1
|
Baleseng LB, Mareko M, Mahabile W, George DG, Sejong G, Madibela O. Nutritional evaluation of marula kernel cake (Sclerocarya birrea) compared to Sunflower seedcake (Helianthus annus) as a feed ingredient for ruminants. Trop Anim Health Prod 2025; 57:174. [PMID: 40232334 DOI: 10.1007/s11250-025-04398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 03/21/2025] [Indexed: 04/16/2025]
Abstract
The growing interest in non-conventional supplementary feeds has triggered research aimed at characterising alternative feed resources such as marula kernel cake (MKC) for improvement of livestock productivity. Samples of MKC and those of sunflower seedcake (SSC) were evaluated for chemical characteristics and rumen degradation. Chemical analysis of the two seedcakes was repeated twice. Dry matter and crude protein in sacco degradation were determined once using three fistulated steers. Samples were incubated in the rumen for 0, 6, 12, 24, 48, and 72 h. MKC had higher (P < 0.05) content of gross energy, crude protein, ether extract and in vitro dry matter digestibility than SSC. Phosphorus and magnesium were higher (P < 0.05) in MKC samples than SSC. Oleic acid content was higher (P < 0.05) in MKC than in SSC whereas level of unsaturated fatty acid (UFA) was similar (P > 0.05) between MKC and SSC. MKC was low (P < 0.05) in lysine compared to SSC. In sacco dry matter disappearance of SSC at 72 h was lower (P < 0.05) than that of MKC. In contrast, crude protein disappearance of both cakes was similar at 72 h incubation. It is therefore concluded that MKC is rich in energy, crude protein, some essential nutrients and could be a useful resource for supplying both energy and protein in ruminant diets.
Collapse
Affiliation(s)
- Leonard Boitumelo Baleseng
- Department of Animal Sciences, Faculty of Animal and Veterinary Sciences, Botswana University of Agriculture and Natural Resources, Private Bag 0027, Gaborone, Botswana.
- Department of Veterinary Services, Ministry of Lands and Agriculture, P/Bag 0032, Gaborone, Botswana.
| | - Molebeledi Mareko
- Department of Animal Sciences, Faculty of Animal and Veterinary Sciences, Botswana University of Agriculture and Natural Resources, Private Bag 0027, Gaborone, Botswana
| | | | | | - Gabobonwe Sejong
- Department of Plant Health, Ministry of Lands and Agriculture, Private Bag 0091, Gaborone, Botswana
| | - Othusitse Madibela
- Department of Animal Sciences, Faculty of Animal and Veterinary Sciences, Botswana University of Agriculture and Natural Resources, Private Bag 0027, Gaborone, Botswana
| |
Collapse
|
2
|
Yang X, Wen D, Liu Z, Zhang Y, Danzengjicha, Yixiduoji, Huang X, Li B. Biofermentation of aquatic plants: Potential novel feed ingredients for dairy cattle production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175955. [PMID: 39222819 DOI: 10.1016/j.scitotenv.2024.175955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The study assessed the impacts of aquatic plant silages on feeding efficiency and dairy cattle health as an alternative to conventional corn silage under high altitude conditions. Mid-lactation Holstein cows were assigned to treatment groups according to a randomized complete block design of parity, previous 105-d milk yield, and body weight. Cows (n = 8 per group) were fed with aquatic plant silage inoculated with Bacillus subtilis (BS), Yeast (YS), or conventional corn silage without inoculants (control) in addition to [standard grain feed] for 75 consecutive days. BS and YS had higher protein contents than control silage (111.20 ± 7.68, 112.10 ± 6.83 vs 76.94 ± 3.48 g/kg DM), while feeding efficiency was comparable between treatments (1.07, 0.99, and 0.90, respectively). In addition, the addition of aquatic plant silage in ruminant diets enhanced immunity and antioxidant capacity when compared with control group. Metagenomic analysis showed similar composition in rumen microbiota between YS and control groups, with higher enrichment for energy and nitrogen utilization pathways in YS-treated cows. This study highlights the use of aquatic plant silage as an alternative feed for dairy cattle with higher protein than corn silage. Our results suggest YS or BS could potentially boost immune and antioxidant functions, improving adaptation to high-altitudes and reducing demand for high input corn production on the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Xugang Yang
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; Lanzhou University, Lanzhou 730033, Gansu, China
| | - Dongxu Wen
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Ying Zhang
- Lanzhou University, Lanzhou 730033, Gansu, China
| | - Danzengjicha
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China
| | - Yixiduoji
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China
| | - Xiaodan Huang
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; Lanzhou University, Lanzhou 730033, Gansu, China.
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China.
| |
Collapse
|
3
|
Xiong Z, Li Y, Zhang X, Zhang S, Li K, Zheng N, Zhao S, Wang J. Effects of biochanin A on lactational performance, nitrogen metabolism, and blood metabolites in dairy cows. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:441-449. [PMID: 39309972 PMCID: PMC11416632 DOI: 10.1016/j.aninu.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 09/25/2024]
Abstract
Optimizing nitrogen utilization efficiency and mitigating nitrogen losses in cows plays a pivotal role in fostering economic sustainability within contemporary agricultural systems. Biochanin A (BCA), a natural component in red clover, has the potential to improve nitrogen metabolism in dairy cows. The primary objective of this study was to probe the impact of biochanin A supplementation on lactational performance, nitrogen metabolism, and blood metabolites in dairy cows. A complete randomized block design experiment was conducted over 28 d, involving 36 multiparous Holstein cows (comparable milk yield = 37.1 ± 2.90 kg, BW = 642 ± 70.0 kg, days in milk = 92 ± 8.0 d, and parity = 2.4 ± 0.50), which were allocated to three treatment groups: the Control group (with 0 g/d BCA), the Low group (with 10 g/d per cow BCA), and the High group (with 40 g/d per cow BCA). Biochanin A supplementation improved the lactational performance of cows by increasing milk yield by 6.3% (P = 0.007) and feed efficiency by 12.7% (P = 0.009). Total intestinal apparent digestibility was unaffected by BCA supplementation (P > 0.05), but microbial nitrogen was increased by 30.0% (P = 0.002) for promoting nitrogen utilization efficiency by 20.7% (P = 0.004). Milk competent yields (protein, lactose, and non-fat milk solid) were increased with increasing BCA supplementation (P < 0.05). Urea nitrogen levels in plasma and milk were both decreased by BCA supplementation (P < 0.05). Blood routine parameters and plasma biochemical parameters both received no effect by BCA supplementation (P > 0.05). BCA did not affect body health of dairy cows. Additionally, none of the plasma endocrine hormones were affected (P > 0.05). A total of 95 significantly different metabolites were screened from the plasma metabolites of cows in the BCA-added and non-added groups. After performing an enrichment analysis of the metabolic pathways associated with the different metabolites, six specific pathways were identified: bile acid biosynthesis, aspartate metabolism, pyrimidine metabolism, arginine and proline metabolism, the urea cycle, and ammonia recycling. The inclusion of BCA is suggested to enhance milk yield and modulate nitrogen metabolism by influencing relevant metabolites within the metabolic pathways.
Collapse
Affiliation(s)
- Zhanbo Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanjun Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shiqi Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kexin Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Effects of Different Dietary Protein Level on Growth Performance, Rumen Fermentation Characteristics and Plasma Metabolomics Profile of Growing Yak in the Cold Season. Animals (Basel) 2023; 13:ani13030367. [PMID: 36766256 PMCID: PMC9913104 DOI: 10.3390/ani13030367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/24/2023] Open
Abstract
This experiment was aimed to compare the effects of two diets with different protein content on the growth performance, immune indexes, rumen fermentation characteristics and plasma metabolomics of growing yak in the cold season. A total of 24, 2-year-old healthy yaks with similar body weight (142.9 ± 3.56 kg) were randomly allocated to two isoenergetic diets with different protein content (10 vs 14%) according to a non-paired experimental design, and the protein of the diets was increased by increasing soybean meal, rapeseed meal and cottonseed meal. The growth performance experiment lasted 56 days. Four days before the end of the growth experiment, the digestion trial was conducted, and the rumen fluid and plasma was collected for measurement. The results showed that the average daily feed intake (p < 0.001) and average daily gain (p = 0.006) of yak fed a high-protein diet was significantly greater, while the feed conversion ratio was lower (p = 0.021) than that of yaks fed a low-protein diet. Plasma aspartate aminotransferase (p = 0.002), alanine aminotransferase (p < 0.001), malondialdehyde (p = 0.001), tumor necrosis factor-α (p = 0.032) and interferon-γ (p = 0.017) of the high-protein group were significantly lesser, whereas superoxide dismutase (p = 0.004) and interleukin-2 (p = 0.007) was significantly greater than that of the low-protein group. The rumen microbial crude protein (p < 0.047) and crude protein digestibility (p = 0.015) of yak fed a high-protein diet was significantly greater than that of the low-protein group. The metabolomics results showed that yaks fed a high-protein diet were elevated in protein digestion and absorption, arginine and proline metabolism, tryptophan metabolism, purine metabolism, butanoate metabolism, taste transduction, pyrimidine metabolism, pantothenate and CoA biosynthesis, glutathione metabolism and renin secretion pathways. It is concluded that a high-protein diet in the cold season can promote rumen microbial crude protein synthesis, enhance antioxidant and immune function and promote growth performance of yaks.
Collapse
|
5
|
Li Z, Shen J, Xu Y, Zhu W. Metagenomic analysis reveals significant differences in microbiome and metabolic profiles in the rumen of sheep fed low N diet with increased urea supplementation. FEMS Microbiol Ecol 2021; 96:5861934. [PMID: 32578861 DOI: 10.1093/femsec/fiaa117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/23/2020] [Indexed: 11/13/2022] Open
Abstract
Urea is a cost-effective replacement for feed proteins in ruminant diets. However, its metabolism by the rumen microbiome is not fully understood. Here, rumen contents were collected from 18 male sheep fed one of the following three treatments: a low N basal diet with no urea (UC, 0 g/kg dry matter (DM)), low urea (LU, 10 g/kg DM) and high urea (HU, 30 g/kg DM). Principal coordinate analysis showed that the microbial composition and functional profiles of the LU treatment significantly differed from the UC and HU treatments. The genera Prevotella, Succinivibrio, Succinatimonas and Megasphaera were higher in the LU rumen, while the genera Clostridium, Ruminococcus and Butyrivibrio were enriched in the UC and HU rumen. The aspartate-glutamate and arginine-proline metabolic pathways and valine, leucine and isoleucine biosynthesis were higher in the LU rumen. The cysteine and methionine metabolism, lysine degradation and fructose and pentose phosphate metabolism pathways were higher in the UC and HU rumen. The protozoa population in the HU treatment was higher than in the UC and LU treatments. These findings suggest that the rumen microbiome of sheep fed low N diet with different urea supplementation are significantly different.
Collapse
Affiliation(s)
- Zhipeng Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, Jilin Province, China
| | - Junshi Shen
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yixuan Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| |
Collapse
|
6
|
Exploring the Diversity of Active Ureolytic Bacteria in the Rumen by Comparison of cDNA and gDNA. Animals (Basel) 2020; 10:ani10112162. [PMID: 33233592 PMCID: PMC7699693 DOI: 10.3390/ani10112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Ureolytic bacteria produce urease that hydrolyzes dietary or recycled urea to ammonia, which can then be converted into microbial proteins. The diversity of ruminal ureolytic bacteria benefits N utilization efficiency in ruminants. However, there is no information at the complementary DNA (cDNA) level to reflect the active status of ureolytic bacteria. To reveal the diversity of active ureolytic bacteria in the rumen, we compared ureC amplicons between genomic DNA (gDNA) and cDNA. These results revealed distinct ureolytic bacterial community profiles based on gDNA and cDNA. The dominant ureolytic bacterial had high transcriptional activity, and the differential were mainly distributed in the genus of low abundance. Abstract In this study we revealed the diversity of active ureolytic bacteria in the rumen by compared ureC amplicons between gDNA and cDNA. Rumen fluid was collected from four Holstein dairy cows with rumen fistulas at 0, 2, and 6 h after morning feeding. Total microbial gDNA and RNA were isolated, and the RNA was reverse-transcribed into cDNA. The ureC gene amplicons of gDNA and cDNA were produced and sequenced by MiSeq. These results revealed that the sampling time had no significant difference on the alphssa and beta diversity indices of the ureolytic bacteria. The Shannon diversity of the ureC gene for cDNA was greater than that for gDNA (p < 0.05). There were significant difference in the beta diversity of ureolytic bacteria between gDNA and cDNA (p < 0.01), which indicates a shift in the community of active ureolytic bacteria. Approximately 67% of ureC sequences from cDNA could not be confidently classified at the genus level. The active ureolytic bacteria were mainly from Helicobacter, Herbaspirillum, Clostridium, Paenibacillus, Synechococcus, and Sphingobacterium sp. Changes in the operational taxonomic units revealed that the top abundant ureC genes were mostly consistent between gDNA and cDNA, and most differences occurred in the ureC genes with lower abundances. These results revealed distinct ureolytic bacteria community profiles based on gDNA and cDNA. The dominant ureolytic bacteria had high transcriptional activity, and the differential were mainly distributed in the genus of low abundance.
Collapse
|
7
|
Dihydropyridine Enhances the Antioxidant Capacities of Lactating Dairy Cows under Heat Stress Condition. Animals (Basel) 2020; 10:ani10101812. [PMID: 33027986 PMCID: PMC7601851 DOI: 10.3390/ani10101812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 01/22/2023] Open
Abstract
Simple Summary Additives contribute to improving the health of dairy cows, enhancing antioxidative capacities, and/or increasing milk production, etc. To alleviate the harmful effects of heat stress on dairy cows, a few feed additives studies have been conducted. Dihydropyridine has been used as a feed additive in dairy cow diets. However, the underlying mechanisms of its beneficial effects still remain unclear. In the present study, dairy cows were randomly divided into a control group and a dihydropyridine treatment group under heat stress in summer. The rumen and blood samples of dairy cows were collected to determine the changes in their antioxidative capacities. Meanwhile, the effects of dihydropyridine on ruminal microbial communities were also analyzed. Our data demonstrated that dihydropyridine enhanced the antioxidative capacities of dairy cows under heat stress conditions. Abstract Heat stress (HS), a nonspecific response to environmental heat, can seriously affect dairy cow health. Feed additives may alleviate HS in dairy cows by improving rumen fermentation efficacy, stimulating feed consumption, enhancing vasodilation, and/or improving antioxidant capacity. The temperature–humidity index (THI) indicates that spring is a non-HS season, and summer is an HS season. HS results in the decrease in dairy cow antioxidant capacities. Our results indicated the decrease in superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and total antioxidation (T-AOC) levels and the increase in malondialdehyde (MDA) level during HS season. Meanwhile, antioxidant indexes (SOD, GSH-Px, and T-AOC) were positively correlated with milk yield (p < 0.01), whereas MDA exhibited a significant negative correlation with milk yield (p < 0.05). In addition, the effects of dihydropyridine (DHP) on antioxidant capacity and ruminal microbial communities in dairy cows under HS were investigated. During summer, dairy cows were randomly assigned into two groups under HS, including a standard diet (S-ND) group and standard diet with 3 g/day/cow DHP (S-D) group. DHP treatment significantly restored SOD and GSH-Px levels under HS. Denaturing gradient gel electrophoresis results indicated that the DHP altered ruminal bacterial community mainly composed Proteobacteria and Firmicutes in dairy cows under HS. Our results suggest that DHP can enhance the antioxidant abilities of dairy cows with favorable effects on ruminal microbial communities under HS, further alleviating HS on dairy cows.
Collapse
|
8
|
Li Z, Mu C, Xu Y, Shen J, Zhu W. Changes in the Solid-, Liquid-, and Epithelium-Associated Bacterial Communities in the Rumen of Hu Lambs in Response to Dietary Urea Supplementation. Front Microbiol 2020; 11:244. [PMID: 32153533 PMCID: PMC7046558 DOI: 10.3389/fmicb.2020.00244] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/31/2020] [Indexed: 01/10/2023] Open
Abstract
The rumen bacteria in the solid, liquid, and epithelial fractions are distinct and play important roles in the degradation of urea nitrogen. However, the effects of urea on rumen bacteria from the three fractions remain unclear. In this study, 42 Hu lambs were fed a total mixed ration based on concentrate and roughage (55:45, dry matter basis) and randomly assigned to one of three experimental diets: a basal diet with no urea (UC, 0 g/kg), a basal diet supplemented with low urea levels (LU, 10 g/kg DM), and a basal diet supplemented with high urea levels (HU, 30 g/kg DM). After an 11-week feeding trial, six animals from each treatment were harvested. Rumen metabolites levels were measured, and bacteria of the rumen solid, liquid, and epithelial fractions were examined based on 16S rRNA gene sequencing. Under urea supplementation, the concentrations of ammonia and butyrate in the rumen increased, whereas the concentration of propionate decreased. The population of total protozoa was the highest in the LU treatment. Prevotella 1 was the most abundant genus in all samples. The unclassified Muribaculaceae, bacteria within the families Lachnospiraceae and Ruminococcaceae, and Christensenellaceae R7 were abundant in the solid and liquid fractions. Butyrivibrio 2 and Treponema 2 were the abundant bacteria in the epithelial fraction. Principal coordinate analysis showed separation of the solid, liquid and epithelial bacteria regardless of diet, suggesting that rumen fraction had stronger influences on the bacterial community than did urea supplementation. However, the influences on the bacterial community differed among the three fractions. In the solid and liquid fractions, Succinivibrionaceae UCG 001 and Prevotella 1 showed decreased abundance with dietary urea supplementation, whereas the abundance of Oscillospira spp. was increased. Howardella spp. and Desulfobulbus spp. were higher in the epithelial fraction of the UC and LU treatments relative to HU treatment. Comparisons of predictive function in the rumen solid, liquid, and epithelial fractions among the three treatments also revealed differences. Collectively, these results reveal the change of the rumen bacterial community to dietary urea supplementation.
Collapse
Affiliation(s)
- Zhipeng Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chunlong Mu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Yixuan Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Junshi Shen
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Yan X, Yan B, Ren Q, Dou J, Wang W, Zhang J, Zhou J, Long R, Ding L, Han J, Li Z, Qiu Q. Effect of slow-release urea on the composition of ruminal bacteria and fungi communities in yak. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|