1
|
Oladejo EO, Hasan MS, Sotak SC, Htoo JK, Brett J, Feugang JM, Liao SF. Effects of Dietary Supplementation of DL-Methionine or DL-Methionine Hydroxyl Analogue (MHA-Ca) on Growth Performance and Blood and Liver Redox Status in Growing Pigs. Animals (Basel) 2024; 14:3397. [PMID: 39682363 DOI: 10.3390/ani14233397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Oxidative stress impairs pigs' health and production performance. This study examined the effects of level and source of methionine (Met) supplementation against the diquat-induced oxidative stress in pigs. Forty growing barrows were randomly assigned to four groups. Groups 1 and 2 received a basal diet that was adequate in energy and nutrients (Diet 1), Group 3 received a DL-Met-supplemented diet, and Group 4 received an MHA-Ca-supplemented diet. After 3 weeks of feeding (Phase 1), pigs were injected with 10 mL saline (Group 1) or 10 mg/kg-BW diquat in 10 mL saline (Groups 2, 3, and 4), and then continually fed for one week (Phase 2). During or at the end of Phase 1, there were no differences in nearly all of the growth performance and redox parameters among the four groups. During or at the end of Phase 2, however, the ADFI and ADG were lower (p < 0.01) in Group 2 than in Group 1 while the serum malondialdehyde content was higher (p < 0.05) in Group 2 than in Group 1. The serum glutathione peroxidase (GPX) activity and liver superoxide dismutase (SOD) activity were lower (p < 0.05) in Group 2 than in Group 1. The serum GPX activity, the serum total antioxidant capacity, and the liver GPX activity were higher (p < 0.05) in Group 3 than in Group 2. There were nearly no differences in these redox parameters between Groups 3 and 4. In conclusion, MHA-Ca and DL-Met, when used at an equivalent bioefficacy level, had similar effects on the pigs' growth performance and antioxidative status. Therefore, increased Met supplementation can improve pigs' antioxidative status.
Collapse
Affiliation(s)
- Emmanuel O Oladejo
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39759, USA
| | - Md Shamimul Hasan
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39759, USA
| | - Susan C Sotak
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39759, USA
| | - John K Htoo
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau-Wolfgang, Germany
| | - James Brett
- College of Veterinary Medicine, Mississippi State University, Starkville, MS 39759, USA
| | - Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39759, USA
| | - Shengfa F Liao
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39759, USA
| |
Collapse
|
2
|
Wang M, Han H, Shang Y, Zhang L, Zhang Y, Su C, Lian H, Fu T, Gao T. Effect of the Replacement of Maize Silage and Soyabean Meal with Mulberry Silage in the Diet of Hu Lambs on Growth Performance, Serum Biochemical Indices, Slaughter Performance, and Meat Quality. Animals (Basel) 2022; 12:ani12223164. [PMID: 36428394 PMCID: PMC9686492 DOI: 10.3390/ani12223164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Maize silage has a high demand for fertilizer and water. As an unconventional feed resource, mulberry silage has the potential to replace most maize silage and to alleviate the shortage of roughage in the mutton sheep industry in China. The purpose of this experiment was to study the effect of the replacement of maize silage and soyabean meal with mulberry silage in the diet of Hu lambs on growth performance, serum biochemical indices, slaughter performance, and meat quality. Ninety-six healthy Hu lambs were randomly divided into four groups with six replicates per group and four lambs per replicate. The amounts of 0, 20, 40, and 60% of maize silage were replaced by mulberry silage in each group (denoted as CON, L, M, and H, respectively). The results showed that replacing maize silage with mulberry silage had no significant effect on the growth performance or the slaughter performance of Hu lambs (p > 0.05). Feeding Hu lambs with mulberry silage significantly reduced serum glucose (GLU) and the blood urea nitrogen (BUN) content (p < 0.05), and it increased the content of ether extract (EE) in the longissimus dorsi muscle (p < 0.05). Meanwhile, the percentage of EAA in the M and H groups was significantly lower than that in the CON and L groups (p < 0.05). In addition, in the fatty acid profile, the percentage of C16:1 in the M group was significantly increased, while the percentage of C18:0 and C20:0 were significantly decreased (p < 0.05). Based on these findings, it was recommended that 20−40% of maize silage be replaced by mulberry silage in the diet of Hu lambs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tong Fu
- Correspondence: (H.L.); (T.F.)
| | | |
Collapse
|
3
|
Li S, Luo X, Liao Z, Xu H, Liang M, Mai K, Zhang Y. Additional supplementation of sulfur-containing amino acids in the diets improves the intestinal health of turbot fed high-lipid diets. FISH & SHELLFISH IMMUNOLOGY 2022; 130:368-379. [PMID: 36115604 DOI: 10.1016/j.fsi.2022.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
An eight-week feeding trial was conducted to investigate the effects of diets supplemented with three sulfur-containing amino acids (SAA), namely, methionine, cysteine, and taurine, on the intestinal health status of juvenile turbot (Scophthalmus maximus) fed high-lipid diets. Four diets were formulated, namely, a high-lipid control diet (16% lipid, HL) and three SAA-supplemented diets, which were formulated by supplementing 1.5% methionine (HLM), 1.5% cysteine (HLC), and 1.5% taurine (HLT) into the HL control diet, respectively. Each diet was assigned to triplicate tanks, and each tank was stocked with 30 juvenile fish (appr. initial weight, 8 g). The histological and morphometric results showed that dietary SAA supplementation obviously improved the intestinal morphology and integrity, in particular as reflected by higher height of microvilli and mucosal folds. Dietary SAA supplementation, in particular cysteine, up-regulated the gene expression of mucin-2 and tight junction proteins (ZO-1, Tricellilun and JAM). Dietary SAA supplementation remarkably down-regulated the gene expression of apoptosis-related factors such as p38, JNK, and Bax, expression of pro-inflammatory factors (e.g., NF-κB, AP-1 IL-1β, IL-8, and TNF-α). SAA supplementation resulted in higher antioxidative abilities in the intestine. Additionally, dietary SAA supplementation largely altered the communities of intestinal microbiota. Compared with the HL group, higher relative abundance of potential beneficial bacteria, and lower relative abundance of opportunistic pathogens were observed in SAA-supplemented groups. Dietary taurine supplementation significantly increased the relative abundance of Ligilactobacillus (in particular Lactobacillus murinus) and Limosilactobacillus (especially Lactobacillus reuteri). In conclusion, dietary sulfur-containing amino acids supplementation have promising potential in ameliorating the intestinal inflammation of turbot fed high-lipid diets. Especially dietary cysteine and taurine supplementation have more positive effects on the communities of the intestinal microbiota of turbot.
Collapse
Affiliation(s)
- Sihui Li
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xing Luo
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
| | - Zhangbin Liao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
| | - Houguo Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China; Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.
| | - Mengqing Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China; Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China
| | - Yanjiao Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.
| |
Collapse
|
4
|
Formulating Diets for Improved Health Status of Pigs: Current Knowledge and Perspectives. Animals (Basel) 2022; 12:ani12202877. [DOI: 10.3390/ani12202877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Our understanding of nutrition has been evolving to support both performance and immune status of pigs, particularly in disease-challenged animals which experience repartitioning of nutrients from growth towards the immune response. In this sense, it is critical to understand how stress may impact nutrient metabolism and the effects of nutritional interventions able to modulate organ (e.g., gastrointestinal tract) functionality and health. This will be pivotal in the development of effective diet formulation strategies in the context of improved animal performance and health. Therefore, this review will address qualitative and quantitative effects of immune system stimulation on voluntary feed intake and growth performance measurements in pigs. Due to the known repartitioning of nutrients, the effects of stimulating the immune system on nutrient requirements, stratified according to different challenge models, will be explored. Finally, different nutritional strategies (i.e., low protein, amino acid-supplemented diets; functional amino acid supplementation; dietary fiber level and source; diet complexity; organic acids; plant secondary metabolites) will be presented and discussed in the context of their possible role in enhancing the immune response and animal performance.
Collapse
|
5
|
Liu J, Wu P, Guo Q, Lai X, Ruan B, Wang H, Rehman S, Chen M. Kaolinite weakens the co-stress of ampicillin and tetracycline on Escherichia coli through multiple pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25228-25240. [PMID: 33453031 DOI: 10.1007/s11356-021-12356-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Ampicillin and tetracycline are common antibiotics and can threaten humans by inducing antibiotic resistance in bacteria. Microorganisms are usually exposed to a mixed antibiotic system in the environment. However, there are few researches on the specific regulatory mechanisms of clay on microorganisms under the stress of complex antibiotics. In this study, tandem mass tag-based coupled with two-dimensional liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) was employed to recognize and quantify changes in protein expression of Escherichia coli (E. coli) after culture for 15 days, with or without kaolinite in the co-stress of ampicillin and tetracycline. The results indicated that kaolinite could activate metabolic pathways of E. coli such as the energy metabolism, the biosynthesis of other secondary metabolites, and the metabolism of cofactors and vitamins. Particularly, the fatty acid degradation pathway has also been promoted, indicating that in the same unfavorable environment, kaolinite might influence the composition of E. coli cell membranes. This might be due to the change in membrane composition that was a kind of adaptive strategy of bacterial evolution. Moreover, kaolinite could promote multidrug efflux system to export the bacterial intracellular toxic substances, making E. coli survive better in an adverse environment. Consequently, this study not only disclosed the regulation of kaolinite on E. coli in a complex antibiotic environment but also provided new insights into the environmental process of antibiotic resistance.
Collapse
Affiliation(s)
- Juan Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, Guangzhou, 510006, People's Republic of China.
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, People's Republic of China.
| | - Qing Guo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Xiaolin Lai
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Bo Ruan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Huimin Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Saeed Rehman
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Meiqing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
6
|
Hou X, Li Z, Li Y, Zhou Q, Liu C, Fan D, Wang J, Xu R, Xu Z. ICT-modulated NIR water-soluble fluorescent probe with large Stokes shift for selective detection of cysteine in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119030. [PMID: 33049474 DOI: 10.1016/j.saa.2020.119030] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
The fluorescent probes with good water-solubility, long-wavelength emission and large Stokes shift are greatly desirable for in vivo detection. Herein, we designed a novel 1,8-naphthalimide-based near-infrared (NIR) optical and fluorescent probe (NTC) for sensing cysteine (Cys). Using acrylate as the recognition site, the probe demonstrated high selectivity and sensitivity for Cys with a low detection limit (0.093 μM) in aqueous buffer solution due to the excellent water-solubility. Upon the reaction with Cys, the recovery of intramolecular charge transfer (ICT) in the probe led to about 40-fold fluorescence enhancement. Furthermore, the reaction result was investigated by 1H NMR, and HRMS analyses, and the sensing mechanism was validated by quantum calculations. Finally, NTC was applied to image exogenous and endogenous Cys in HeLa cells and zebrafish selectively, implying that the probe possessed great potential application in biological fluorescence sensing.
Collapse
Affiliation(s)
- Xufeng Hou
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, PR China
| | - Zhensheng Li
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, PR China
| | - Yunqiang Li
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, PR China
| | - Qihang Zhou
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, PR China; Department of Chemistry, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Chunhui Liu
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, PR China
| | - Dang Fan
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, PR China
| | - Jinjin Wang
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, PR China
| | - Ruijie Xu
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, PR China
| | - Zhihong Xu
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, PR China; Department of Chemistry, Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
7
|
Wang Y, Wang Q, Dai C, Li J, Huang P, Li Y, Ding X, Huang J, Hussain T, Yang H. Effects of dietary energy on growth performance, carcass characteristics, serum biochemical index, and meat quality of female Hu lambs. ACTA ACUST UNITED AC 2020; 6:499-506. [PMID: 33364466 PMCID: PMC7750792 DOI: 10.1016/j.aninu.2020.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/23/2020] [Accepted: 05/15/2020] [Indexed: 11/24/2022]
Abstract
This study evaluated the effects of dietary energy levels on growth performance, carcass traits, meat quality, and serum biochemical of female Hu lambs. Seventy female Hu lambs (aged 4 months) were randomly allotted to 5 dietary treatments. Lambs were fed diets with 5 levels of metabolizable energy (ME): 9.17 (E1), 9.59 (E2), 10.00 (E3), 10.41 (E4), and 10.82 MJ/kg (E5). The lambs were adapted to the experimental diets for 10 d and the experiment period lasted for 60 d. Dry matter intake and feed conversion ratio linearly (P < 0.001) increased and decreased (P < 0.001), respectively, with increasing dietary ME levels. Average daily gain (ADG) linearly (P < 0.001) increased with increasing dietary ME levels, with the highest final body weight (P = 0.041) observed in E4 group. Moreover, dietary energy level was associated with linear increases in serum total protein (TP) (P < 0.001), albumin (ALB) (P = 0.017), glucose (GLU) (P = 0.004), and low-density lipoprotein cholesterol (LDLC) (P = 0.006) concentrations, and it was associated with a quadratic decrease in serum triglyceride (TG) concentration (P = 0.002). Serum ammonia concentration, which was firstly decreased and then increased, was quadratically affected by dietary ME levels (P = 0.013). Compared with E1 group, lambs in E4 group had higher (P < 0.05) live weights, carcass weights, mesenteric fat ratio, non-carcass fat ratio, and larger loin muscle area, but lower (P < 0.05) meat colour a∗ and b∗ values, and lesser (P < 0.05) C17:0, C20:0, C18:1n-9t, C18:3n-3, and n-3 polyunsaturated fatty acids (PUFA), but greater (P < 0.05) C18:3n-6 and n-6:n-3 ratios in longissimus dorsi (LD) muscle tissue, and lesser (P < 0.05) C17:0, C18:3n-3, C22:6n-3, and n-3 PUFA in the biceps femoris (BF) muscle tissue. The results demonstrated that increasing dietary energy level improved the growth performance and affected carcass traits, serum biochemical indexes, and fatty acid profiles in different muscles of female Hu lambs. For 4-month-old female Hu lambs, the recommended fattening energy level is 10.41 MJ/kg.
Collapse
Affiliation(s)
- Yancan Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qiye Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.,Hubei Zhiqinghe Agriculture and Animal Husbandry Co., Ltd., Yichang, 443106, China
| | - Chunpeng Dai
- Hubei Zhiqinghe Agriculture and Animal Husbandry Co., Ltd., Yichang, 443106, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Pengfei Huang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yali Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xueqin Ding
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Jing Huang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Tarique Hussain
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, 38000, Pakistan
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| |
Collapse
|
8
|
Wang Q, Wang Y, Hussain T, Dai C, Li J, Huang P, Li Y, Ding X, Huang J, Ji F, Zhou H, Yang H. Effects of dietary energy level on growth performance, blood parameters and meat quality in fattening male Hu lambs. J Anim Physiol Anim Nutr (Berl) 2020; 104:418-430. [PMID: 31919911 DOI: 10.1111/jpn.13278] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022]
Abstract
This experiment was conducted to investigate the effects of different dietary energy levels on growth performance, slaughter traits, meat quality and blood biochemical parameters in fattening male Hu lambs. Sixty lambs were fed five iso-protein diets which contained different levels of metabolizable energy in a completely randomized design for 70 days. At the end of study, fifteen lambs were harvested for further study. With the increase in dietary energy level, the daily weight gain and dry matter intake extremely increased (p < .001), and feed conversion ratio decreased significantly (p < .01). The live weight before slaughter (LWBS) and carcass weight had a significant increase (p < .05), non-carcass fat ratio and routine indexes of meat quality had no significant difference. Almost no effect was observed for the amino acid profile except for glycine concentration decreased (p < .05) in longissimus dorsi (LD) muscle. The concentrations of C17:0, C18:3n-3 and n-3 PUFA (p < .01) significantly decreased with the increasing dietary energy levels, and the ratio of ∑n-6/∑n-3 (p < .01) increased, whereas the concentrations of C18:1n-9t (p < .05) decreased in LD muscle and C18:1 (p < .01) increased in biceps femoris (BF) muscle. There were no obviously differences for diameter, area and density of muscle fibres. The relative expression of MyHC-IIa and MyHC-IIx decreased significantly (p < .05) in BF muscle, and the relative expression of MyHC-IIa displayed an obviously decreasing trend (p < .10) in LD muscle. These results suggest that increasing the dietary energy level can improve the growth performance and slaughter traits, and influence meat quality and fatty acid profiles in different muscle tissues of fattening male Hu lambs. These results provide a theoretical basis for developing Hu sheep nutritional standards and designing feed formulations.
Collapse
Affiliation(s)
- Qiye Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Academician Workstation of Hubei Zhiqinghe Agriculture and Animal Husbandry Co., Ltd., Yichang, China
| | - Yancan Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Tarique Hussain
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Chunpeng Dai
- Academician Workstation of Hubei Zhiqinghe Agriculture and Animal Husbandry Co., Ltd., Yichang, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Pengfei Huang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yali Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xueqin Ding
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jing Huang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Fengjie Ji
- Academician Workstation of Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hanlin Zhou
- Academician Workstation of Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
9
|
Hou L, Guan S, Jin Y, Sun W, Wang Q, Du Y, Zhang R. Cell metabolomics to study the cytotoxicity of carbon black nanoparticles on A549 cells using UHPLC-Q/TOF-MS and multivariate data analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134122. [PMID: 31505349 DOI: 10.1016/j.scitotenv.2019.134122] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/30/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Carbon black nanoparticles (CBNPs) are core component of fine particulate matter (PM2.5) in the atmosphere. It was reported that the particle in the atmosphere with smaller size and the larger the specific surface area are easier to reach the deep respiratory tract or even the alveoli through the respiratory barrier and cause lung injury. Therefore, it has been believed that ultrafine or nanometer particles with more toxic than those with larger particle sizes. Moreover, it was confirmed that CBNPs could induce inflammation, oxidative stress and changes in cell signaling and gene expression in mammalian cells and organs. However, the cytotoxicity mechanism of them has been uncertain so far. The aim of the present study was to explore the underlying mechanism of cytotoxicity induced by CBNPs on A549 cells. In the current research, the viabilities of A549 cells were detected by Cell Counting Kit-8 (CCK-8) assay. The further metabolomics studies were conducted to detect the cytotoxic effect of CBNPs on A549 cells with an IC50 value of 70 μg/mL for 48 h. Potential differential compounds were identified and quantified using a novel on-line acquisition method based on ultra-liquid chromatography quadrupole time-of-flight mass spectrometry(UHPLC-Q-TOF/MS). The cytotoxicity mechanism of CBNPs on A549 cells was evaluated by multivariate data analysis and statistics. As a result, a total of 32 differential compounds were identified between CBNPs exposure and control groups. In addition, pathway analysis showed the metabolic changes were involved in the tricarboxylic acid (TCA) cycle, alanine, aspartate and glutamate metabolism, histidine metabolism and so on. It is also suggested that CBNPs may induce cytotoxicity by affecting the normal process of energy metabolism and disturbing several vital signaling pathways and finally induce cell apoptosis.
Collapse
Affiliation(s)
- Ludan Hou
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Shuai Guan
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Yiran Jin
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Wenjing Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Qiao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Yingfeng Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China.
| | - Rong Zhang
- Department of Occupational and Environmental Health, The School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| |
Collapse
|
10
|
Sulfur-containing amino acid supplementation to gilts from late pregnancy to lactation altered offspring's intestinal microbiota and plasma metabolites. Appl Microbiol Biotechnol 2019; 104:1227-1242. [PMID: 31853564 DOI: 10.1007/s00253-019-10302-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/14/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022]
Abstract
Maternal nutrition during late pregnancy and lactation is highly involved with the offspring's health status. The study was carried out to evaluate the effects of different ratios of methionine and cysteine (Met/Cys: 46% Met, 51% Met, 56% Met, and 62% Met; maintained with 0.78% of total sulfur-containing amino acids; details in "Materials and methods") supplements in the sows' diet from late pregnancy to lactation on offspring's plasma metabolomics and intestinal microbiota. The results revealed that the level of serum albumin, calcium, iron, and magnesium was increased in the 51% Met group compared with the 46% Met, 56% Met, and 62% Met groups. Plasma metabolomics results indicated that the higher ratios of methionine and cysteine (0.51% Met, 0.56% Met, and 0.62% Met)-supplemented groups enriched the level of hippuric acid, retinoic acid, riboflavin, and δ-tocopherol than in the 46% Met group. Furthermore, the 51% Met-supplemented group had a higher relative abundance of Firmicutes compared with the other three groups (P < 0.05), while the 62% Met-supplemented group increased the abundance of Proteobacteria compared with the other three groups (P < 0.05) in piglets' intestine. These results indicated that a diet consisting with 51% Met is the optimum Met/Cys ratio from late pregnancy to lactation can maintain the offspring's health by improving the serum biochemical indicators and altering the plasma metabolomics profile and intestinal gut microbiota composition, but higher proportion of Met/Cys may increase the possible risk to offspring's health.
Collapse
|