1
|
Bertolini F, Moscatelli G, Schiavo G, Bovo S, Ribani A, Ballan M, Bonacini M, Prandi M, Dall'Olio S, Fontanesi L. Signatures of selection are present in the genome of two close autochthonous cattle breeds raised in the North of Italy and mainly distinguished for their coat colours. J Anim Breed Genet 2021; 139:307-319. [PMID: 34841617 PMCID: PMC9300179 DOI: 10.1111/jbg.12659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/01/2021] [Accepted: 11/13/2021] [Indexed: 11/28/2022]
Abstract
Autochthonous cattle breeds are genetic resources that, in many cases, have been fixed for inheritable exterior phenotypes useful to understand the genetic mechanisms affecting these breed-specific traits. Reggiana and Modenese are two closely related autochthonous cattle breeds mainly raised in the production area of the well-known Protected Designation of Origin Parmigiano-Reggiano cheese, in the North of Italy. These breeds can be mainly distinguished for their standard coat colour: solid red in Reggiana and solid white with pale shades of grey in Modenese. In this study we genotyped with the GeneSeek GGP Bovine 150k single nucleotide polymorphism (SNP) chip almost half of the extant cattle populations of Reggiana (n = 1109 and Modenese (n = 326) and used genome-wide information in comparative FST analyses to detect signatures of selection that diverge between these two autochthonous breeds. The two breeds could be clearly distinguished using multidimensional scaling plots and admixture analysis. Considering the top 0.0005% FST values, a total of 64 markers were detected in the single-marker analysis. The top FST value was detected for the melanocortin 1 receptor (MC1R) gene mutation, which determines the red coat colour of the Reggiana breed. Another coat colour gene, agouti signalling protein (ASIP), emerged amongst this list of top SNPs. These results were also confirmed with the window-based analyses, which included 0.5-Mb or 1-Mb genome regions. As variability affecting ASIP has been associated with white coat colour in sheep and goats, these results highlighted this gene as a strong candidate affecting coat colour in Modenese breed. This study demonstrates how population genomic approaches designed to take advantage from the diversity between local genetic resources could provide interesting hints to explain exterior traits not yet completely investigated in cattle.
Collapse
Affiliation(s)
- Francesca Bertolini
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Giulia Moscatelli
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Giuseppina Schiavo
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Samuele Bovo
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Anisa Ribani
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Mohamad Ballan
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Massimo Bonacini
- Associazione Nazionale Allevatori Bovini di Razza Reggiana (ANABORARE), Reggio Emilia, Italy
| | - Marco Prandi
- Associazione Nazionale Allevatori Bovini di Razza Reggiana (ANABORARE), Reggio Emilia, Italy
| | - Stefania Dall'Olio
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Luca Fontanesi
- Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Ben-Jemaa S, Senczuk G, Ciani E, Ciampolini R, Catillo G, Boussaha M, Pilla F, Portolano B, Mastrangelo S. Genome-Wide Analysis Reveals Selection Signatures Involved in Meat Traits and Local Adaptation in Semi-Feral Maremmana Cattle. Front Genet 2021; 12:675569. [PMID: 33995500 PMCID: PMC8113768 DOI: 10.3389/fgene.2021.675569] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/07/2021] [Indexed: 12/31/2022] Open
Abstract
The Maremmana cattle is an ancient Podolian-derived Italian breed raised in semi-wild conditions with distinctive morphological and adaptive traits. The aim of this study was to detect potential selection signatures in Maremmana using medium-density single nucleotide polymorphism array. Putative selection signatures were investigated combining three statistical approaches designed to quantify the excess of haplotype homozygosity either within (integrated haplotype score, iHS) or among pairs of populations (Rsb and XP-EHH), and contrasting the Maremmana with a single reference population composed of a pool of seven Podolian-derived Italian breeds. Overall, the three haplotype-based analyses revealed selection signatures distributed over 19 genomic regions. Of these, six relevant candidate regions were identified by at least two approaches. We found genomic signatures of selective sweeps spanning genes related to mitochondrial function, muscle development, growth, and meat traits (SCIN, THSD7A, ETV1, UCHL1, and MYOD1), which reflects the different breeding schemes between Maremmana (semi-wild conditions) and the other Podolian-derived Italian breeds (semi-extensive). We also identified several genes linked to Maremmana adaptation to the environment of the western-central part of Italy, known to be hyperendemic for malaria and other tick-borne diseases. These include several chemokine (C-C motif) ligand genes crucially involved in both innate and adaptive immune responses to intracellular parasite infections and other genes playing key roles in pulmonary disease (HEATR9, MMP28, and ASIC2) or strongly associated with malaria resistance/susceptibility (AP2B1). Our results provide a glimpse into diverse selection signatures in Maremmana cattle and can be used to enhance our understanding of the genomic basis of environmental adaptation in cattle.
Collapse
Affiliation(s)
- Slim Ben-Jemaa
- Laboratoire des Productions Animales et Fourragères, Institut National de la Recherche Agronomique de Tunisie, University of Carthage, Ariana, Tunisia
| | - Gabriele Senczuk
- Dipartimento di Agricoltura, Ambiente e Alimenti, University of Molise, Campobasso, Italy
| | - Elena Ciani
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, University of Bari “Aldo Moro”, Bari, Italy
| | | | - Gennaro Catillo
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura, Lodi, Italy
| | - Mekki Boussaha
- INRAE, AgroParisTech, University of Paris Saclay, Saint Aubin, France
| | - Fabio Pilla
- Dipartimento di Agricoltura, Ambiente e Alimenti, University of Molise, Campobasso, Italy
| | - Baldassare Portolano
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Salvatore Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| |
Collapse
|
3
|
Biscarini F, Mastrangelo S, Catillo G, Senczuk G, Ciampolini R. Insights into Genetic Diversity, Runs of Homozygosity and Heterozygosity-Rich Regions in Maremmana Semi-Feral Cattle Using Pedigree and Genomic Data. Animals (Basel) 2020; 10:E2285. [PMID: 33287320 PMCID: PMC7761732 DOI: 10.3390/ani10122285] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
Semi-feral local livestock populations, like Maremmana cattle, are the object of renewed interest for the conservation of biological diversity and the preservation and exploitation of unique and potentially relevant genetic material. The aim of this study was to estimate genetic diversity parameters in semi-feral Maremmana cattle using both pedigree- and genomic-based approaches (FIS and FROH), and to detect regions of homozygosity (ROH) and heterozygosity (ROHet) in the genome. The average heterozygosity estimates were in the range reported for other cattle breeds (HE=0.261, HO=0.274). Pedigree-based average inbreeding (F) was estimated at 4.9%. The correlation was low between F and genomic-based approaches (r=0.03 with FIS, r=0.21 with FROH), while it was higher between FIS and FROH (r=0.78). The low correlation between F and FROH coefficients may be the result of the limited pedigree depth available for the animals involved in this study. The ROH islands identified in Maremmana cattle included candidate genes associated with climate adaptation, carcass traits or the regulation of body weight, fat and energy metabolism. The ROHet islands contained candidate genes associated with nematode resistance and reproduction traits in livestock. The results of this study confirm that genome-based measures like FROH may be useful estimators of individual autozygosity, and may provide insights on pedigree-based inbreeding estimates in cases when animals' pedigree data are unavailable, thus providing a more detailed picture of the genetic diversity.
Collapse
Affiliation(s)
- Filippo Biscarini
- CNR-IBBA (National Research Council, Institute of Agricultural Biology and Biotechnology), 20133 Milan, Italy
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy;
| | - Gennaro Catillo
- CREA Research Centre for Animal Production and Acquaculture, CREA, 00015 Monterotondo, Italy;
| | - Gabriele Senczuk
- Dipartimento di Agricoltura, Ambiente e Alimenti, University of Molise, 86100 Campobasso, Italy;
| | - Roberta Ciampolini
- Dipartimento di Scienze Veterinarie—Università di Pisa, 56124 Pisa, Italy;
| |
Collapse
|