Predicting Overall Survival in Patients with Nonmetastatic Gastric Signet Ring Cell Carcinoma: A Machine Learning Approach.
COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022;
2022:4862376. [PMID:
36148015 PMCID:
PMC9489421 DOI:
10.1155/2022/4862376]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
Abstract
Background and Aims
Accurate prediction is essential for the survival of patients with nonmetastatic gastric signet ring cell carcinoma (GSRC) and medical decision-making. Current models rely on prespecified variables, limiting their performance and not being suitable for individual patients. Our study is aimed at developing a more precise model for predicting 1-, 3-, and 5-year overall survival (OS) in patients with nonmetastatic GSRC based on a machine learning approach.
Methods
We selected 2127 GSRC patients diagnosed from 2004 to 2014 from the Surveillance, Epidemiology, and End Results (SEER) database and then randomly partitioned them into a training and validation cohort. We compared the performance of several machine learning-based models and finally chose the eXtreme gradient boosting (XGBoost) model as the optimal method to predict the OS in patients with nonmetastatic GSRC. The model was assessed using the receiver operating characteristic curve (ROC).
Results
In the training cohort, for predicting OS rates at 1-, 3-, and 5-year, the AUCs of the XGBoost model were 0.842, 0.831, and 0.838, respectively, while in the testing cohort, the AUCs of 1-, 3-, and 5-year OS rates were 0.749, 0.823, and 0.829, respectively. Besides, the XGBoost model also performed better when compared with the American Joint Committee on Cancer (AJCC) stage. The performance for this model was stably maintained when stratified by age and ethnicity.
Conclusion
The XGBoost-based model accurately predicts the 1-, 3-, and 5-year OS in patients with nonmetastatic GSRC. Machine learning is a promising way to predict the survival outcomes of tumor patients.
Collapse