1
|
Chemineau P, Lainé AL, Gennetay D, Porte C, Chesneau D, Laclie C, Goudet G, Meunier M, Delmas M, Greil ML, Liere P, Pianos A, Bernard A, Dirlewanger E, Delgadillo JA, Keller M. The walnut tree as a source of progesterone for reproductive control in goats. Animal 2025; 19:101392. [PMID: 39729743 DOI: 10.1016/j.animal.2024.101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Intravaginal sponges impregnated with the progesterone (P4) analogue fluorogestone acetate (FGA) induce synchronous oestrous behaviour and normal ovulatory cycle in goats. To explore alternatives using natural P4 from plants, we developed a method of ethanolic extraction and a specific enzyme immunoassay (EIA) to measure P4 in the different parts of the walnut tree Juglans regia. We found a very high concentration of P4, specifically in the leaves of the three most common French varieties (∼100 mg/kg of DM) but not in flowers, fruits, septa, husk, oil or cake. High concentrations of P4-and to a lesser extent its reduction metabolites and phytosterols-were also measured by Gas Chromatography-Mass Spectrometry/Mass Spectrometry in leaf extracts. P4 concentrations were five times higher in October than in June. P4 was detected in 182 varieties of Juglans regia ranging from 35 to 287 mg of P4 per kg of leaf DM. We collected large quantities of leaves over 6 years, which were used to manufacture feed pellets containing 32% of dry leaf for distribution to female goats. To determine their dietary acceptance and their efficacy in terms of P4 blood plasma concentration, three trials in ovariectomised goats and four trials in ovary-intact goats were performed (N = 83). The distribution of 600 g of pellets per day per ovary-intact goat over 3 days, 6 and 4 days before the introduction of males in April allowed us to achieve our objective of a significant increase of P4 plasma concentration to ∼1.5 ng/mL measured by EIA from 24 to 72 h after the first distribution in the walnut pellet group (n = 13). The two control groups of goats (FGA, n = 12 and control, n = 10) showed no increase in plasma P4. However, despite this high P4 plasma concentration, goats of the walnut group had the same percentages of goats in oestrus at the first ovulation and of goats experiencing short ovulatory cycles after introduction of males (54 and 77%, respectively) as the group of control goats (80 and 90%), whereas the FGA goats showed very different percentages (100 and 0%, P < 0.01). It was concluded that whereas walnut leaves contain a high concentration of P4-and its reduction metabolites and phytosterols-the pellet feeding mode does not allow for restoration of oestrus behaviour and duration of the induced cycle consistently achieved with FGA-impregnated intravaginal sponges.
Collapse
Affiliation(s)
- P Chemineau
- Physiologie de la Reproduction et des Comportements, CNRS, INRAE, Université de Tours, 37380 Nouzilly, France.
| | - A L Lainé
- Physiologie de la Reproduction et des Comportements, CNRS, INRAE, Université de Tours, 37380 Nouzilly, France
| | - D Gennetay
- Physiologie de la Reproduction et des Comportements, CNRS, INRAE, Université de Tours, 37380 Nouzilly, France
| | - C Porte
- Physiologie de la Reproduction et des Comportements, CNRS, INRAE, Université de Tours, 37380 Nouzilly, France
| | - D Chesneau
- Physiologie de la Reproduction et des Comportements, CNRS, INRAE, Université de Tours, 37380 Nouzilly, France
| | - C Laclie
- Physiologie de la Reproduction et des Comportements, CNRS, INRAE, Université de Tours, 37380 Nouzilly, France
| | - G Goudet
- Physiologie de la Reproduction et des Comportements, CNRS, INRAE, Université de Tours, 37380 Nouzilly, France
| | - M Meunier
- Physiologie de la Reproduction et des Comportements, CNRS, INRAE, Université de Tours, 37380 Nouzilly, France
| | - M Delmas
- INRAE, UEA, 33210 Toulenne, France
| | | | - P Liere
- U1195 INSERM Université Paris Saclay, Kremlin Bicêtre, France
| | - A Pianos
- U1195 INSERM Université Paris Saclay, Kremlin Bicêtre, France
| | - A Bernard
- INRAE, Université de Bordeaux, UMR BFP, 33882 Villenave d'Ornon, France
| | - E Dirlewanger
- INRAE, Université de Bordeaux, UMR BFP, 33882 Villenave d'Ornon, France
| | - J A Delgadillo
- Centro de Investigación en Reproducción Caprina (CIRCA), Universidad Autónoma Agraria Antonio Narro, 27054 Torreón, Coahuila, Mexico
| | - M Keller
- Physiologie de la Reproduction et des Comportements, CNRS, INRAE, Université de Tours, 37380 Nouzilly, France
| |
Collapse
|
2
|
Téteau O, Liere P, Pianos A, Desmarchais A, Lasserre O, Papillier P, Vignault C, Lebachelier de la Riviere ME, Maillard V, Binet A, Uzbekova S, Saint-Dizier M, Elis S. Bisphenol S Alters the Steroidome in the Preovulatory Follicle, Oviduct Fluid and Plasma in Ewes With Contrasted Metabolic Status. Front Endocrinol (Lausanne) 2022; 13:892213. [PMID: 35685208 PMCID: PMC9172638 DOI: 10.3389/fendo.2022.892213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022] Open
Abstract
Bisphenol A (BPA), a plasticizer and endocrine disruptor, has been substituted by bisphenol S (BPS), a structural analogue that had already shown adverse effects on granulosa cell steroidogenesis. The objective of this study was to assess the effect of chronic exposure to BPS, a possible endocrine disruptor, on steroid hormones in the ovary, oviduct and plasma using the ewe as a model. Given the interaction between steroidogenesis and the metabolic status, the BPS effect was tested according to two diet groups. Eighty adult ewes were allotted to restricted (R) and well-fed (WF) groups, that were further subdivided into two subgroups. Ewes were exposed to 50 µg BPS/kg/day in their diet (R50 and WF50 groups) or were unexposed controls (R0 and WF0 groups). After at least 3 months of BPS exposure, preovulatory follicular fluid, oviduct fluid and plasma were collected and steroid hormones were analyzed by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). A deleterious effect of restricted diet on the volume of oviduct fluid and numbers of pre-ovulatory follicles was observed. Exposure to BPS impaired estradiol concentrations in both follicular and oviduct fluids of well-fed ewes and progesterone, estradiol and estrone concentrations in plasma of restricted ewes. In addition, a significant interaction between metabolic status and BPS exposure was observed for seven steroids, including estradiol. In conclusion, BPS acts in ewes as an endocrine disruptor with differential actions according to metabolic status.
Collapse
Affiliation(s)
- Ophélie Téteau
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Philippe Liere
- U1195 INSERM - Université Paris Saclay, Le Kremlin-Bicêtre Cedex, France
| | - Antoine Pianos
- U1195 INSERM - Université Paris Saclay, Le Kremlin-Bicêtre Cedex, France
| | | | | | | | - Claire Vignault
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, Tours, France
| | | | | | - Aurélien Binet
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
- Service de Chirurgie pédiatrique viscérale, urologique, plastique et brûlés, CHRU de Tours, Tours, France
| | | | | | - Sebastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| |
Collapse
|
3
|
Costermans NGJ, Teerds KJ, Middelkoop A, Roelen BAJ, Schoevers EJ, van Tol HTA, Laurenssen B, Koopmanschap RE, Zhao Y, Blokland M, van Tricht F, Zak L, Keijer J, Kemp B, Soede NM. Consequences of negative energy balance on follicular development and oocyte quality in primiparous sows†. Biol Reprod 2021; 102:388-398. [PMID: 31504218 PMCID: PMC7016286 DOI: 10.1093/biolre/ioz175] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/22/2019] [Indexed: 01/28/2023] Open
Abstract
Metabolic demands of modern hybrid sows have increased over the years, which increases the chance that sows enter a substantial negative energy balance (NEB) during lactation. This NEB can influence the development of follicles and oocytes that will give rise to the next litter. To study effects of a lactational NEB on follicular development, we used 36 primiparous sows of which 18 were subjected to feed restriction (3.25 kg/day) and 18 were full-fed (6.5 kg/day) during the last 2 weeks of a 24.1 ± 0.3 day lactation. Feed restriction resulted in a 70% larger lactational body weight loss and 76% higher longissimus dorsi depth loss, but similar amounts of backfat loss compared to the full fed sows. These changes were accompanied by lower plasma insulin-like growth factor 1 (IGF1) and higher plasma creatinine levels in the restricted sows from the last week of lactation onward. Ovaries were collected 48 h after weaning. Restricted sows had a lower average size of the 15 largest follicles (−26%) and cumulus–oocyte complexes showed less expansion after 22 h in vitro maturation (−26%). Less zygotes of restricted sows reached the metaphase stage 24 h after in vitro fertilization and showed a higher incidence of polyspermy (+89%). This shows that feed restriction had severe consequences on oocyte developmental competence. Follicular fluid of restricted sows had lower IGF1 (−56%) and steroid levels (e.g., β-estradiol, progestins, and androgens), which indicated that follicles of restricted sows were less competent to produce steroids and growth factors needed for oocytes to obtain full developmental competence.
Collapse
Affiliation(s)
- N G J Costermans
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands.,Adaptation Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - K J Teerds
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - A Middelkoop
- Adaptation Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - B A J Roelen
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - E J Schoevers
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - H T A van Tol
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - B Laurenssen
- Adaptation Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - R E Koopmanschap
- Adaptation Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Y Zhao
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - M Blokland
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Akkermaalsbos 2, 6708WB Wageningen, The Netherlands
| | - F van Tricht
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Akkermaalsbos 2, 6708WB Wageningen, The Netherlands
| | - L Zak
- TopigsNorsvin Research Center B. V., Beuningen, The Netherlands
| | - J Keijer
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - B Kemp
- Adaptation Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - N M Soede
- Adaptation Physiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
4
|
Goudet G, Prunier A, Nadal-Desbarats L, Grivault D, Ferchaud S, Pianos A, Haddad L, Montigny F, Douet C, Savoie J, Maupertuis F, Roinsard A, Boulot S, Liere P. Steroidome and metabolome analysis in gilt saliva to identify potential biomarkers of boar effect receptivity. Animal 2020; 15:100095. [PMID: 33573980 DOI: 10.1016/j.animal.2020.100095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 01/29/2023] Open
Abstract
Optimal management of gilt reproduction requires oestrus synchronization. Hormonal treatments are used for this purpose, but there is a growing demand for non-hormonal alternatives, especially in organic farms. The boar effect is an important alternative opportunity to induce and synchronize oestrus without hormones. Before puberty, gilts exhibit a 'waiting period' during which boar exposure could induce and synchronize the first ovulation. We searched for salivary biomarkers of this period of boar effect receptivity to improve detection of the gilts to stimulate with the perspective of enhancing the efficacy of the boar effect. Saliva samples were collected from 30 Large-White×Landrace crossbred gilts between 140 and 175 days of age. Gilts were exposed twice a day to a boar and subjected to oestrus detection from 150 to 175 days of age. Among the 30 gilts, 10 were detected in oestrus 4 to 7 days after the first introduction of the boar and were considered receptive to the boar effect, 14 were detected in oestrus more than 8 days after first boar contact, and six did not show oestrus and were considered non-receptive. Saliva samples from six receptive and six non-receptive gilts were analyzed for steroidome and for metabolome using gas chromatography coupled to tandem mass spectrometry and 1H nuclear magnetic resonance spectroscopy, respectively. Four saliva samples per gilt were analyzed: 25 days and 11 days before boar introduction, the day of boar introduction, 3 days later for receptive gilts or 7 days later for non-receptive gilts. Twenty-nine steroids and 31 metabolites were detected in gilt saliva. Salivary concentrations of six steroids and three metabolites were significantly different between receptive and non-receptive gilts: progesterone and glycolate 25 days before boar introduction, 3α5β20α- and 3β5α20β-hexahydroprogesterone, dehydroepiandrosterone, androstenediol, succinate, and butyrate 11 days before boar introduction, and 3β5α-tetrahydroprogesterone on the day of boar introduction. Thus, nine potential salivary biomarkers of boar effect receptivity were identified in our experimental conditions. Further studies with higher numbers of gilts and salivary sampling points are necessary to ascertain their reliability.
Collapse
Affiliation(s)
- G Goudet
- PRC, INRAE, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France.
| | - A Prunier
- PEGASE, INRAE, Institut Agro, 35590 Saint-Gilles, France
| | | | | | | | - A Pianos
- U1195 INSERM Université Paris Saclay, 94276 Kremlin Bicêtre, France
| | - L Haddad
- U1195 INSERM Université Paris Saclay, 94276 Kremlin Bicêtre, France
| | - F Montigny
- UMR 1253, iBrain, Université de Tours, Inserm, 37000 Tours, France
| | - C Douet
- PRC, INRAE, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - J Savoie
- PAO, INRAE, 37380 Nouzilly, France
| | - F Maupertuis
- Chambre d'agriculture Pays de la Loire, 44150 Ancenis, France
| | | | - S Boulot
- IFIP Institut du Porc, 35650 Le Rheu, France
| | - P Liere
- U1195 INSERM Université Paris Saclay, 94276 Kremlin Bicêtre, France
| |
Collapse
|
5
|
Yehia AM, Arafa RM, Abbas SS, Amer SM. Chromatographic Separation of Synthetic Estrogen and Progesterone in Presence of Natural Congeners: Application to Saliva and Pharmaceutical Samples. Chromatographia 2020. [DOI: 10.1007/s10337-020-03982-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|