1
|
Teixeira ABM, Schuh BRF, Daley VL, Fernandes SR, Freitas JA. Effect of refeeding on growth performance, blood metabolites and physiological parameters of Dorper×Santa Ines lambs previously subjected to feed restriction. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Zhang H, Zhang Y, Ma Y, Elsabagh M, Wang H, Wang M. Dietary rumen-protected L-arginine or N-carbamylglutamate attenuated fetal hepatic inflammation in undernourished ewes suffering from intrauterine growth restriction. ACTA ACUST UNITED AC 2021; 7:1095-1104. [PMID: 34738040 PMCID: PMC8545652 DOI: 10.1016/j.aninu.2021.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/19/2021] [Accepted: 06/28/2021] [Indexed: 11/29/2022]
Abstract
This study aimed to explore whether dietary rumen-protected L-arginine (RP-Arg) or N-carbamylglutamate (NCG) supplementation to feed-restricted pregnant ewes counteracts fetal hepatic inflammation and innate immune dysfunction associated with intrauterine growth retardation (IUGR) in ovine fetuses. On d 35 of pregnancy, twin-bearing Hu ewes (n = 32) were randomly assigned to 4 treatment groups (8 ewes and 16 fetuses per group) and fed diets containing 100% of the NRC requirements (CON), 50% of the NRC requirements (RES), RES + RP-Arg (20 g/d) (RESA), or RES + NCG (5 g/d) (RESN). At 08:00 on d 110 of gestation, fetal blood and liver tissue samples were collected. The levels of triglyceride, free fatty acid, cholesterol and β-hydroxybutyrate in the fetal blood of RESA and RESN groups were lower (P < 0.05) than those of the RES group, but were higher (P < 0.05) than those of the CON group. The interleukin (IL)-6 and IL-1 levels in fetal blood and liver tissue as well as the myeloid differentiation primary response 88 (MyD88), transforming growth factor β (TGFβ), and nuclear factor kappa B (NF-κB) mRNA levels in the fetal liver were decreased (P < 0.05) by the NCG or RP-Arg supplementation compared to the RES treatment. Similarly, the toll-like receptor (TLR)-4, MyD88, TGFβ, and p-c-Jun N-terminal kinase (JNK) protein levels in the fetal liver were reduced (P < 0.05) in the NCG and RP-Arg -supplemented groups compared to the RES group. These results showed that dietary supplementation of RP-Arg or NCG to underfed pregnant ewes could protect against IUGR fetal hepatic inflammation via improving lipid metabolism, down-regulating the TLR-4 and the inflammatory JNK and NF-κB signaling pathways, and decreasing cytokine production in ovine fetal blood and liver tissue.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, 832000, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.,Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Ying Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.,Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yi Ma
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.,Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde, 51240, Turkey.,Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Hongrong Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.,Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Mengzhi Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.,Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
3
|
Hua C, Geng Y, Niu L, Chen Q, Cai L, Tao S, Ni Y, Zhao R. Stimulating lipolysis in subcutaneous adipose tissues by chronic dexamethasone administration in goats. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Crocker Cunningham H, Cammack KM, Hales KE, Freetly HC, Lindholm-Perry AK. Differential transcript abundance in adipose tissue of mature beef cows during feed restriction and realimentation. PLoS One 2018. [PMID: 29534082 PMCID: PMC5849288 DOI: 10.1371/journal.pone.0194104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Feed costs account for over 70% of the annual expenditures in cow/calf production. During the production year the cow uses nutrients to support conceptus growth, milk production, work (grazing and locomotion), and maintenance requirements. The majority of the nutrients are used to support maintenance. Substrate cycling has been identified as one of the major contributors toward energy expenditure associated with maintenance in mature cows. The objective of this study was to determine whether beef cows that differ in the efficiency of weight gain differ in the relative abundance of transcripts for metabolic regulation in adipose tissue. Mature beef cows were subjected to feed restriction followed by ad libitum feed. Adipose tissue from twelve cows with high (n = 6) and low (n = 6) gain based on growth performance during the ad libitum feeding period was evaluated for transcriptome expression differences. A total of 496 genes were differentially expressed and passed Bonferroni correction for the animals with greater gain between restriction and realimentation and 491 genes were differentially expressed among animals with lesser gains between feed restriction and realimentation. Of these two differentially expressed gene lists, 144 genes were common between animals with greater and those with lesser gain. Enriched biological processes included the TCA cycle, oxidative phosphorylation, respiratory electron transport chain and fatty acid metabolic processes. Specific to adipose tissue of low gaining animals was glycolysis and to high gain animals was coenzyme, steroid, cellular amino acid, nitrogen compound metabolic processes, and sensory perception. The oxidative phosphorylation, mitochondrial dysfunction and cholesterol biosynthesis pathways were commonly associated with the high gain animals between feed restriction and realimentation, as well as with the low gaining animals between the two time points. Unique to the high gaining animals were valine degradation and LPS/IL-1 mediated inhibition of RXR function pathways. In this discovery study, genes involved in lipid metabolism, mitochondrial respiration and oxidative phosphorylation pathways appear to be critical to mature cows during times of abundant feed after feed restriction.
Collapse
Affiliation(s)
| | - Kristi M. Cammack
- University of Wyoming, Laramie, WY, United States of America
- South Dakota State University West River Ag Center, Rapid City, SD, United States of America
| | - Kristin E. Hales
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States of America
| | - Harvey C. Freetly
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States of America
| | | |
Collapse
|