1
|
Jitpraphawan O, Ruamtawee W, Treewatchareekorn M, Sethasine S. Diagnostic and prognostic performances of GALAD score in staging and 1-year mortality of hepatocellular carcinoma: A prospective study. World J Gastroenterol 2024; 30:2343-2353. [PMID: 38813057 PMCID: PMC11130574 DOI: 10.3748/wjg.v30.i17.2343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/09/2024] [Accepted: 04/11/2024] [Indexed: 04/30/2024] Open
Abstract
BACKGROUND The GALAD score has improved early hepatocellular carcinoma (HCC) detection rate. The role of the GALAD score in staging and predicting tumor characteristics or clinical outcome of HCC remains of particular interest. AIM To determine the diagnostic/prognostic performances of the GALAD score at various phases of initial diagnosis, tumor features, and 1-year mortality of HCC and compare the performance of the GALAD score with those of other serum biomarkers. METHODS This prospective, diagnostic/prognostic study was conducted among patients with newly diagnosed HCC at the liver center of Vajira Hospital. Eligible patients had HCC staging allocation using the Barcelona Clinic Liver Cancer (BCLC) categorization. Demographics, HCC etiology, and HCC features were recorded. Biomarkers and the GALAD score were obtained at baseline. The performance of the GALAD score and biomarkers were prospectively assessed. RESULTS Exactly 115 individuals were diagnosed with HCC. The GALAD score increased with disease severity. Between BCLC-0/A and BCLC-B/C/D, the GALAD score predicted HCC staging with an area under the curve (AUC) of 0.868 (95%CI: 0.80-0.93). For identifying the curative HCC, the AUC of GALAD score was significantly higher than that of Alpha-fetoprotein (AFP) (0.753) and Lens culinaris agglutinin-reactive fraction of AFP-L3 (0.706), and as good as that of Protein induced by vitamin K absence-II (PIVKA-II) (0.897). For detecting aggressive features, the GALAD score gave an AUC of 0.839 (95%CI: 0.75-0.92) and significantly outperformed compared to that of AFP (0.761) and AFP-L3 (0.697), with a trend of superiority to that of PIVKA-II (0.772). The performance to predict 1-year mortality of GALAD score (AUC: 0.711, 95%CI: 0.60-0.82) was better than that of AFP (0.541) and as good as that of PIVKA-II (0.736). The optimal cutoff value of GALAD score was ≥ 6.83, with a specificity of 72.63% for exhibiting substantial reduction in the 1-year mortality. CONCLUSION The GALAD model can diagnose HCC at the curative stage, including the characteristic of advanced disease, more than that by AFP and AFP-L3, but not PIVKA-II. The GALAD score can be used to predict the 1-year mortality of HCC.
Collapse
Affiliation(s)
- Oraphan Jitpraphawan
- Division of Gastroenterology and Hepatology, Department of Medicine, Navamindradhiraj University, Dusit 10300, Bangkok, Thailand
| | - Witchakorn Ruamtawee
- Clinical Research Center, Research Facilitation Division, Navamindradhiraj University, Dusit 10300, Bangkok, Thailand
| | - Mala Treewatchareekorn
- Division of Clinical Chemistry and Immunology, Navamindradhiraj University, Dusit 10300, Bangkok, Thailand
| | - Supatsri Sethasine
- Division of Gastroenterology and Hepatology, Department of Medicine, Navamindradhiraj University, Dusit 10300, Bangkok, Thailand
| |
Collapse
|
2
|
Vaziri F, Setayesh T, Hu Y, Ravindran R, Wei D, Wan YJY. BCG as an Innovative Option for HCC Treatment: Repurposing and Mechanistic Insights. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308242. [PMID: 38308164 PMCID: PMC11005731 DOI: 10.1002/advs.202308242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/23/2023] [Indexed: 02/04/2024]
Abstract
This study investigates Bacillus Calmette-Guérin (BCG) as a potential treatment for hepatocellular carcinoma (HCC), a condition often associated with unfavorable treatment outcomes. Exploiting BCG's recognized immune-boosting properties, preclinical trials are conducted using HCC mice, with a single subcutaneous dose of BCG administered post-tumor formation. Results indicate that BCG treatment effectively diminishes tumor burden and extends survival in both male and female HCC mice. Positive influences on hepatic fibrosis and metabolism are observed, leading to a reduction in lipid levels. Spatial analysis underscores BCG's tumor-specific effects, inducing the enrichment of metabolic pathways and inhibiting various cancer-related pathways. Furthermore, BCG promotes immune cell infiltration, including CD4+, CD8+ T cells, and M1 macrophages, in both v-akt murine thymoma viral oncogene homolog 1(AKT)/neutoblastoma RAS viral oncogene homolog (RAS) and β-catenin positive HCC models. Interestingly, blocking T cells, trained immunity, and Interferon-γ (IFN-γ) function reverses BCG's anti-HCC effects. In conclusion, BCG emerges as a promising treatment option for HCC, characterized by a favorable safety profile and efficacy in inhibiting fibrosis, improving metabolism, and engaging both trained immunity and T cells in therapeutic mechanisms.
Collapse
Affiliation(s)
- Farzam Vaziri
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, 95817, USA
| | - Tahereh Setayesh
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, 95817, USA
| | - Ying Hu
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, 95817, USA
| | - Resmi Ravindran
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, 95817, USA
| | - Dongguang Wei
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, 95817, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, 95817, USA
| |
Collapse
|
3
|
Setayesh T, Hu Y, Vaziri F, Chen X, Lai J, Wei D, Yvonne Wan YJ. Targeting stroma and tumor, silencing galectin 1 treats orthotopic mouse hepatocellular carcinoma. Acta Pharm Sin B 2024; 14:292-303. [PMID: 38261802 PMCID: PMC10793093 DOI: 10.1016/j.apsb.2023.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/28/2023] [Accepted: 09/15/2023] [Indexed: 01/25/2024] Open
Abstract
This study examines inhibiting galectin 1 (Gal1) as a treatment option for hepatocellular carcinoma (HCC). Gal1 has immunosuppressive and cancer-promoting roles. Our data showed that Gal1 was highly expressed in human and mouse HCC. The levels of Gal1 positively correlated with the stages of human HCC and negatively with survival. The roles of Gal1 in HCC were studied using overexpression (OE) or silencing using Igals1 siRNA delivered by AAV9. Prior to HCC initiation induced by RAS and AKT mutations, lgals1-OE and silencing had opposite impacts on tumor load. The treatment effect of lgals1 siRNA was further demonstrated by intersecting HCC at different time points when the tumor load had already reached 9% or even 42% of the body weight. Comparing spatial transcriptomic profiles of Gal1 silenced and OE HCC, inhibiting matrix formation and recognition of foreign antigen in CD45+ cell-enriched areas located at tumor-margin likely contributed to the anti-HCC effects of Gal1 silencing. Within the tumors, silencing Gal1 inhibited translational initiation, elongation, and termination. Furthermore, Gal1 silencing increased immune cells as well as expanded cytotoxic T cells within the tumor, and the anti-HCC effect of lgals1 siRNA was CD8-dependent. Overall, Gal1 silencing has a promising potential for HCC treatment.
Collapse
Affiliation(s)
- Tahereh Setayesh
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Ying Hu
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Farzam Vaziri
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Xin Chen
- Cancer Biology Program, the University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Jinping Lai
- Department of Pathology and Laboratory Medicine, Kaiser Permanente Sacramento Medical Center, Sacramento, CA 95825, USA
| | - Dongguang Wei
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
4
|
Pan XW, Huang JS, Liu SR, Shao YD, Xi JJ, He RY, Shi TT, Zhuang RX, Bao JF. Evaluation of the liver targeting and anti‑liver cancer activity of artesunate‑loaded and glycyrrhetinic acid‑coated nanoparticles. Exp Ther Med 2023; 26:516. [PMID: 37854499 PMCID: PMC10580252 DOI: 10.3892/etm.2023.12215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/24/2023] [Indexed: 10/20/2023] Open
Abstract
Globally, liver cancer ranks among the most lethal cancers, with chemotherapy being one of its primary treatments. However, poor selectivity, systemic toxicity, a narrow treatment window, low response rate and multidrug resistance limit its clinical application. Liver-targeted nanoparticles (NPs) exhibit excellent targeted delivery ability and promising effectivity in treating liver cancer. The present study aimed to investigate the liver-targeting and anti-liver cancer effect of artesunate (ART)-loaded and glycyrrhetinic acid (GA)-decorated polyethylene glycol (PEG)-poly (lactic-co-glycolic acid) (PLGA) (ART/GA-PEG-PLGA) NPs. GA-coated NPs significantly increased hepatoma-targeted cellular uptake, with micropinocytosis and caveolae-mediated endocytosis as its chief internalization pathways. Moreover, ART/GA-PEG-PLGA NPs exhibited pro-apoptotic effects on HepG2 cells, mainly via the induction of a high level of reactive oxygen species, decline in mitochondrial membrane potential and induction of cell cycle arrest. Additionally, ART/GA-PEG-PLGA NPs induced internal apoptosis pathways by upregulating the activity of cleaved caspase-3/7 and expression of cleaved poly (ADP-Ribose)-polymerase and Phos-p38 mitogen-activated protein kinase in HepG2 cells. Furthermore, ART/GA-PEG-PLGA NPs exhibited higher liver accumulation and longer mean retention time, resulting in increased bioavailability. Finally, ART/GA-PEG-PLGA NPs promoted the liver-targeting distribution of ART, increased the retention time and promoted its antitumour effects in vivo. Therefore, ART/GA-PEG-PLGA NPs afforded excellent hepatoma-targeted delivery and anti-liver cancer efficacy, and thus, they may be a promising strategy for treating liver cancer.
Collapse
Affiliation(s)
- Xu-Wang Pan
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang 310023, P.R. China
| | - Jin-Song Huang
- Department of Liver Disease, Hangzhou Xixi Hospital, Hangzhou, Zhejiang 310023, P.R. China
| | - Shou-Rong Liu
- Department of Liver Disease, Hangzhou Xixi Hospital, Hangzhou, Zhejiang 310023, P.R. China
| | - Yi-Dan Shao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang 310023, P.R. China
| | - Jian-Jun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang 310023, P.R. China
| | - Ruo-Yu He
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang 310023, P.R. China
| | - Ting-Ting Shi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang 310023, P.R. China
| | - Rang-Xiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang 310023, P.R. China
| | - Jian-Feng Bao
- Department of Liver Disease, Hangzhou Xixi Hospital, Hangzhou, Zhejiang 310023, P.R. China
| |
Collapse
|
5
|
Hu Y, Setayesh T, Vaziri F, Wu X, Hwang ST, Chen X, Yvonne Wan YJ. miR-22 gene therapy treats HCC by promoting anti-tumor immunity and enhancing metabolism. Mol Ther 2023; 31:1829-1845. [PMID: 37143325 PMCID: PMC10277895 DOI: 10.1016/j.ymthe.2023.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
MicroRNA-22 (miR-22) can be induced by beneficial metabolites that have metabolic and immune effects, including retinoic acids, bile acids, vitamin D3, and short-chain fatty acids. The tumor suppressor effects of miR-22 have been suggested, but whether miR-22 treats orthotopic hepatocellular carcinoma (HCC) is not established. The role of miR-22 in regulating tumor immunity is also poorly understood. Our data showed that miR-22 delivered by adeno-associated virus serotype 8 effectively treated HCC. Compared with FDA-approved lenvatinib, miR-22 produced better survival outcomes without noticeable toxicity. miR-22 silenced hypoxia-inducible factor 1 (HIF1α) and enhanced retinoic acid signaling in both hepatocytes and T cells. Moreover, miR-22 treatment improved metabolism and reduced inflammation. In the liver, miR-22 reduced the abundance of IL17-producing T cells and inhibited IL17 signaling by reducing the occupancy of HIF1α in the Rorc and Il17a genes. Conversely, increasing IL17 signaling ameliorated the anti-HCC effect of miR-22. Additionally, miR-22 expanded cytotoxic T cells and reduced regulatory T cells (Treg). Moreover, depleting cytotoxic T cells also abolished the anti-HCC effects of miR-22. In patients, miR-22 high HCC had upregulated metabolic pathways and reduced IL17 pro-inflammatory signaling compared with miR-22 low HCC. Together, miR-22 gene therapy can be a novel option for HCC treatment.
Collapse
Affiliation(s)
- Ying Hu
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA 95817, USA
| | - Tahereh Setayesh
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA 95817, USA
| | - Farzam Vaziri
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA 95817, USA
| | - Xuesong Wu
- Department of Dermatology, University of California Davis Health, Sacramento, CA 95817, USA
| | - Samuel T Hwang
- Department of Dermatology, University of California Davis Health, Sacramento, CA 95817, USA
| | - Xin Chen
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA 95817, USA.
| |
Collapse
|