1
|
Haque MA, Iqbal A, Alam MZ, Lee YM, Ha JJ, Kim JJ. Estimation of genetic correlations and genomic prediction accuracy for reproductive and carcass traits in Hanwoo cows. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:682-701. [PMID: 39165742 PMCID: PMC11331368 DOI: 10.5187/jast.2024.e75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2024]
Abstract
This study estimated the heritabilities (h2) and genetic and phenotypic correlations between reproductive traits, including calving interval (CI), age at first calving (AFC), gestation length (GL), number of artificial inseminations per conception (NAIPC), and carcass traits, including carcass weight (CWT), eye muscle area (EMA), backfat thickness (BF), and marbling score (MS) in Korean Hanwoo cows. In addition, the accuracy of genomic predictions of breeding values was evaluated by applying the genomic best linear unbiased prediction (GBLUP) and the weighted GBLUP (WGBLUP) method. The phenotypic data for reproductive and carcass traits were collected from 1,544 Hanwoo cows, and all animals were genotyped using Illumina Bovine 50K single nucleotide polymorphism (SNP) chip. The genetic parameters were estimated using a multi-trait animal model using the MTG2 program. The estimated h2 for CI, AFC, GL, NAIPC, CWT, EMA, BF, and MS were 0.10, 0.13, 0.17, 0.11, 0.37, 0.35, 0.27, and 0.45, respectively, according to the GBLUP model. The GBLUP accuracy estimates ranged from 0.51 to 0.74, while the WGBLUP accuracy estimates for the traits under study ranged from 0.51 to 0.79. Strong and favorable genetic correlations were observed between GL and NAIPC (0.61), CWT and EMA (0.60), NAIPC and CWT (0.49), AFC and CWT (0.48), CI and GL (0.36), BF and MS (0.35), NAIPC and EMA (0.35), CI and BF (0.30), EMA and MS (0.28), CI and AFC (0.26), AFC and EMA (0.24), and AFC and BF (0.21). The present study identified low to moderate positive genetic correlations between reproductive and CWT traits, suggesting that a heavier body weight may lead to a longer CI, AFC, GL, and NAIPC. The moderately positive genetic correlation between CWT and AFC, and NAIPC, with a phenotypic correlation of nearly zero, suggesting that the genotype-environment interactions are more likely to be responsible for the phenotypic manifestation of these traits. As a result, the inclusion of these traits by breeders as selection criteria may present a good opportunity for developing a selection index to increase the response to the selection and identification of candidate animals, which can result in significantly increased profitability of production systems.
Collapse
Affiliation(s)
- Md Azizul Haque
- Department of Biotechnology, Yeungnam
University, Gyeongsan 38541, Korea
| | - Asif Iqbal
- Department of Biotechnology, Yeungnam
University, Gyeongsan 38541, Korea
| | | | - Yun-Mi Lee
- Department of Biotechnology, Yeungnam
University, Gyeongsan 38541, Korea
| | - Jae-Jung Ha
- Gyeongbuk Livestock Research
Institute, Yeongju 36052, Korea
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam
University, Gyeongsan 38541, Korea
| |
Collapse
|
2
|
Haque MA, Lee YM, Ha JJ, Jin S, Park B, Kim NY, Won JI, Kim JJ. Genomic Predictions in Korean Hanwoo Cows: A Comparative Analysis of Genomic BLUP and Bayesian Methods for Reproductive Traits. Animals (Basel) 2023; 14:27. [PMID: 38200758 PMCID: PMC10778388 DOI: 10.3390/ani14010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
This study aimed to predict the accuracy of genomic estimated breeding values (GEBVs) for reproductive traits in Hanwoo cows using the GBLUP, BayesB, BayesLASSO, and BayesR methods. Accuracy estimates of GEBVs for reproductive traits were derived through fivefold cross-validation, analyzing a dataset comprising 11,348 animals and employing an Illumina Bovine 50K SNP chip. GBLUP showed an accuracy of 0.26 for AFC, while BayesB, BayesLASSO, and BayesR demonstrated values of 0.28, 0.29, and 0.29, respectively. For CI, GBLUP attained an accuracy of 0.19, whereas BayesB, BayesLASSO, and BayesR scored 0.21, 0.24, and 0.25, respectively. The accuracy for GL was uniform across GBLUP, BayesB, and BayesR at 0.31, whereas BayesLASSO showed a slightly higher accuracy of 0.33. For NAIPC, GBLUP showed an accuracy of 0.24, while BayesB, BayesLASSO, and BayesR recorded 0.22, 0.27, and 0.30, respectively. The variation in genomic prediction accuracy among methods indicated Bayesian approaches slightly outperformed GBLUP. The findings suggest that Bayesian methods, notably BayesLASSO and BayesR, offer improved predictive capabilities for reproductive traits. Future research may explore more advanced genomic approaches to enhance predictive accuracy and genetic gains in Hanwoo cattle breeding programs.
Collapse
Affiliation(s)
- Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (M.A.H.); (Y.-M.L.)
| | - Yun-Mi Lee
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (M.A.H.); (Y.-M.L.)
| | - Jae-Jung Ha
- Gyeongbuk Livestock Research Institute, Yeongju 36052, Republic of Korea;
| | - Shil Jin
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang 25340, Republic of Korea; (S.J.); (B.P.); (N.-Y.K.)
| | - Byoungho Park
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang 25340, Republic of Korea; (S.J.); (B.P.); (N.-Y.K.)
| | - Nam-Young Kim
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang 25340, Republic of Korea; (S.J.); (B.P.); (N.-Y.K.)
| | - Jeong-Il Won
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang 25340, Republic of Korea; (S.J.); (B.P.); (N.-Y.K.)
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (M.A.H.); (Y.-M.L.)
| |
Collapse
|
3
|
Wang K, Yang B, Li Q, Liu S. Systematic Evaluation of Genomic Prediction Algorithms for Genomic Prediction and Breeding of Aquatic Animals. Genes (Basel) 2022; 13:genes13122247. [PMID: 36553514 PMCID: PMC9778314 DOI: 10.3390/genes13122247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
The extensive use of genomic selection (GS) in livestock and crops has led to a series of genomic-prediction (GP) algorithms despite the lack of a single algorithm that can suit all the species and traits. A systematic evaluation of available GP algorithms is thus necessary to identify the optimal GP algorithm for selective breeding in aquaculture species. In this study, a systematic comparison of ten GP algorithms, including both traditional and machine-learning algorithms, was conducted using publicly available genotype and phenotype data of eight traits, including weight and disease resistance traits, from five aquaculture species. The study aimed to provide insights into the optimal algorithm for GP in aquatic animals. Notably, no algorithm showed the best performance in all traits. However, reproducing kernel Hilbert space (RKHS) and support-vector machine (SVM) algorithms achieved relatively high prediction accuracies in most of the tested traits. Bayes A and random forest (RF) better prevented noise interference in the phenotypic data compared to the other algorithms. The prediction performances of GP algorithms in the Crassostrea gigas dataset were improved by using a genome-wide association study (GWAS) to select subsets of significant SNPs. An R package, "ASGS," which integrates the commonly used traditional and machine-learning algorithms for efficiently finding the optimal algorithm, was developed to assist the application of genomic selection breeding of aquaculture species. This work provides valuable information and a tool for optimizing algorithms for GP, aiding genetic breeding in aquaculture species.
Collapse
Affiliation(s)
- Kuiqin Wang
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Ben Yang
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: ; Tel.: +86-0532-82032595
| |
Collapse
|
4
|
|
5
|
Sustainable Intensification of Beef Production in the Tropics: The Role of Genetically Improving Sexual Precocity of Heifers. Animals (Basel) 2022; 12:ani12020174. [PMID: 35049797 PMCID: PMC8772995 DOI: 10.3390/ani12020174] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Tropical pasture-based beef production systems play a vital role in global food security. The importance of promoting sustainable intensification of such systems has been debated worldwide. Demand for beef is growing together with concerns over the impact of its production on the environment. Implementing sustainable livestock intensification programs relies on animal genetic improvement. In tropical areas, the lack of sexual precocity is a bottleneck for cattle efficiency, directly impacting the sustainability of production systems. In the present review we present and discuss the state of the art of genetic evaluation for sexual precocity in Bos indicus beef cattle, covering the definition of measurable traits, genetic parameter estimates, genomic analyses, and a case study of selection for sexual precocity in Nellore breeding programs. Abstract Increasing productivity through continued animal genetic improvement is a crucial part of implementing sustainable livestock intensification programs. In Zebu cattle, the lack of sexual precocity is one of the main obstacles to improving beef production efficiency. Puberty-related traits are complex, but large-scale data sets from different “omics” have provided information on specific genes and biological processes with major effects on the expression of such traits, which can greatly increase animal genetic evaluation. In addition, genetic parameter estimates and genomic predictions involving sexual precocity indicator traits and productive, reproductive, and feed-efficiency related traits highlighted the feasibility and importance of direct selection for anticipating heifer reproductive life. Indeed, the case study of selection for sexual precocity in Nellore breeding programs presented here show that, in 12 years of selection for female early precocity and improved management practices, the phenotypic means of age at first calving showed a strong decreasing trend, changing from nearly 34 to less than 28 months, with a genetic trend of almost −2 days/year. In this period, the percentage of early pregnancy in the herds changed from around 10% to more than 60%, showing that the genetic improvement of heifer’s sexual precocity allows optimizing the productive cycle by reducing the number of unproductive animals in the herd. It has a direct impact on sustainability by better use of resources. Genomic selection breeding programs accounting for genotype by environment interaction represent promising tools for accelerating genetic progress for sexual precocity in tropical beef cattle.
Collapse
|
6
|
Shao B, Sun H, Ahmad MJ, Ghanem N, Abdel-Shafy H, Du C, Deng T, Mansoor S, Zhou Y, Yang Y, Zhang S, Yang L, Hua G. Genetic Features of Reproductive Traits in Bovine and Buffalo: Lessons From Bovine to Buffalo. Front Genet 2021; 12:617128. [PMID: 33833774 PMCID: PMC8021858 DOI: 10.3389/fgene.2021.617128] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
Bovine and buffalo are important livestock species that have contributed to human lives for more than 1000 years. Improving fertility is very important to reduce the cost of production. In the current review, we classified reproductive traits into three categories: ovulation, breeding, and calving related traits. We systematically summarized the heritability estimates, molecular markers, and genomic selection (GS) for reproductive traits of bovine and buffalo. This review aimed to compile the heritability and genome-wide association studies (GWASs) related to reproductive traits in both bovine and buffalos and tried to highlight the possible disciplines which should benefit buffalo breeding. The estimates of heritability of reproductive traits ranged were from 0 to 0.57 and there were wide differences between the populations. For some specific traits, such as age of puberty (AOP) and calving difficulty (CD), the majority beef population presents relatively higher heritability than dairy cattle. Compared to bovine, genetic studies for buffalo reproductive traits are limited for age at first calving and calving interval traits. Several quantitative trait loci (QTLs), candidate genes, and SNPs associated with bovine reproductive traits were screened and identified by candidate gene methods and/or GWASs. The IGF1 and LEP pathways in addition to non-coding RNAs are highlighted due to their crucial relevance with reproductive traits. The distribution of QTLs related to various traits showed a great differences. Few GWAS have been performed so far on buffalo age at first calving, calving interval, and days open traits. In addition, we summarized the GS studies on bovine and buffalo reproductive traits and compared the accuracy between different reports. Taken together, GWAS and candidate gene approaches can help to understand the molecular genetic mechanisms of complex traits. Recently, GS has been used extensively and can be performed on multiple traits to improve the accuracy of prediction even for traits with low heritability, and can be combined with multi-omics for further analysis.
Collapse
Affiliation(s)
- Baoshun Shao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hui Sun
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Jamil Ahmad
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nasser Ghanem
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Hamdy Abdel-Shafy
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Chao Du
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tingxian Deng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Yang Zhou
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction, Wuhan, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
| | - Yifen Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Shujun Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction, Wuhan, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
| | - Liguo Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction, Wuhan, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
| | - Guohua Hua
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction, Wuhan, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan, China
| |
Collapse
|
7
|
Pégard M, Segura V, Muñoz F, Bastien C, Jorge V, Sanchez L. Favorable Conditions for Genomic Evaluation to Outperform Classical Pedigree Evaluation Highlighted by a Proof-of-Concept Study in Poplar. FRONTIERS IN PLANT SCIENCE 2020; 11:581954. [PMID: 33193528 PMCID: PMC7655903 DOI: 10.3389/fpls.2020.581954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Forest trees like poplar are particular in many ways compared to other domesticated species. They have long juvenile phases, ongoing crop-wild gene flow, extensive outcrossing, and slow growth. All these particularities tend to make the conduction of breeding programs and evaluation stages costly both in time and resources. Perennials like trees are therefore good candidates for the implementation of genomic selection (GS) which is a good way to accelerate the breeding process, by unchaining selection from phenotypic evaluation without affecting precision. In this study, we tried to compare GS to pedigree-based traditional evaluation, and evaluated under which conditions genomic evaluation outperforms classical pedigree evaluation. Several conditions were evaluated as the constitution of the training population by cross-validation, the implementation of multi-trait, single trait, additive and non-additive models with different estimation methods (G-BLUP or weighted G-BLUP). Finally, the impact of the marker densification was tested through four marker density sets. The population under study corresponds to a pedigree of 24 parents and 1,011 offspring, structured into 35 full-sib families. Four evaluation batches were planted in the same location and seven traits were evaluated on 1 and 2 years old trees. The quality of prediction was reported by the accuracy, the Spearman rank correlation and prediction bias and tested with a cross-validation and an independent individual test set. Our results show that genomic evaluation performance could be comparable to the already well-optimized pedigree-based evaluation under certain conditions. Genomic evaluation appeared to be advantageous when using an independent test set and a set of less precise phenotypes. Genome-based methods showed advantages over pedigree counterparts when ranking candidates at the within-family levels, for most of the families. Our study also showed that looking at ranking criteria as Spearman rank correlation can reveal benefits to genomic selection hidden by biased predictions.
Collapse
Affiliation(s)
| | - Vincent Segura
- BioForA, INRA, ONF, Orléans, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | | | | | | | |
Collapse
|