1
|
González-Salitre L, Basilio-Cortés U, Rodríguez-Serrano G, Contreras-López E, Cardelle-Cobas A, González-Olivares L. Physicochemical and microbiological parameters during the manufacturing of a beer-type fermented beverage using selenized Saccharomycesboulardii. Heliyon 2023; 9:e21190. [PMID: 37928392 PMCID: PMC10622692 DOI: 10.1016/j.heliyon.2023.e21190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/13/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023] Open
Abstract
Selenium is an essential trace element in human health. However, it has been considered a widespread selenium deficiency worldwide, although the recommended daily intake is very low (55 μg per day). Strategies have been implemented to comply with the recommended doses, for example, through bioavailable selenium such as selenoamino acids. Thus, this research aimed to elaborate on a beer-type fermented beverage produced with previously selenized Saccharomyces boulardii. For this, the yeast was selenized by adding a minimum inhibitory concentration of Na2SeO3 (74 ppm) to YPD media. Subsequently, barley must fermentations were carried out for 120 h. Kinetic parameters of the fermentation and physicochemical parameters and selenium content of the beverage were measured. The yeast accumulated up to 25.12 mg/g of dry cell. Furthermore, selenization affected the fermentation rate, but the beverage's physicochemical parameters were not different from those of the control. Due to the final concentration of selenium in the beverage (0.378 mg/kg), it is considered a process that confers advantages for the safe intake of selenium with bioavailable potential. In conclusion, fermented beverages enriched with organic selenium could be produced through cell selenization to produce functional beverages and food.
Collapse
Affiliation(s)
- L. González-Salitre
- Área Académica de Química, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
| | - U.A. Basilio-Cortés
- Área Académica de Biotecnología Agropecuaria, Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexico
| | - G.M. Rodríguez-Serrano
- Departamento de Biotecnología, División de Ciencias Biológicas y de la Salud, Unidad Iztapalapa, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - E. Contreras-López
- Área Académica de Química, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
| | - A. Cardelle-Cobas
- Laboratorio de Higiene, Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, Lugo, Spain
| | - L.G. González-Olivares
- Área Académica de Química, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Mineral de la Reforma, Hidalgo, Mexico
| |
Collapse
|
2
|
He P, Zhang M, Zhang Y, Wu H, Zhang X. Effects of Selenium Enrichment on Dough Fermentation Characteristics of Baker's Yeast. Foods 2023; 12:2343. [PMID: 37372553 DOI: 10.3390/foods12122343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
In this research, the effect of selenium (Se) enrichment on dough fermentation characteristics of yeast and the possible mechanisms was investigated. Then, the Se-enriched yeast was used as starter to make Se-enriched bread, and the difference between Se-enriched bread and common bread was investigated. It was found Se enrichment increased CO2 production and sugar consumption rate of Saccharomyces cerevisiae (S. cerevisiae) in dough fermentation, and had positive impacts on final volume and rheological index of dough. The mechanism is possibly related to higher activity and protein expression of hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), citrate synthase (CS), isocitrate dehydrogenase (ICD), and α-ketoglutarate dehydrogenase (α-KGDHC) in Se-enriched yeast. Moreover, Se-enriched bread (Se content: 11.29 μg/g) prepared by using Se-enriched yeast as starter exhibited higher overall acceptability on sensory, cell density in stomatal morphology, and better elasticity and cohesiveness on texture properties than common bread, which may be due to effect of higher CO2 production on dough quality. These results indicate Se-enriched yeast could be used as both Se-supplements and starter in baked-foods making.
Collapse
Affiliation(s)
- Ping He
- College of Food Sciences and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Mengmeng Zhang
- College of Food Sciences and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Yizhe Zhang
- College of Food Sciences and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Hui Wu
- College of Food Sciences and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Xiaoyuan Zhang
- Industrial Technology Research Institute, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
3
|
Effects of Selenium Supplementation on Rumen Microbiota, Rumen Fermentation, and Apparent Nutrient Digestibility of Ruminant Animals: A Review. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation8010004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Enzymes excreted by rumen microbiome facilitate the conversion of ingested plant materials into major nutrients (e.g., volatile fatty acids (VFA) and microbial proteins) required for animal growth. Diet, animal age, and health affect the structure of the rumen microbial community. Pathogenic organisms in the rumen negatively affect fermentation processes in favor of energy loss and animal deprivation of nutrients in ingested feed. Drawing from the ban on antibiotic use during the last decade, the livestock industry has been focused on increasing rumen microbial nutrient supply to ruminants through the use of natural supplements that are capable of promoting the activity of beneficial rumen microflora. Selenium (Se) is a trace mineral commonly used as a supplement to regulate animal metabolism. However, a clear understanding of its effects on rumen microbial composition and rumen fermentation is not available. This review summarized the available literature for the effects of Se on specific rumen microorganisms along with consequences for rumen fermentation and digestibility. Some positive effects on total VFA, the molar proportion of propionate, acetate to propionate ratio, ruminal NH3-N, pH, enzymatic activity, ruminal microbiome composition, and digestibility were recorded. Because Se nanoparticles (SeNPs) were more effective than other forms of Se, more studies are needed to compare the effectiveness of synthetic SeNPs and lactic acid bacteria enriched with sodium selenite as a biological source of SeNPs and probiotics. Future studies also need to evaluate the effect of dietary Se on methane emissions.
Collapse
|
4
|
González-Salitre L, Román-Gutiérrez A, Contreras-López E, Bautista-Ávila M, Rodríguez-Serrano G, González-Olivares L. Promising Use of Selenized Yeast to Develop New Enriched Food: Human Health Implications. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1934695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- L González-Salitre
- Área Académica De Química, Universidad Autónoma Del Estado De Hidalgo. Ciudad Del Conocimiento, Carretera Pachuca-Tulancingo Km 4.5, Colonia Carboneras, Hidalgo, México
| | - Ad Román-Gutiérrez
- Área Académica De Química, Universidad Autónoma Del Estado De Hidalgo. Ciudad Del Conocimiento, Carretera Pachuca-Tulancingo Km 4.5, Colonia Carboneras, Hidalgo, México
| | - E Contreras-López
- Área Académica De Química, Universidad Autónoma Del Estado De Hidalgo. Ciudad Del Conocimiento, Carretera Pachuca-Tulancingo Km 4.5, Colonia Carboneras, Hidalgo, México
| | - M Bautista-Ávila
- Área Académica De Farmacia, Universidad Autónoma Del Estado De Hidalgo, Instituto De Ciencias De La Salud, Ex-Hacienda La Concepción, San Agustíın Tlaxiaca, Hidalgo, México
| | - Gm Rodríguez-Serrano
- Universidad Autónoma Metropolitana, Unidad Iztapalapa, División De Ciencias Biológicas Y De La Salud, Departamento De Biotecnología, Av. San Rafael Atlixco 186, Colonia Vicentina AP 09340, Ciudad De México, México
| | - Lg González-Olivares
- Área Académica De Química, Universidad Autónoma Del Estado De Hidalgo. Ciudad Del Conocimiento, Carretera Pachuca-Tulancingo Km 4.5, Colonia Carboneras, Hidalgo, México
| |
Collapse
|
5
|
Amin AB, Mao S. Influence of yeast on rumen fermentation, growth performance and quality of products in ruminants: A review. ACTA ACUST UNITED AC 2020; 7:31-41. [PMID: 33997329 PMCID: PMC8110857 DOI: 10.1016/j.aninu.2020.10.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 08/14/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022]
Abstract
This review aims to give an overview of the efficacy of yeast supplementation on growth performance, rumen pH, rumen microbiota, and their relationship to meat and milk quality in ruminants. The practice of feeding high grain diets to ruminants in an effort to increase growth rate and weight gain usually results in excess deposition of saturated fatty acids in animal products and increased incidence of rumen acidosis. The supplementation of yeast at the right dose and viability level could counteract the acidotic effects of these high grain diets in the rumen and positively modify the fatty acid composition of animal products. Yeast exerts its actions by competing with lactate-producing (Streptococcus bovis and Lactobacillus) bacteria for available sugar and encouraging the growth of lactate-utilising bacteria (Megasphaera elsdenii). M. elsdenii is known to convert lactate into butyrate and propionate leading to a decrease in the accumulation of lactate thereby resulting in higher rumen pH. Interestingly, this creates a conducive environment for the proliferation of vaccenic acid-producing bacteria (Butyrivibrio fibrisolvens) and ciliate protozoa, both of which have been reported to increase the ruminal concentration of trans-11 and cis-9, trans-11-conjugated linoleic acid (CLA) at a pH range between 5.6 and 6.3. The addition of yeast into the diet of ruminants has also been reported to positively modify rumen biohydrogenation pathway to synthesise more of the beneficial biohydrogenation intermediates (trans -11 and cis -9, trans -11). This implies that more dietary sources of linoleic acid, linolenic acid, and oleic acid along with beneficial biohydrogenation intermediates (cis-9, trans-11-CLA, and trans-11) would escape complete biohydrogenation in the rumen to be absorbed into milk and meat. However, further studies are required to substantiate our claim. Therefore, techniques like transcriptomics should be employed to identify the mRNA transcript expression levels of genes like stearoyl-CoA desaturase, fatty acid synthase, and elongase of very long chain fatty acids 6 in the muscle. Different strains of yeast need to be tested at different doses and viability levels on the fatty acid profile of animal products as well as its vaccenic acid and rumenic acid composition.
Collapse
Affiliation(s)
- Abdulmumini B. Amin
- Centre for Ruminant Nutrition and Feed Engineering Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Animal Science, Federal University Dutse, P.M.B 7156, Dutse, Jigawa State, Nigeria
| | - Shengyong Mao
- Centre for Ruminant Nutrition and Feed Engineering Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Jilin Inter-Regional Cooperation Centre for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, 132109, Jilin, China
- Corresponding author.
| |
Collapse
|