1
|
Lyu J, Cui J, Yang F, Gao X, Cui Z, Zhou X. The interconnection of orthographic, phonetic, and semantic skills with arithmetic fluency. PSYCHOLOGICAL RESEARCH 2024; 88:2320-2334. [PMID: 39034343 DOI: 10.1007/s00426-024-02005-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
Arithmetic fluency is considered considers highly rely on language processing, encompassing essential skills. However, the independent predictive power of phonetic, semantic, or orthographic skills in relation to arithmetic fluency remains an unresolved query. This study introduces the common component hypothesis to elucidate the inconsistent findings in previous research. The hypothesis posits that significant correlations between language and mathematics hinge on whether the language and mathematics utilized in a given task share a common component. According to this hypothesis, processing skills for each of the three fundamental language elements (i.e., phonetic, semantic, orthographic) should correlate with arithmetic fluency, as these elements are also integral to simple arithmetic processing. A cohort of one hundred and ninety-eight primary school students participated in the study, undertaking a battery of tests assessing general cognitive abilities, psycholinguistic elements, and arithmetic fluency. The results showed that orthographic, phonetic, and semantic abilities independently predicted arithmetic fluency, even after accounting for all other cognitive predictors. These findings substantiate the common component hypothesis, providing empirical support for explaining the association between language and mathematics. This evidence contributes to addressing the interplay between language and mathematics in educational contexts.
Collapse
Affiliation(s)
- Jing Lyu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institude for Brain Research, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Jiaxin Cui
- College of Education, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Fan Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institude for Brain Research, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
- School of Education Science, Anhui Normal University, Wuhu, Anhui, China
| | - Xing Gao
- College of Education, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Zhanling Cui
- College of Education, Hebei Normal University, Shijiazhuang, Hebei, 050024, China.
| | - Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institude for Brain Research, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
2
|
Marks RA, Pollack C, Meisler SL, D'Mello AM, Centanni TM, Romeo RR, Wade K, Matejko AA, Ansari D, Gabrieli JDE, Christodoulou JA. Neurocognitive mechanisms of co-occurring math difficulties in dyslexia: Differences in executive function and visuospatial processing. Dev Sci 2024; 27:e13443. [PMID: 37675857 PMCID: PMC10918042 DOI: 10.1111/desc.13443] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/02/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023]
Abstract
Children with dyslexia frequently also struggle with math. However, studies of reading disability (RD) rarely assess math skill, and the neurocognitive mechanisms underlying co-occurring reading and math disability (RD+MD) are not clear. The current study aimed to identify behavioral and neurocognitive factors associated with co-occurring MD among 86 children with RD. Within this sample, 43% had co-occurring RD+MD and 22% demonstrated a possible vulnerability in math, while 35% had no math difficulties (RD-Only). We investigated whether RD-Only and RD+MD students differed behaviorally in their phonological awareness, reading skills, or executive functions, as well as in the brain mechanisms underlying word reading and visuospatial working memory using functional magnetic resonance imaging (fMRI). The RD+MD group did not differ from RD-Only on behavioral or brain measures of phonological awareness related to speech or print. However, the RD+MD group demonstrated significantly worse working memory and processing speed performance than the RD-Only group. The RD+MD group also exhibited reduced brain activations for visuospatial working memory relative to RD-Only. Exploratory brain-behavior correlations along a broad spectrum of math ability revealed that stronger math skills were associated with greater activation in bilateral visual cortex. These converging neuro-behavioral findings suggest that poor executive functions in general, including differences in visuospatial working memory, are specifically associated with co-occurring MD in the context of RD. RESEARCH HIGHLIGHTS: Children with reading disabilities (RD) frequently have a co-occurring math disability (MD), but the mechanisms behind this high comorbidity are not well understood. We examined differences in phonological awareness, reading skills, and executive function between children with RD only versus co-occurring RD+MD using behavioral and fMRI measures. Children with RD only versus RD+MD did not differ in their phonological processing, either behaviorally or in the brain. RD+MD was associated with additional behavioral difficulties in working memory, and reduced visual cortex activation during a visuospatial working memory task.
Collapse
Affiliation(s)
- Rebecca A Marks
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Communication Sciences and Disorders, MGH Institute of Health Professions, Boston, Massachusetts, USA
| | - Courtney Pollack
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Steven L Meisler
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, Massachusetts, USA
| | - Anila M D'Mello
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Psychology, University of Texas at Dallas, Richardson, Texas, USA
| | - Tracy M Centanni
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Psychology, Texas Christian University, Fort Worth, Texas, USA
| | - Rachel R Romeo
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Human Development and Quantitative Methodology, University of Maryland College Park, College Park, Maryland, USA
| | - Karolina Wade
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Anna A Matejko
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
- Department of Psychology, Durham University, Durham, UK
| | - Daniel Ansari
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| | - John D E Gabrieli
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Joanna A Christodoulou
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Communication Sciences and Disorders, MGH Institute of Health Professions, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Li D, Zhang X, Zhang L. What Skills Could Distinguish Developmental Dyscalculia and Typically Developing Children: Evidence From a 2-Year Longitudinal Screening. JOURNAL OF LEARNING DISABILITIES 2022:222194221099674. [PMID: 35674456 DOI: 10.1177/00222194221099674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developmental dyscalculia (DD) is a mathematics learning disorder that affects approximately 5% to 7% of the population. This study aimed to detect the underlying domain-specific and domain-general differences between DD and typically developing (TD) children. We recruited 9-year-old primary school children to form the DD group via a 2-year longitudinal screening process. In total, 75 DD children were screened from 1,657 children after the one-time screening, and 13 DD children were screened from 1,317 children through a consecutive 2-year longitudinal screening. In total, 13 experimental tasks were administered to assess their cognitive abilities to test the domain-specific magnitude representation hypothesis (including symbolic and nonsymbolic magnitude comparisons) and four alternative domain-general hypotheses (including working memory, executive function, attention, and visuospatial processing). The DD group had worse performance than the TD group on the number sense task, finger sense task, shifting task, and one-back task after both one-time and two-time screening. Logistic regressions further indicated the differences on the shifting task and the nonsymbolic magnitude comparison task could distinguish DD and TD children. Our findings suggest that domain-specific nonsymbolic magnitude representation and domain-general executive function both contribute to DD. Thus, both domain-specific and domain-general abilities will be necessary to investigate and to intervene in DD groups in the future.
Collapse
Affiliation(s)
- Danfeng Li
- Central University of Finance and Economics, Beijing, China
| | - Xuejing Zhang
- Central University of Finance and Economics, Beijing, China
| | - Li Zhang
- Central University of Finance and Economics, Beijing, China
| |
Collapse
|
4
|
Träff U, Olsson L, Skagerlund K, Skagenholt M, Östergren R. Logical Reasoning, Spatial Processing, and Verbal Working Memory: Longitudinal Predictors of Physics Achievement at Age 12-13 Years. Front Psychol 2019; 10:1929. [PMID: 31496982 PMCID: PMC6712504 DOI: 10.3389/fpsyg.2019.01929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/06/2019] [Indexed: 11/25/2022] Open
Abstract
To date, few studies have tried to pinpoint the mechanisms supporting children’s skills in science. This study investigated to what extent logical reasoning, spatial processing, and working memory, tapped at age 9–10 years, are predictive of physics skills at age 12–13 years. The study used a sample of 81 children (37 girls). Measures of arithmetic calculation and reading comprehension were also included in the study. The multiple regression model accounted for 24% of the variation in physics achievement. The model showed that spatial processing (4.6%) and verbal working memory (4.5%) accounted for a similar amount of unique variance, while logical reasoning accounted for 5.7% variance. The measures of arithmetic calculation and reading comprehension did not account for any unique variance. Nine percent of the accounted variance was shared variance. The results demonstrate that physics is a multivariate discipline that draws upon numerous cognitive resources. Logical reasoning ability is a key component in order for children to learn about abstract physics facts, concepts, theories, and applying complex scientific methods. Spatial processing is important as it may sub-serve the assembly of diverse sources of visual-spatial information into a spatial-schematic image. The working memory system provides a flexible and efficient mental workspace that can supervise, coordinate, and execute processes involved in physics problem-solving.
Collapse
Affiliation(s)
- Ulf Träff
- Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
| | - Linda Olsson
- Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
| | - Kenny Skagerlund
- Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
| | - Mikael Skagenholt
- Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
| | - Rickard Östergren
- Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
| |
Collapse
|
5
|
Koponen T, Eklund K, Heikkilä R, Salminen J, Fuchs L, Fuchs D, Aro M. Cognitive Correlates of the Covariance in Reading and Arithmetic Fluency: Importance of Serial Retrieval Fluency. Child Dev 2019; 91:1063-1080. [PMID: 31292957 DOI: 10.1111/cdev.13287] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study examines the core predictors of the covariance in reading and arithmetic fluency and the domain-general cognitive skills that explain the core predictors and covariance. Seven-year-old Finnish children (N = 200) were assessed on rapid automatized naming (RAN), phonological awareness, letter knowledge, verbal counting, number writing, number comparison, memory skills, and processing and articulation speed in the spring of Grade 1 and on reading and arithmetic fluency in the fall of Grade 2. RAN and verbal counting were strongly associated, and a constructed latent factor, serial retrieval fluency (SRF), was the strongest unique predictor of the shared variance. Other unique predictors were phonological awareness, number comparison, and processing speed. Findings highlight the importance of SRF in clarifying the relation between reading and arithmetic fluency.
Collapse
|