples, and proposes potential avenues for future research aimed at identifying novel therapeutic targets for atherosclerosis based on the ECM microenvironment.
Collapse
Affiliation(s)
- Lu Zhang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qianqian Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
8
|
Li M, Jin M, Yang H. Remodelers of the vascular microenvironment: The effect of biopolymeric hydrogels on vascular diseases. Int J Biol Macromol 2024; 264:130764. [PMID: 38462100 DOI: 10.1016/j.ijbiomac.2024.130764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Vascular disease is the leading health problem worldwide. Vascular microenvironment encompasses diverse cell types, including those within the vascular wall, blood cells, stromal cells, and immune cells. Initiation of the inflammatory state of the vascular microenvironment and changes in its mechanics can profoundly affect vascular homeostasis. Biomedical materials play a crucial role in modern medicine, hydrogels, characterized by their high-water content, have been increasingly utilized as a three-dimensional interaction network. In recent times, the remarkable progress in utilizing hydrogels and understanding vascular microenvironment have enabled the treatment of vascular diseases. In this review, we give an emphasis on the utilization of hydrogels and their advantages in the various vascular diseases including atherosclerosis, aneurysm, vascular ulcers of the lower limbs and myocardial infarction. Further, we highlight the importance and advantages of hydrogels as artificial microenvironments.
Collapse
Affiliation(s)
- Minhao Li
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang 110122, Liaoning Province, China
| | - Meiqi Jin
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang 110122, Liaoning Province, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang 110122, Liaoning Province, China.
| |
Collapse
|
9
|
Chalkias A. Shear Stress and Endothelial Mechanotransduction in Trauma Patients with Hemorrhagic Shock: Hidden Coagulopathy Pathways and Novel Therapeutic Strategies. Int J Mol Sci 2023; 24:17522. [PMID: 38139351 PMCID: PMC10743945 DOI: 10.3390/ijms242417522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Massive trauma remains a leading cause of death and a global public health burden. Post-traumatic coagulopathy may be present even before the onset of resuscitation, and correlates with severity of trauma. Several mechanisms have been proposed to explain the development of abnormal coagulation processes, but the heterogeneity in injuries and patient profiles makes it difficult to define a dominant mechanism. Regardless of the pattern of death, a significant role in the pathophysiology and pathogenesis of coagulopathy may be attributed to the exposure of endothelial cells to abnormal physical forces and mechanical stimuli in their local environment. In these conditions, the cellular responses are translated into biochemical signals that induce/aggravate oxidative stress, inflammation, and coagulopathy. Microvascular shear stress-induced alterations could be treated or prevented by the development and use of innovative pharmacologic strategies that effectively target shear-mediated endothelial dysfunction, including shear-responsive drug delivery systems and novel antioxidants, and by targeting the venous side of the circulation to exploit the beneficial antithrombogenic profile of venous endothelial cells.
Collapse
Affiliation(s)
- Athanasios Chalkias
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5158, USA;
- Outcomes Research Consortium, Cleveland, OH 44195, USA
| |
Collapse
|