1
|
Ramirez-Agudelo JF, Kebreab E. Systematic review for optimizing sample size in dairy cow methane emission studies in temperate regions: A comprehensive methodological approach. J Dairy Sci 2024; 107:9442-9458. [PMID: 38876218 DOI: 10.3168/jds.2023-24529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/13/2024] [Indexed: 06/16/2024]
Abstract
This research introduces a systematic framework for calculating sample size in studies focusing on enteric methane (CH4, g/kg of DMI) yield reduction in dairy cows. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a comprehensive search across the Web of Science, Scopus, and PubMed Central databases for studies published from 2012 to 2023. The inclusion criteria were as follows: studies reporting CH4 yield and its variability in dairy cows, employing specific experimental designs (Latin square design [LSqD], crossover design, randomized complete block design [RCBD], and repeated measures design) and measurement methods (open-circuit respirometry chambers [RC], the GreenFeed system, and the sulfur hexafluoride tracer technique), conducted in Canada, the United States, and Europe. A total of 150 studies, comprising 177 reports, met our criteria and were included in the database. Our methodology for using the database for sample size calculations began by defining 6 CH4 yield reduction levels (5%, 10%, 15%, 20%, 30%, and 50%). Using an adjusted Cohen's f formula and conducting power analysis, we calculated the sample sizes required for these reductions in balanced LSqD and RCBD reports from studies involving 3 or 4 treatments. The results indicate that within-subject studies (i.e., LSqD) require smaller sample sizes to detect CH4 yield reductions compared with between-subject studies (i.e., RCBD). Although experiments using RC typically require fewer individuals due to their higher accuracy, our results demonstrate that this expected advantage is not evident in reports from RCBD studies with 4 treatments. A key innovation of this research is the development of a web-based tool that simplifies the process of sample size calculation (https://samplesizecalculator.ucdavis.edu/). Developed using Python, this tool leverages the extensive database to provide tailored sample size recommendations for specific experimental scenarios. It ensures that experiments are adequately powered to detect meaningful differences in CH4 emissions, thereby contributing to the scientific rigor of studies in this critical area of environmental and agricultural research. With its user-friendly interface and robust back-end calculations, this tool represents an important advancement in the methodology for planning and executing CH4 emission studies in dairy cows, aligning with global efforts toward sustainable agricultural practices and environmental conservation.
Collapse
Affiliation(s)
- J F Ramirez-Agudelo
- Department of Animal Science, University of California, Davis, Davis, CA 95616
| | - E Kebreab
- Department of Animal Science, University of California, Davis, Davis, CA 95616.
| |
Collapse
|
2
|
Ma X, Räisänen SE, Wang K, Amelchanka S, Giller K, Islam MZ, Li Y, Peng R, Reichenbach M, Serviento AM, Sun X, Niu M. Evaluating GreenFeed and respiration chambers for daily and intraday measurements of enteric gaseous exchange in dairy cows housed in tie-stalls. J Dairy Sci 2024:S0022-0302(24)01166-4. [PMID: 39343233 DOI: 10.3168/jds.2024-25246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024]
Abstract
The objective of this study was to evaluate the GreenFeed (GF) and respiration chambers (RC) for daily and intraday measurements of the enteric gaseous exchange, as well as the metabolic heat production, lying behavior, and feed intake (FI) rate of dairy cows at these 2 respective housing conditions [tie-stall barn (TS) vs. RC] during the summer periods. Sixteen multiparous lactating dairy cows were recruited and arranged in a randomized complete block design with a baseline period established for each cow. Cows were given a basal diet (CON) for a baseline period of 7 d and were then fed a 3-nitrooxypropanol (3-NOP)-containing feed for the subsequent 26 d as experimental period. During both the baseline and the last 7 d of treatment period, gaseous exchanges of each animal were measured in the TS using GF for 8 6-hourly staggered measurements over 3 d, immediately followed by the measurement in RC for 2 d. Corresponding DMI, milk yield, and behavior parameters (e.g., lying behavior and FI rate) in TS and RC were recorded. The correlation coefficients of CH4 and H2 using raw data were 0.84 and 0.85, respectively. For all gases, correlation coefficients between GF and RC on individual cow level decreased when the marginal fixed effects (e.g., inhibitor and breed) were corrected by a mixed model. There were no differences in daily CH4 production or intensity between GF and RC (442 vs. 443 g CH4/d or 16.6 vs. 16.2 g CH4 /kg MY). However, greater CH4 yield was measured by GF than RC (19.0 vs. 17.8 g CH4/kg DMI), driven by a lower DMI (23.3 vs. 24.6 kg/d) when cows were housed in TS sampled by GF compared with cows being housed and sampled in RC. The correlations for CO2 production and O2 consumption were moderate and expected due to the variation associated with the mild heat stress condition during GF measurements in the TS (Thermal humidity index (THI) 56 vs. 68), as indicated by the reduced lying time (-2.1 h/d). At the intraday level, there was an interaction between techniques and hour-of-day for CH4 production, as indicated by the discrepancies in post-prandial CH4 emissions between techniques. In summary, this set of results showed that there were strong positive correlations for CH4 and H2 emissions between GF and RC based on individual cow data. However, such relationship should be interpreted with caution, given the data clustering resulting from the use of inhibitor 3-NOP. On treatment level, these 2 techniques detected similar inhibitor effect on the estimated daily CH4 emissions. The intraday patterns of CH4 and H2 production captured by GF provided a close approximation for those measured by RC. Nevertheless, potential underestimation may occur, especially following fresh feed delivery. For measuring CO2 production and O2 consumption, the GF captured similar intraday variations to those in the RC. However, the estimated daily production and consumption were not directly comparable, which was expected due to the variable thermal conditions during the summer. Further evaluations under the same weather conditions are warranted.
Collapse
Affiliation(s)
- X Ma
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Zürich 8092, Switzerland
| | - S E Räisänen
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Zürich 8092, Switzerland
| | - K Wang
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Zürich 8092, Switzerland
| | - S Amelchanka
- AgroVet-Strickhof, ETH Zürich, Eschikon 27, 8315 Lindau, Switzerland
| | - K Giller
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Zürich 8092, Switzerland
| | - M Z Islam
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Zürich 8092, Switzerland
| | - Y Li
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Zürich 8092, Switzerland
| | - R Peng
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Zürich 8092, Switzerland
| | - M Reichenbach
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Zürich 8092, Switzerland
| | - A M Serviento
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Zürich 8092, Switzerland
| | - X Sun
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Zürich 8092, Switzerland
| | - M Niu
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Zürich 8092, Switzerland.
| |
Collapse
|
3
|
Dressler EA, Bormann JM, Weaber RL, Rolf MM. Use of methane production data for genetic prediction in beef cattle: A review. Transl Anim Sci 2024; 8:txae014. [PMID: 38371425 PMCID: PMC10872685 DOI: 10.1093/tas/txae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Methane (CH4) is a greenhouse gas that is produced and emitted from ruminant animals through enteric fermentation. Methane production from cattle has an environmental impact and is an energetic inefficiency. In the beef industry, CH4 production from enteric fermentation impacts all three pillars of sustainability: environmental, social, and economic. A variety of factors influence the quantity of CH4 produced during enteric fermentation, including characteristics of the rumen and feed composition. There are several methodologies available to either quantify or estimate CH4 production from cattle, all with distinct advantages and disadvantages. Methodologies include respiration calorimetry, the sulfur-hexafluoride tracer technique, infrared spectroscopy, prediction models, and the GreenFeed system. Published studies assess the accuracy of the various methodologies and compare estimates from different methods. There are advantages and disadvantages of each technology as they relate to the use of these phenotypes in genetic evaluation systems. Heritability and variance components of CH4 production have been estimated using the different CH4 quantification methods. Agreement in both the amounts of CH4 emitted and heritability estimates of CH4 emissions between various measurement methodologies varies in the literature. Using greenhouse gas traits in selection indices along with relevant output traits could provide producers with a tool to make selection decisions on environmental sustainability while also considering productivity. The objective of this review was to discuss factors that influence CH4 production, methods to quantify CH4 production for genetic evaluation, and genetic parameters of CH4 production in beef cattle.
Collapse
Affiliation(s)
- Elizabeth A Dressler
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA
| | - Jennifer M Bormann
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA
| | - Robert L Weaber
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA
| | - Megan M Rolf
- Kansas State University, Department of Animal Sciences and Industry, Manhattan, KS 66506, USA
| |
Collapse
|
4
|
Schilling-Hazlett A, Raynor EJ, Thompson L, Velez J, Place S, Stackhouse-Lawson K. On-Farm Methane Mitigation and Animal Health Assessment of a Commercially Available Tannin Supplement in Organic Dairy Heifers. Animals (Basel) 2023; 14:9. [PMID: 38200739 PMCID: PMC10777985 DOI: 10.3390/ani14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The objective of this experiment was to demonstrate the effectiveness of a commercially available tannin product (Silvafeed® ByPro, 70% tannic acid) as an enteric methane (CH4) mitigation and preventative animal health strategy in Holstein heifers (BW = 219 ± 17 kg; 9 mo), reared under organic production system requirements. Twenty heifers were randomly assigned to one of four commercial tannin supplementation treatments as follows: 0% (0 g/hd/d; CON), 0.075% (~5 g/hd/d; LOW), 0.15% (~10 g/hd/d; MED), and 0.30% (~21 g/hd/d; HIG) of dry matter intake (DMI). Heifers received their treatment in individual animal feeding stanchions and were fed a basal total mixed ration (TMR) through four SmartFeed Pro intake measurement bunk systems (C-Lock Inc., Rapid City, SD, USA) for 45 d. An automatic head chamber system (AHCS; i.e., GreenFeed, C-Lock Inc., Rapid City, SD, USA) was used to continuously evaluate enteric CH4 production. No effect was observed among the treatments for CH4 emissions (p ≥ 0.55), animal performance (p ≥ 0.38), or oxidative stress biomarker concentration (p ≥ 0.55). Superoxide dismutase (SOD) and reduced glutathione (GSH) concentrations exhibited a linear response to increasing tannin dose (p = 0.003), indicating a potential tannin effect on the antioxidant status of dairy heifers. This observation may encourage future tannin research relating to animal health, which may be of particular interest to organic dairy systems. The results of this study suggest that tannin supplementation at 0%, 0.075%, 0.15%, and 0.30% of DMI, did not alter CH4 emissions, animal performance, or oxidative stress biomarker concentration in organic Holstein heifers when assessed under an on-farm research approach. Further, the results of this study affirm the challenges associated with on-farm research and the development of climate-smart strategies that are capable of mitigating climate impacts in less controlled environments under standard working conditions.
Collapse
Affiliation(s)
- Ashley Schilling-Hazlett
- CSU AgNext, Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Edward J. Raynor
- CSU AgNext, Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Logan Thompson
- Department of Animal Science and Industry, Kansas State University, Manhattan, KS 66502, USA
| | - Juan Velez
- Aurora Organic Dairy, Boulder, CO 80302, USA
| | - Sara Place
- CSU AgNext, Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Kim Stackhouse-Lawson
- CSU AgNext, Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
5
|
Kamalanathan S, Houlahan K, Miglior F, Chud TCS, Seymour DJ, Hailemariam D, Plastow G, de Oliveira HR, Baes CF, Schenkel FS. Genetic Analysis of Methane Emission Traits in Holstein Dairy Cattle. Animals (Basel) 2023; 13:ani13081308. [PMID: 37106871 PMCID: PMC10135250 DOI: 10.3390/ani13081308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Genetic selection can be a feasible method to help mitigate enteric methane emissions from dairy cattle, as methane emission-related traits are heritable and genetic gains are persistent and cumulative over time. The objective of this study was to estimate heritability of methane emission phenotypes and the genetic and phenotypic correlations between them in Holstein cattle. We used 1765 individual records of methane emission obtained from 330 Holstein cattle from two Canadian herds. Methane emissions were measured using the GreenFeed system, and three methane traits were analyzed: the amount of daily methane produced (g/d), methane yield (g methane/kg dry matter intake), and methane intensity (g methane/kg milk). Genetic parameters were estimated using univariate and bivariate repeatability animal models. Heritability estimates (±SE) of 0.16 (±0.10), 0.27 (±0.12), and 0.21 (±0.14) were obtained for daily methane production, methane yield, and methane intensity, respectively. A high genetic correlation (rg = 0.94 ± 0.23) between daily methane production and methane intensity indicates that selecting for daily methane production would result in lower methane per unit of milk produced. This study provides preliminary estimates of genetic parameters for methane emission traits, suggesting that there is potential to mitigate methane emission in Holstein cattle through genetic selection.
Collapse
Affiliation(s)
- Stephanie Kamalanathan
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Kerry Houlahan
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Filippo Miglior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- Lactanet Canada, Guelph, ON N1K 1E5, Canada
| | - Tatiane C S Chud
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Dave J Seymour
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Dagnachew Hailemariam
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Graham Plastow
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Hinayah R de Oliveira
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- Lactanet Canada, Guelph, ON N1K 1E5, Canada
| | - Christine F Baes
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstr. 109a, 3012 Bern, Switzerland
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
6
|
Dressler EA, Bormann JM, Weaber RL, Rolf MM. Characterization of the number of spot samples required for quantification of gas fluxes and metabolic heat production from grazing beef cows using a GreenFeed. J Anim Sci 2023; 101:skad176. [PMID: 37246780 PMCID: PMC10263114 DOI: 10.1093/jas/skad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/25/2023] [Indexed: 05/30/2023] Open
Abstract
Enteric fermentation from cattle results in greenhouse gas production that is an environmental concern and also an energetic loss. Several methods exist to quantify gas fluxes; however, an open circuit gas quantification system (OCGQS) allows for unencumbered quantification of methane (CH4), carbon dioxide (CO2), and oxygen (O2) from grazing cattle. While previous literature has proven the accuracy of an OCGQS, little work has been done to establish the minimum number of spot samples required to best evaluate an individual grazing animal's gas fluxes and metabolic heat production. A GreenFeed system (C-Lock Inc.) was used to collect at least 100 spot samples each from 17 grazing cows. The mean gas fluxes and metabolic heat production were computed starting from the first 10 visits (forward) and increasing by increments of 10 until an animal had 100 visits. Mean gas fluxes and metabolic heat production were also computed starting from visit 100 (reverse) in increments of 10 using the same approach. Pearson and Spearman correlations were computed between the full 100 visits and each shortened visit interval. A large increase in correlations were seen between 30 and 40 visits. Thus, mean forward and reverse gas fluxes and metabolic heat production were also computed starting at 30 visits and increasing by 2 until 40 visits. The minimum number of spot samples was determined when correlations with the full 100 visits were greater than 0.95. The results indicated that the minimum numbers of spot samples needed for accurate quantification of CH4, CO2, and O2 gas fluxes are 38, 40, and 40, respectively. Metabolic heat production can be calculated using gas fluxes collected by the OCGQS with 36 spot samples. Practically, calculation of metabolic heat production will require 40 spot samples because the component gases for metabolic heat calculation require up to 40 spot samples. Published literature from nongrazing (confined) environments recommended a similar number of total spot samples. Large variation existed around the average number of spot samples for an animal per day, therefore a wide range of test durations may be needed to meet the same number of spot samples in different populations. For this reason, protocols for the OCGQS should be based on the total number of spot samples, rather than a test duration.
Collapse
Affiliation(s)
- Elizabeth A Dressler
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Jennifer M Bormann
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Robert L Weaber
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Megan M Rolf
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
7
|
Ryan CV, Pabiou T, Purfield DC, Conroy S, Kirwan SF, Crowley JJ, Murphy CP, Evans RD. Phenotypic relationship and repeatability of methane emissions and performance traits in beef cattle using a GreenFeed system. J Anim Sci 2022; 100:6765323. [PMID: 36268991 PMCID: PMC9733524 DOI: 10.1093/jas/skac349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/20/2022] [Indexed: 12/15/2022] Open
Abstract
Rumen methanogenesis results in the loss of 6% to 10% of gross energy intake in cattle and globally is the single most significant source of anthropogenic methane (CH4) emissions. The purpose of this study was to analyze greenhouse gas traits recorded in a commercial feedlot unit to gain an understanding into the relationships between greenhouse gas traits and production traits. Methane and carbon dioxide (CO2) data recorded via multiple GreenFeed Emission Monitoring (GEM), systems as well as feed intake, live weight, ultrasound scanning data, and slaughter data were available on 1,099 animals destined for beef production, of which 648 were steers, 361 were heifers, and 90 were bulls. Phenotypic relationships between GEM emission measurements with feed intake, weight traits, muscle ultrasound data, and carcass traits were estimated. Utilization of GEM systems, daily patterns of methane output, and repeatability of GEM system measurements across averaging periods were also assessed. Methane concentrations varied with visit number, duration, and time of day of visit to the GEM system. Mean CH4 and CO2 varied between sex, with mean CH4 of 256.1 g/day ± 64.23 for steers, 234.7 g/day ± 59.46 for heifers, and 156.9 g/day ± 55.98 for young bulls. A 10-d average period of GEM system measurements were required for steers and heifers to achieve a minimum repeatability of 0.60; however, higher levels of repeatability were observed in animals that attended the GEM system more frequently. In contrast, CO2 emissions reached repeatability estimates >0.6 for steers and heifers in all averaging periods greater than 2-d, suggesting that cattle have a moderately consistent CO2 emission pattern across time periods. Animals with heavier bodyweights were observed to have higher levels of CH4 (correlation = 0.30) and CO2 production (correlation = 0.61), and when assessing direct methane, higher levels of dry matter intake were associated with higher methane output (correlation = 0.31). Results suggest that reducing CH4 can have a negative impact on growth and body composition of cattle. Methane ratio traits, such as methane yield and intensity were also evaluated, and while easy to understand and compare across populations, ratio traits are undesirable in animal breeding, due to the unpredictable level of response. Methane adjusted for dry matter intake and liveweight (Residual CH4) should be considered as an alternative emission trait when selecting for reduced emissions within breeding goals.
Collapse
Affiliation(s)
- Clodagh V Ryan
- Irish Cattle Breeding Federation, Ballincollig, Co. Cork, Ireland,Department of Biological Sciences, Munster Technological University, Bishopstown, Co. Cork, Ireland
| | - Thierry Pabiou
- Irish Cattle Breeding Federation, Ballincollig, Co. Cork, Ireland
| | - Deirdre C Purfield
- Department of Biological Sciences, Munster Technological University, Bishopstown, Co. Cork, Ireland
| | - Stephen Conroy
- Irish Cattle Breeding Federation, Ballincollig, Co. Cork, Ireland
| | - Stuart F Kirwan
- Animal Bioscience Research Centre, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - John J Crowley
- AbacusBio Ltd., Dunedin 9016, New Zealand,Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G2R3, Canada
| | - Craig P Murphy
- Department of Biological Sciences, Munster Technological University, Bishopstown, Co. Cork, Ireland
| | | |
Collapse
|
8
|
Tedeschi LO, Abdalla AL, Álvarez C, Anuga SW, Arango J, Beauchemin KA, Becquet P, Berndt A, Burns R, De Camillis C, Chará J, Echazarreta JM, Hassouna M, Kenny D, Mathot M, Mauricio RM, McClelland SC, Niu M, Onyango AA, Parajuli R, Pereira LGR, del Prado A, Paz Tieri M, Uwizeye A, Kebreab E. Quantification of methane emitted by ruminants: a review of methods. J Anim Sci 2022; 100:skac197. [PMID: 35657151 PMCID: PMC9261501 DOI: 10.1093/jas/skac197] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022] Open
Abstract
The contribution of greenhouse gas (GHG) emissions from ruminant production systems varies between countries and between regions within individual countries. The appropriate quantification of GHG emissions, specifically methane (CH4), has raised questions about the correct reporting of GHG inventories and, perhaps more importantly, how best to mitigate CH4 emissions. This review documents existing methods and methodologies to measure and estimate CH4 emissions from ruminant animals and the manure produced therein over various scales and conditions. Measurements of CH4 have frequently been conducted in research settings using classical methodologies developed for bioenergetic purposes, such as gas exchange techniques (respiration chambers, headboxes). While very precise, these techniques are limited to research settings as they are expensive, labor-intensive, and applicable only to a few animals. Head-stalls, such as the GreenFeed system, have been used to measure expired CH4 for individual animals housed alone or in groups in confinement or grazing. This technique requires frequent animal visitation over the diurnal measurement period and an adequate number of collection days. The tracer gas technique can be used to measure CH4 from individual animals housed outdoors, as there is a need to ensure low background concentrations. Micrometeorological techniques (e.g., open-path lasers) can measure CH4 emissions over larger areas and many animals, but limitations exist, including the need to measure over more extended periods. Measurement of CH4 emissions from manure depends on the type of storage, animal housing, CH4 concentration inside and outside the boundaries of the area of interest, and ventilation rate, which is likely the variable that contributes the greatest to measurement uncertainty. For large-scale areas, aircraft, drones, and satellites have been used in association with the tracer flux method, inverse modeling, imagery, and LiDAR (Light Detection and Ranging), but research is lagging in validating these methods. Bottom-up approaches to estimating CH4 emissions rely on empirical or mechanistic modeling to quantify the contribution of individual sources (enteric and manure). In contrast, top-down approaches estimate the amount of CH4 in the atmosphere using spatial and temporal models to account for transportation from an emitter to an observation point. While these two estimation approaches rarely agree, they help identify knowledge gaps and research requirements in practice.
Collapse
Affiliation(s)
- Luis Orlindo Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Adibe Luiz Abdalla
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba CEP 13416.000, Brazil
| | - Clementina Álvarez
- Department of Research, TINE SA, Christian Magnus Falsens vei 12, 1433 Ås, Norway
| | - Samuel Weniga Anuga
- European University Institute (EUI), Via dei Roccettini 9, San Domenico di Fiesole (FI), Italy
| | - Jacobo Arango
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, A.A, 6713, Cali, Colombia
| | - Karen A Beauchemin
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, T1J 4B1, Canada
| | | | - Alexandre Berndt
- Embrapa Southeast Livestock, Rod. Washington Luiz, km 234, CP 339, CEP 13.560-970. São Carlos, São Paulo, Brazil
| | - Robert Burns
- Biosystems Engineering and Soil Science Department, The University of Tennessee, Knoxville, TN 37996, USA
| | - Camillo De Camillis
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153 Rome, Italy
| | - Julián Chará
- Centre for Research on Sustainable Agriculture, CIPAV, Cali 760042, Colombia
| | | | - Mélynda Hassouna
- INRAE, Institut Agro Rennes Angers, UMR SAS, F-35042, Rennes, France
| | - David Kenny
- Teagasc Animal and Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, C15PW93, Ireland
| | - Michael Mathot
- Agricultural Systems Unit, Walloon Agricultural Research Centre, rue du Serpont 100, B-6800 Libramont, Belgium
| | - Rogerio M Mauricio
- Department of Bioengineering, Federal University of São João del-Rei, São João del-Rei, MG 36307-352, Brazil
| | - Shelby C McClelland
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153 Rome, Italy
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Mutian Niu
- Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Alice Anyango Onyango
- Mazingira Centre, International Livestock Research Institute (ILRI), Nairobi, Kenya
- Department of Chemistry, Maseno University, Maseno, Kenya
| | | | | | - Agustin del Prado
- Basque Centre For Climate Change (BC3), Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Maria Paz Tieri
- Dairy Value Chain Research Institute (IDICAL) (INTA–CONICET), Rafaela, Argentina
| | - Aimable Uwizeye
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153 Rome, Italy
| | - Ermias Kebreab
- Department of Animal Science, University of California, Davis, CA 95616, USA
| |
Collapse
|
9
|
Jia P, Tu Y, Liu Z, Lai Q, Li F, Dong L, Diao Q. Characterization and mitigation option of greenhouse gas emissions from lactating Holstein dairy cows in East China. J Anim Sci Biotechnol 2022; 13:88. [PMID: 35799285 PMCID: PMC9264640 DOI: 10.1186/s40104-022-00721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study investigated greenhouse gas (GHG) emission characteristics of lactating Holstein dairy cows in East China and provided a basis for formulating GHG emission reduction measures. GreenFeed system was used to measure the amount of methane (CH4) and carbon dioxide (CO2) emitted by the cows through respiration. Data from a commercial cow farm were used to observe the effects of parity, body weight, milk yield, and milk component yield on CH4 and CO2 emissions. RESULTS Mean herd responses throughout the study were as follows: 111 cows completed all experimental processes, while 42 cows were rejected because they were sick or had not visited the GreenFeed system 20 times. On average, lactating days of cows was 138 ± 19.04 d, metabolic weight was 136.5 ± 9.5 kg, parity was 2.8 ± 1.0, dry matter intake (DMI) was 23.1 ± 2.6 kg/d, and milk yield was 38.1 ± 6.9 kg/d. The GreenFeed system revealed that CH4 production (expressed in CO2 equivalent, CO2-eq) was found to be 8304 g/d, [Formula: see text]/DMI was 359 g/kg, [Formula: see text]/energy-corrected milk (ECM) was 229.5 g/kg, total CO2 production (CH4 production plus CO2 production) was 19,201 g/d, total CO2/DMI was 831 g/kg, and total CO2/ECM was 531 g/kg. The parity and metabolic weight of cows had no significant effect on total CO2 emissions (P > 0.05). Cows with high milk yield, milk fat yield, milk protein yield, and total milk solids yield produced more total CO2 (P < 0.05), but their total CO2 production per kg of ECM was low (P < 0.05). The total CO2/ECM of the medium and high milk yield groups was 17% and 27% lower than that of the low milk yield group, respectively. CONCLUSIONS The parity and body condition had no effect on total CO2 emissions, while the total CO2/ECM was negatively correlated with milk yield, milk fat yield, milk protein yield, and total milk solids yield in lactating Holstein dairy cows. Measurement of total CO2 emissions of dairy cows in the Chinese production system will help establish regional or national GHG inventories and develop mitigation approaches to dairy production regimes.
Collapse
Affiliation(s)
- Peng Jia
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China.,Institute of Feed Research, Chinese Academy of Agricultural Sciences/Sino-US Joint Lab on Nutrition and Metabolism of Ruminant, Beijing, 100081, People's Republic of China
| | - Yan Tu
- Institute of Feed Research, Chinese Academy of Agricultural Sciences/Sino-US Joint Lab on Nutrition and Metabolism of Ruminant, Beijing, 100081, People's Republic of China
| | - Zhihao Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| | - Qi Lai
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Lifeng Dong
- Institute of Feed Research, Chinese Academy of Agricultural Sciences/Sino-US Joint Lab on Nutrition and Metabolism of Ruminant, Beijing, 100081, People's Republic of China.
| | - Qiyu Diao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences/Sino-US Joint Lab on Nutrition and Metabolism of Ruminant, Beijing, 100081, People's Republic of China.
| |
Collapse
|
10
|
Ndao S. Analysis of Inputs Parameters Used to Estimate Enteric Methane Emission Factors Applying a Tier 2 Model: Case Study of Native Cattle in Senegal. Vet Med Sci 2022. [DOI: 10.5772/intechopen.99810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In the context of the Paris Agreement, and considering the importance of methane emissions from cattle in West Africa, application of a Tier 2 method to estimate enteric methane emission factors is clearly pertinent. The current study has two purposes. Firstly, it aims to detect how much each input parameter contributes to the overall uncertainty of enteric methane emission factors for cattle. Secondly, it aims to identify which input parameters require additional research efforts for strengthening the evidence base, thus reducing the uncertainty of methane enteric emission factors. Uncertainty and sensitivity analysis methodologies were applied to input parameters in the calculation of enteric methane emission factors for lactating cows and adult male Senegalese native cattle using the IPCC Tier 2 model. The results show that the IPCC default input parameters, such as the coefficient for calculating net energy for maintenance (Cfi), digestible energy (DE) and the methane conversion rate (Ym) are the first, second and third most important input parameters, respectively, in terms of their contribution to uncertainty of the enteric methane emission factor. Sensitivity analysis demonstrated that future research in Senegal should prioritize the development of Ym, Cfi and DE in order to estimate enteric methane emission factors more accurately and to reduce the uncertainty of the national agricultural greenhouse gas inventory.
Collapse
|
11
|
Liu R, Hailemariam D, Yang T, Miglior F, Schenkel F, Wang Z, Stothard P, Zhang S, Plastow G. Predicting enteric methane emission in lactating Holsteins based on reference methane data collected by the GreenFeed system. Animal 2022; 16:100469. [PMID: 35190321 DOI: 10.1016/j.animal.2022.100469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/01/2022] Open
Abstract
Methane emission is not included in the current breeding goals for dairy cattle mainly due to the expense and difficulty in obtaining sufficient data to generate accurate estimates of the relevant traits. While several models have been developed to predict methane emission from milk spectra using reference methane data obtained by the respiration chamber, SF6 and sniffer methods, the prediction of methane emission from milk mid-infrared (MIR) spectra using reference methane data collected by the GreenFeed system has not yet been explored. Methane emission was monitored for 151 cows using the GreenFeed system. Prediction models were developed for daily and average (for the trial period of 12 or 14 days) methane production (g/d), yield (g/kg DM intake (DMI)) and intensity (g/kg of fat- and protein-corrected milk) using partial least squares regression. The predictions were evaluated in 100 repeated validation cycles, where animals were randomly partitioned into training (80%) and testing (20%) populations for each cycle. The best performing model was observed for average methane intensity using MIR, parity and DMI with validation coefficient of determination (R2val) and RMSE of prediction of 0.66 and 4.7 g/kg of fat- and protein-corrected milk, respectively. The accuracy of the best models for average methane production and average methane yield were poor (R2val = 0.28 and 0.12, respectively). A lower accuracy of prediction was observed for methane intensity and production (R2val = 0.42 and 0.17) when daily records were used while prediction for methane yield was comparable to that for average methane yield (R2val = 0.16). Our results suggest the potential to predict methane intensity with moderate accuracy. In this case, prediction models for average methane values were generally better than for daily measures when using the GreenFeed system to obtain reference methane emission measurements.
Collapse
Affiliation(s)
- R Liu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2R3, Canada; Key Laboratory of Animal Breeding and Reproduction of Ministry of Education, Hauzhong Agricultural University, Wuhan 430070, China
| | - D Hailemariam
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2R3, Canada.
| | - T Yang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2R3, Canada
| | - F Miglior
- Center for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - F Schenkel
- Center for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Z Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2R3, Canada
| | - P Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2R3, Canada
| | - S Zhang
- Key Laboratory of Animal Breeding and Reproduction of Ministry of Education, Hauzhong Agricultural University, Wuhan 430070, China
| | - G Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2R3, Canada
| |
Collapse
|
12
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Dusemund B, Fašmon Durjava M, Kouba M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Aquilina G, Bories G, Brantom PG, Gropp J, Svensson K, Tosti L, Anguita M, Galobart J, Manini P, Tarrès‐Call J, Pizzo F. Safety and efficacy of a feed additive consisting of 3-nitrooxypropanol (Bovaer ® 10) for ruminants for milk production and reproduction (DSM Nutritional Products Ltd). EFSA J 2021; 19:e06905. [PMID: 34824644 PMCID: PMC8603004 DOI: 10.2903/j.efsa.2021.6905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of Bovaer® 10 as a zootechnical additive for ruminants for milk production and reproduction. Systemic exposure or site of contact toxicity for the active substance 3-nitrooxypropanol (3-NOP), for which genotoxicity has not been fully clarified, in the target species, is unlikely based on ADME data available. Consequently, the FEEDAP Panel concluded that Bovaer® 10 was safe for dairy cows at the maximum recommended level. However, as a margin of safety could not be established, the FEEDAP Panel could not conclude on the safety of the additive for other animal species/categories. The FEEDAP Panel considered that the consumer was exposed to 3-nitrooxypropionic acid (NOPA), which is one of the 3-NOP metabolites. NOPA was not genotoxic based on the studies provided. The FEEDAP Panel concluded that the use of Bovaer® 10 in animal nutrition under the conditions of use proposed was of no concern for consumer safety and for the environment. The FEEDAP Panel concluded that the active substance 3-NOP may be harmful if inhaled. It is irritant (but not corrosive) to skin, irritant to the eyes but it is not a skin sensitiser. As the genotoxicity of 3-NOP is not completely elucidated, the exposure through inhalation of the additive may represent an additional risk for the user. The Panel concluded that the additive has a potential to be efficacious in dairy cows to reduce enteric methane production under the proposed conditions of use. This conclusion was extrapolated to all other ruminants for milk production and reproduction.
Collapse
|
13
|
In Vitro Incubations Do Not Reflect In Vivo Differences Based on Ranking of Low and High Methane Emitters in Dairy Cows. Animals (Basel) 2021; 11:ani11113112. [PMID: 34827843 PMCID: PMC8614575 DOI: 10.3390/ani11113112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
This study evaluated if ranking dairy cows as low and high CH4 emitters using the GreenFeed system (GF) can be replicated in in vitro conditions using an automated gas system and its possible implications in terms of fermentation balance. Seven pairs of low and high emitters fed the same diet were selected on the basis of residual CH4 production, and rumen fluid taken from each pair incubated separately in the in vitro gas production system. In total, seven in vitro incubations were performed with inoculums taken from low and high CH4 emitting cows incubated in two substrates differing in forage-to-concentrate proportion, each without or with the addition of cashew nutshell liquid (CNSL) as an inhibitor of CH4 production. Except for the aimed differences in CH4 production, no statistical differences were detected among groups of low and high emitters either in in vivo animal performance or rumen fermentation profile prior to the in vitro incubations. The effect of in vivo ranking was poorly replicated in in vitro conditions after 48 h of anaerobic fermentation. Instead, the effects of diet and CNSL were more consistent. The inclusion of 50% barley in the diet (SB) increased both asymptotic gas production by 17.3% and predicted in vivo CH4 by 26.2%, when compared to 100% grass silage (S) substrate, respectively. The SB diet produced on average more propionate (+28 mmol/mol) and consequently less acetate compared to the S diet. Irrespective of CH4 emitter group, CNSL decreased predicted in vivo CH4 (26.7 vs. 11.1 mL/ g of dry matter; DM) and stoichiometric CH4 (CH4VFA; 304 vs. 235 moles/mol VFA), with these being also reflected in decreased total gas production per unit of volatile fatty acids (VFA). Microbial structure was assessed on rumen fluid sampled prior to in vitro incubation, by sequencing of the V4 region of 16S rRNA gene. Principal coordinate analysis (PCoA) on operational taxonomic unit (OTU) did not show any differences between groups. Some differences appeared of relative abundance between groups in some specific OTUs mainly related to Prevotella. Genus Methanobrevibacter represented 93.7 ± 3.33% of the archaeal sequences. There were no clear differences between groups in relative abundance of Methanobrevibacter.
Collapse
|
14
|
Response to Climate Change: Evaluation of Methane Emissions in Northern Australian Beef Cattle on a High Quality Diet Supplemented with Desmanthus Using Open-Circuit Respiration Chambers and GreenFeed Emission Monitoring Systems. BIOLOGY 2021; 10:biology10090943. [PMID: 34571820 PMCID: PMC8465627 DOI: 10.3390/biology10090943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The beef industry in Northern Australia is characterized by an extensive grazing system in dry tropical rangelands defined by climate change indices of very low rainfall, a prolonged dry season and feeds of low nutritive value. In response, beef cattle need to be more efficient in converting the available drought-tolerant feeds to muscle, in an attempt to minimize greenhouse gas emissions. This study addressed the problem of reducing methane emissions from tropical beef cattle with the goal of decreasing the impact of climate change and greenhouse gas emissions in Northern Australia. The primary objective was to compare the effect of supplementing tropical beef cattle with both good quality lucerne and poor quality hay with increasing levels of different Desmanthus cultivars on in vivo methane emission. The results showed that in tropical beef cattle on high-quality diets, irrespective of cultivar and emission evaluation method, Desmanthus does not reduce methane emissions. Abstract The main objective of this study was to compare the effect of supplementing beef cattle with Desmanthus virgatus cv. JCU2, D. bicornutus cv. JCU4, D. leptophyllus cv. JCU7 and lucerne on in vivo methane (CH4) emissions measured by open-circuit respiration chambers (OC) or the GreenFeed emission monitoring (GEM) system. Experiment 1 employed OC and utilized sixteen yearling Brangus steers fed a basal diet of Rhodes grass (Chloris gayana) hay in four treatments—the three Desmanthus cultivars and lucerne (Medicago sativa) at 30% dry matter intake (DMI). Polyethylene glycol (PEG) was added to the diets to neutralize tannin binding and explore the effect on CH4 emissions. Experiment 2 employed GEM and utilized forty-eight animals allocated to four treatments including a basal diet of Rhodes grass hay plus the three Desmanthus cultivars in equal proportions at 0%, 15%, 30% and 45% DMI. Lucerne was added to equilibrate crude protein content in all treatments. Experiment 1 showed no difference in CH4 emissions between the Desmanthus cultivars, between Desmanthus and lucerne or between Desmanthus and the basal diet. Experiment 2 showed an increase in CH4 emissions in the three levels containing Desmanthus. It is concluded that on high-quality diets, Desmanthus does not reduce CH4 emissions.
Collapse
|
15
|
Dillon JA, Stackhouse-Lawson KR, Thoma GJ, Gunter SA, Rotz CA, Kebreab E, Riley DG, Tedeschi LO, Villalba J, Mitloehner F, Hristov AN, Archibeque SL, Ritten JP, Mueller ND. Current state of enteric methane and the carbon footprint of beef and dairy cattle in the United States. Anim Front 2021; 11:57-68. [PMID: 34513270 DOI: 10.1093/af/vfab043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Jasmine A Dillon
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Greg J Thoma
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Stacey A Gunter
- Southern Plains Range Research Station, USDA Agricultural Research Service, Woodward, OK, USA
| | - C Alan Rotz
- Pasture Systems and Watershed Management Research Unit, USDA Agricultural Research Service, University Park, PA, USA
| | - Ermias Kebreab
- Department of Animal Science, University of California-Davis, Davis, CA, USA
| | - David G Riley
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Luis O Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Juan Villalba
- Department of Wildland Resources, Utah State University, Logan, UT, USA
| | - Frank Mitloehner
- Department of Animal Science, University of California-Davis, Davis, CA, USA
| | - Alexander N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA
| | - Shawn L Archibeque
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, USA
| | - John P Ritten
- Department of Agricultural and Applied Economics, University of Wyoming, Laramie, WY, USA
| | - Nathaniel D Mueller
- Department of Ecosystem Science & Sustainability, Colorado State University, Fort Collins, CO, USA.,Department of Crop & Soil Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
16
|
Guinguina A, Yan T, Trevisi E, Huhtanen P. The use of an upgraded GreenFeed system and milk fatty acids to estimate energy balance in early-lactation cows. J Dairy Sci 2021; 104:6701-6714. [PMID: 33685692 DOI: 10.3168/jds.2020-19591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/20/2021] [Indexed: 11/19/2022]
Abstract
Measurements of energy balance (EB) require the use of respiration chambers, which are quite expensive and laborious. The GreenFeed (GF) system (C-Lock Inc.) has been developed to offer a less expensive, user friendly alternative. In this study, we used the GF system to estimate the EB of cows in early lactation and compared it with EB predicted from energy requirements for dairy cows in the Finnish feeding standards. We also evaluated the association between milk fatty acids and the GF estimated EB. The cows were fed the same grass silage but supplemented with either cereal grain or fibrous by-product concentrate. Cows were followed from 1 to 18 wk of lactation, and measurements of energy metabolism variables were taken. Data were subjected to ANOVA using the mixed model procedure of SAS (SAS Institute Inc.). The repeatability estimates of the gaseous exchanges from the GF were moderate to high, presenting an opportunity to use it for indirect calorimetry in EB estimates. Energy metabolism variables were not different between cows fed different concentrates. However, cows fed the grain concentrate produced more methane (24.0 MJ/d or 62.9 kJ/MJ of gross energy) from increased digestibility than cows fed the by-product concentrate (21.3 MJ/d or 56.5 kJ/MJ of gross energy). Nitrogen metabolism was also not different between the diets. Milk long-chain fatty acids displayed an inverse time course with EB and de novo fatty acids. There was good concordance (0.85) between EB predicted using energy requirements derived from the Finnish feed table and EB estimated by the GF system. In conclusion, the GF can accurately estimate EB in early-lactating dairy cows. However, more data are needed to further validate the system for a wide range of dietary conditions.
Collapse
Affiliation(s)
- A Guinguina
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
| | - T Yan
- Agri-Food and Biosciences Institute, Hillsborough, Co. Down BT26 6DR, United Kingdom
| | - E Trevisi
- Department of Animal Sciences, Food, and Nutrition (DIANA), Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - P Huhtanen
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
| |
Collapse
|
17
|
McGinn SM, Coulombe JF, Beauchemin KA. Technical note: validation of the GreenFeed system for measuring enteric gas emissions from cattle. J Anim Sci 2021; 99:6149109. [PMID: 33624792 DOI: 10.1093/jas/skab046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
There are knowledge gaps in animal agriculture on how to best mitigate greenhouse gas emissions while maintaining animal productivity. One reason for these gaps is the uncertainties associated with methods used to derive emission rates. This study compared emission rates of methane (CH4) and carbon dioxide (CO2) measured by a commercially available GreenFeed (GF) system with those from (1) a mass flow controller (MFC) that released known quantities of gas over time (i.e., emission rate) and (2) a respiration chamber (RC). The GF and MFC differed by only 1% for CH4 (P = 0.726) and 3% for CO2 (P = 0.013). The difference between the GF and RC was 1% (P = 0.019) for CH4 and 2% for CO2 (P = 0.007). Further investigation revealed that the difference in emission rate for CO2 was due to a small systematic offset error indicating a correction factor could be applied. We conclude that the GF system accurately estimated enteric CH4 and CO2 emission rates of cattle over a short measurement period, but additional factors would need to be considered in determining the 24-hr emission rate of an animal.
Collapse
Affiliation(s)
- Sean M McGinn
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 - 1 Avenue S, Lethbridge, AB, T1J 4B1, Canada
| | - Jean-Franҫois Coulombe
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 - 1 Avenue S, Lethbridge, AB, T1J 4B1, Canada
| | - Karen A Beauchemin
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 - 1 Avenue S, Lethbridge, AB, T1J 4B1, Canada
| |
Collapse
|
18
|
Coppa M, Jurquet J, Eugène M, Dechaux T, Rochette Y, Lamy JM, Ferlay A, Martin C. Repeatability and ranking of long-term enteric methane emissions measurement on dairy cows across diets and time using GreenFeed system in farm-conditions. Methods 2020; 186:59-67. [PMID: 33253811 DOI: 10.1016/j.ymeth.2020.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022] Open
Abstract
The aims of this work were to study on dairy farm conditions: i) the repeatability of long-term enteric CH4 emissions measurement from lactating dairy cows using GreenFeed (GF); ii) the ranking of dairy cows according to their CH4 emissions across diets. Forty-five Holstein lactating dairy cows were randomly assigned to 3 equivalent groups at the beginning of their lactation. The experiment was composed of 3 successive periods: i) pre-experimental period (weeks 1 to 5) in which all cows received a common diet; ii) a dietary treatment transition period (weeks 6 to 10); and iii) an experimental period (weeks 11 to 26) in which each group was fed a different diet. Experimental diets were formulated to generate more or less CH4 production: i) a diet based on ryegrass silage and concentrates, low in starch and lipid, designed to induce high CH4 emissions (CH4+); ii) a diet based on maize silage and concentrates, rich in starch, designed to induce intermediate CH4 emissions (CH4int); iii) a diet based on maize silage and concentrates, rich in starch and lipid, designed to induce low CH4 emissions (CH4-). Gas emissions were individually measured using GF systems. Repeatability of gas emissions, dry matter intake (DMI) and dairy performances measurements was calculated from data averaged over 1, 2, 4, and 8 weeks for each animal. Hierarchical cluster analysis was performed to rank individual animals according to their CH4 emissions. No significant differences were observed for daily CH4 emissions (g/day) among diets, because of lower DMI of CH4+ cows. When CH4 emissions were referred to units of DMI or milk, the differences among diets emerged as significant and persistent over the observed period of lactation. Repeatability values of gas emissions measurements were higher than 0.7 averaged over 8 weeks of measurement, but still higher than 0.6 for CH4 g/day, CO2 g/day, CH4 g/kg milk, and CH4/CO2 even averaging only 2 weeks of measurement. The repeatability of CH4 emissions measurement was systematically lower than those of DMI or dairy performance parameters, like milk and FPCM yield, irrespective of the averaged measurement period. The dairy cow ranking was not stable over time between all individuals or within any of the diets. In our experimental conditions, the GF performance in the long term can be considered reliable in differentiating dairy herds by their CH4 emissions according to diets with different methanogenic potential, but did not allow the ranking of individual dairy cows within a same diet. Our data highlight the importance of phenotyping animals across environment in which they will be expected to perform.
Collapse
Affiliation(s)
- Mauro Coppa
- Independent researcher at Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 1213 Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Julien Jurquet
- Institut de l'Elevage, 42 rue Georges Morel CS 60057, 49071 Beaucouzé Cedex, France
| | - Maguy Eugène
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 1213 Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Terrence Dechaux
- Institut de l'Elevage, Maison Nationale des Eleveurs - 149 Rue de Bercy, 75595 Paris Cedex 12, France
| | - Yvanne Rochette
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 1213 Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Jean-Michel Lamy
- Ferme expérimentale des Trinottières, 49140 Montreuil-sur-Loir, France
| | - Anne Ferlay
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 1213 Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Cécile Martin
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 1213 Herbivores, F-63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
19
|
Manafiazar G, Baron V, McKeown L, Block H, Ominski K, Plastow G, Basarab J. Methane and carbon dioxide emissions from yearling beef heifers and mature cows classified for residual feed intake under drylot conditions. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study quantified methane (CH4) and carbon dioxide (CO2) production from beef heifers and cows classified for residual feed intake adjusted for off-test backfat thickness (RFIfat) and reared in drylot during cold winter temperatures. Individual performance, daily feed intake, and RFIfat were obtained for 1068 crossbred and purebred yearling heifers (eight trials) as well as 176 crossbred mature cows (six trials) during the winters of 2015–2017 at two locations. A portion of these heifers (147 high RFIfat; 167 low RFIfat) and cows (69 high RFIfat; 70 low RFIfat) was monitored for enteric CH4 and CO2 emissions using the GreenFeed Emissions Monitoring (GEM) system (C-Lock Inc., Rapid City, SD, USA). Low RFIfat cattle consumed less feed [heifers, 7.80 vs. 8.48 kg dry matter (DM) d−1; cows, 11.64 vs. 13.16 kg DM d−1] and emitted less daily CH4 (2.5% for heifers; 3.7% for cows) and CO2 (1.4% for heifers; 3.4% for cows) compared with high RFIfat cattle. However, low RFIfat heifers and cows had higher CH4 (6.2% for heifers; 9.9% for cows) and CO2 yield (7.3% for heifers; 9.8% for cows) per kilogram DM intake compared with their high RFIfat pen mates. The GEM system performed at air temperatures between +20 and −30 °C. Feed intake of heifers and mature cows was differently affected by ambient temperature reduction between +20 and −15 °C and similarly increased their feed intake at temperatures below −15 °C. In conclusion, low RFIfat animals emit less daily enteric CH4 and CO2, due mainly to lower feed consumption at equal body weight, gain, and fatness.
Collapse
Affiliation(s)
- G. Manafiazar
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - V.S. Baron
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, 6000 C & E Trail, Lacombe, AB T4L 1W1, Canada
| | - L. McKeown
- Alberta Agriculture and Forestry, Lacombe Research and Development Centre, 6000 C & E Trail, Lacombe, AB T4L 1W1, Canada
| | - H. Block
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, 6000 C & E Trail, Lacombe, AB T4L 1W1, Canada
| | - K. Ominski
- University of Manitoba, Department of Animal Science, Winnipeg, MB R3T 2N2, Canada
| | - G. Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - J.A. Basarab
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Alberta Agriculture and Forestry, Lacombe Research and Development Centre, 6000 C & E Trail, Lacombe, AB T4L 1W1, Canada
| |
Collapse
|
20
|
Zhao Y, Nan X, Yang L, Zheng S, Jiang L, Xiong B. A Review of Enteric Methane Emission Measurement Techniques in Ruminants. Animals (Basel) 2020; 10:ani10061004. [PMID: 32521767 PMCID: PMC7341254 DOI: 10.3390/ani10061004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 01/28/2023] Open
Abstract
To identify relationships between animal, dietary and management factors and the resulting methane (CH4) emissions, and to identify potential mitigation strategies for CH4 production, it is vital to develop reliable and accurate CH4 measurement techniques. This review outlines various methods for measuring enteric CH4 emissions from ruminants such as respiration chambers (RC), sulphur hexafluoride (SF6) tracer, GreenFeed, sniffer method, ventilated hood, facemask, laser CH4 detector and portable accumulation chamber. The advantages and disadvantages of these techniques are discussed. In general, RC, SF6 and ventilated hood are capable of 24 h continuous measurements for each individual animal, providing accurate reference methods used for research and inventory purposes. However, they require high labor input, animal training and are time consuming. In contrast, short-term measurement techniques (i.e., GreenFeed, sniffer method, facemask, laser CH4 detector and portable accumulation chamber) contain additional variations in timing and frequency of measurements obtained relative to the 24 h feeding cycle. However, they are suitable for large-scale measurements under commercial conditions due to their simplicity and high throughput. Successful use of these techniques relies on optimal matching between the objectives of the studies and the mechanism of each method with consideration of animal behavior and welfare. This review can provide useful information in selecting suitable techniques for CH4 emission measurement in ruminants.
Collapse
Affiliation(s)
- Yiguang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (X.N.); (L.Y.); (S.Z.)
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (X.N.); (L.Y.); (S.Z.)
| | - Liang Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (X.N.); (L.Y.); (S.Z.)
| | - Shanshan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (X.N.); (L.Y.); (S.Z.)
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, China
- Correspondence: (L.J.); (B.X.); Tel.: +86-10-8079-8101 (L.J.); +86-10-6281-1680 (B.X.)
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Z.); (X.N.); (L.Y.); (S.Z.)
- Correspondence: (L.J.); (B.X.); Tel.: +86-10-8079-8101 (L.J.); +86-10-6281-1680 (B.X.)
| |
Collapse
|
21
|
Kumari S, Fagodiya RK, Hiloidhari M, Dahiya RP, Kumar A. Methane production and estimation from livestock husbandry: A mechanistic understanding and emerging mitigation options. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136135. [PMID: 31927428 DOI: 10.1016/j.scitotenv.2019.136135] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Globally, livestock is an important contributor to methane (CH4) emissions. This paper reviewed the various CH4 measurement and estimation techniques and mitigation approaches for the livestock sector. Two approaches for enteric livestock CH4 emission estimation are the top-down and bottom-up. The combination of both could further improve our understanding of enteric CH4 emission and possible mitigation measures. We discuss three mitigation approaches: reducing emissions, avoiding emissions, and enhancing the removal of emissions from livestock. Dietary management, livestock management, and breeding management are viable reducing emissions pathways. Dietary manipulation is easily applicable and can bring an immediate response. Economic incentive policies can help the livestock farmers to opt for diet, breeding, and livestock management mitigation approaches. Carbon pricing creates a better option to achieve reduction targets in a given period. A combination of carbon pricing, feeding management, breeding management, and livestock management is more feasible and sustainable CH4 emissions mitigation strategy rather than a single approach.
Collapse
Affiliation(s)
- Shilpi Kumari
- Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi - 110 016, India.
| | - R K Fagodiya
- Division of Irrigation and Drainage Engineering, ICAR - Central Soil Salinity Research Institute, Karnal - 132 001, India
| | - Moonmoon Hiloidhari
- IDP in Climate Studies, Indian Institute of Technology Bombay, Mumbai - 400 076, India
| | - R P Dahiya
- Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi - 110 016, India
| | - Amit Kumar
- Department of Botany, Dayalbagh Educational Institute, Agra - 282 005, India
| |
Collapse
|
22
|
Kim SH, Lee C, Pechtl HA, Hettick JM, Campler MR, Pairis-Garcia MD, Beauchemin KA, Celi P, Duval SM. Effects of 3-nitrooxypropanol on enteric methane production, rumen fermentation, and feeding behavior in beef cattle fed a high-forage or high-grain diet1. J Anim Sci 2019; 97:2687-2699. [PMID: 31115441 DOI: 10.1093/jas/skz140] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
The objective of the study was to determine whether feeding a diet supplemented with 3-nitrooxypropanol (3-NOP) affects feeding behavior altering intake and rumen fermentation. Two experiments were conducted with 9 rumen-cannulated beef steers in a replicated 3 × 3 Latin square design where animals received a high-forage or high-grain diet. Treatments were 1) a basal diet (CON), the CON diet supplemented with 3-NOP (dNOP; 100 mg/kg in dietary DM or 1 g/d), or the CON diet with 3-NOP (1 g/d) infused into the rumen (infNOP). Each experimental period consisted of 14-d diet adaptation and 7-d sample collection. A 7-d washout period was provided between experiment periods. All data were analyzed as a Latin square design using Mixed Procedure of SAS. In Exp. 1 (high-forage diet), methane yield (measured by the Greenfeed system) was lowered by 18% (18.6 vs. 22.7 g/kg DMI; P < 0.01) by dNOP compared with CON. Rumen fermentation was altered similarly by both NOP treatments compared with CON where dNOP and infNOP increased (P < 0.01) rumen pH at 3 h and decreased (P < 0.01) proportion of acetate in total VFA. However, DMI, feed consumption rate (0 to 3, 3 to 6, 6 to 12, and 12 to 24 h after feeding), particle size distribution of orts, and feeding behavior (videotaped for individual animals over 48 h) were not affected by dNOP and infNOP compared with CON. In Exp. 2 (high-grain diet), methane production was not affected by dNOP or infNOP compared with CON. Dry matter intake, feed consumption rate, particle size distribution of orts, and feeding behavior were not altered by dNOP and infNOP compared with CON. However, both dNOP and infNOP affected rumen fermentation where total VFA decreased (P = 0.04) and acetate proportion in total VFA tended to decrease (P = 0.07) compared with CON. In conclusion, dietary supplementation of 3-NOP did not affect feeding behavior of beef steers fed a high-forage or high-grain diet. However, rumen fermentation was similarly changed when 3-NOP was provided in the diet or directly infused in the rumen. Thus, observed changes in rumen fermentation with 3-NOP were not due to changes in feeding behavior indicating no effects on the organoleptic property of the diets. In addition, according to small or no changes in DMI in both experiments and relatively small changes in rumen fermentation in Exp. 2, a greater dosage level of 3-NOP than 100 mg/kg (dietary DM) may need further examination of its effects on feeding behavior of beef cattle.
Collapse
Affiliation(s)
- Seon-Ho Kim
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, the Ohio State University, Wooster, OH
| | - Chanhee Lee
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, the Ohio State University, Wooster, OH
| | - Heather A Pechtl
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, the Ohio State University, Wooster, OH
| | - Jade M Hettick
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, the Ohio State University, Wooster, OH
| | - Magnus R Campler
- Department of Animal Sciences, the Ohio State University, Columbus, OH
| | | | - Karen A Beauchemin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Pietro Celi
- DSM Nutritional Products France, Research Center for Animal Nutrition, 68305 Saint Louis Cedex, France
| | - Stephane M Duval
- DSM Nutritional Products France, Research Center for Animal Nutrition, 68305 Saint Louis Cedex, France
| |
Collapse
|