1
|
Simsek YK, Tofil HP, Rosenthal MI, Evans RM, Danielski CL, Beasley KE, Alsayed H, Shapira ME, Strauss RI, Wang M, Roggero VR, Allison LA. Nuclear receptor corepressor 1 levels differentially impact the intracellular dynamics of mutant thyroid hormone receptors associated with resistance to thyroid hormone syndrome. Mol Cell Endocrinol 2024; 594:112373. [PMID: 39299378 PMCID: PMC11531384 DOI: 10.1016/j.mce.2024.112373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Thyroid hormone receptor α1 (TRα1) undergoes nucleocytoplasmic shuttling and mediates gene expression in response to thyroid hormone (T3). In Resistance to Thyroid Hormone Syndrome α (RTHα), certain TRα1 mutants have higher affinity for nuclear corepressor 1 (NCoR1) and may form stable complexes that are not released in the presence of T3. Here, we examined whether NCoR1 modulates intranuclear mobility and nuclear retention of TRα1 or RTHα-associated mutants in transfected human cells, as a way of analyzing critical structural components of TRα1 and to further explore the correlation between mutations in TRα1 and aberrant intracellular trafficking. We found no significant difference in intranuclear mobility, as measured by fluorescence recovery after photobleaching, between TRα1 and select RTHα mutants, irrespective of NCoR1 expression. Nuclear-to-cytoplasmic fluorescence ratios of RTHα mutants, however, varied from TRα1 when NCoR1 was overexpressed, with a significant increase in nuclear retention for A263V and a significant decrease for A263S and R384H. In NCoR1-knockout cells, nuclear retention of A263S, A263V, P389R, A382P, C392X, and F397fs406X was significantly decreased compared to control (wild-type) cells. Luciferase reporter gene transcription mediated by TRα1 was significantly repressed by both NCoR1 overexpression and NCoR1 knockout. Most RTHα mutants showed minimal induction regardless of NCoR1 levels, but T3-mediated transcriptional activity was decreased for R384C and F397fs406X when NCoR1 was overexpressed, and also decreased for N359Y in NCoR1-knockout cells. Our results suggest a complex interaction between NCoR1 and RTHα mutants characterized by aberrant intracellular localization patterns and transcriptional activity that potentially arise from variable repressor complex stability, and may provide insight into RTHα pathogenesis on a molecular and cellular level.
Collapse
Affiliation(s)
- Yigit K Simsek
- Department of Biology, William & Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23185, USA
| | - H Page Tofil
- Department of Biology, William & Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23185, USA
| | - Matthew I Rosenthal
- Department of Biology, William & Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23185, USA
| | - Rochelle M Evans
- Department of Biology, William & Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23185, USA
| | - Caroline L Danielski
- Department of Biology, William & Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23185, USA
| | - Katelyn E Beasley
- Department of Biology, William & Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23185, USA
| | - Haytham Alsayed
- Department of Biology, William & Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23185, USA
| | - Molly E Shapira
- Department of Biology, William & Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23185, USA
| | - Rebecca I Strauss
- Department of Biology, William & Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23185, USA
| | - Moyao Wang
- Department of Biology, William & Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23185, USA
| | - Vincent R Roggero
- Department of Biology, William & Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23185, USA
| | - Lizabeth A Allison
- Department of Biology, William & Mary, 540 Landrum Drive, Integrated Science Center 3030, Williamsburg, VA, 23185, USA.
| |
Collapse
|
2
|
Dieu X, Sueur G, Moal V, Boux de Casson F, Bouzamondo N, Bouhours N, Briet C, Illouz F, Reynier P, Coutant R, Rodien P, Mirebeau-Prunier D. Apparent resistance to thyroid hormones: From biological interference to genetics. ANNALES D'ENDOCRINOLOGIE 2019; 80:280-285. [DOI: 10.1016/j.ando.2019.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/26/2019] [Accepted: 06/15/2019] [Indexed: 12/31/2022]
|
3
|
Korkmaz O, Ozen S, Ozdemir TR, Goksen D, Darcan S. A novel thyroid hormone receptor alpha gene mutation, clinic characteristics, and follow-up findings in a patient with thyroid hormone resistance. Hormones (Athens) 2019; 18:223-227. [PMID: 30747412 DOI: 10.1007/s42000-019-00094-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
Abstract
Thyroid hormone receptor alpha (THRA) gene mutation is a thyroid hormone resistance syndrome characterized by near-normal thyroid function tests and tissue-specific hypothyroidism. In this case study, we report a novel de novo p.G291S heterozygous mutation in the THRA gene was detected at mutation analysis. A 4-year-old male patient was admitted due to short stature, motor-mental retardation, and constipation. At physical examination, coarse facial appearance, eyelid edema, pallor, and umbilical hernia were observed. Primary thyroid hormone resistance should be considered in patients with phenotypically hypothyroid features. Laboratory analysis found moderate elevation in free triiodothyronine (T3) levels, normochromic normocytic anemia, and elevated creatine kinase levels. In conclusion, THRA gene mutation should be considered in patients with clinical hypothyroid findings and increased/moderately elevated free T3, decreased/ normal free thyroxine, normal thyroid-stimulating hormone levels, and increased muscle enzymes.
Collapse
Affiliation(s)
- Ozlem Korkmaz
- Ege University Faculty of Medicine Department of Pediatric Endocrinology and Diabetes, Ege University, 35100 Bornova, Izmir, Turkey.
| | - Samim Ozen
- Ege University Faculty of Medicine Department of Pediatric Endocrinology and Diabetes, Ege University, 35100 Bornova, Izmir, Turkey
| | - Taha Resid Ozdemir
- Tepecik Training and Research Hospital, Department of Genetics, Health Sciences University, Izmir, Turkey
| | - Damla Goksen
- Ege University Faculty of Medicine Department of Pediatric Endocrinology and Diabetes, Ege University, 35100 Bornova, Izmir, Turkey
| | - Sukran Darcan
- Ege University Faculty of Medicine Department of Pediatric Endocrinology and Diabetes, Ege University, 35100 Bornova, Izmir, Turkey
| |
Collapse
|
4
|
Sun F, Zhang JX, Yang CY, Gao GQ, Zhu WB, Han B, Zhang LL, Wan YY, Ye XP, Ma YR, Zhang MM, Yang L, Zhang QY, Liu W, Guo CC, Chen G, Zhao SX, Song KY, Song HD. The genetic characteristics of congenital hypothyroidism in China by comprehensive screening of 21 candidate genes. Eur J Endocrinol 2018; 178:623-633. [PMID: 29650690 PMCID: PMC5958289 DOI: 10.1530/eje-17-1017] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/11/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Congenital hypothyroidism (CH), the most common neonatal metabolic disorder, is characterized by impaired neurodevelopment. Although several candidate genes have been associated with CH, comprehensive screening of causative genes has been limited. DESIGN AND METHODS One hundred ten patients with primary CH were recruited in this study. All exons and exon-intron boundaries of 21 candidate genes for CH were analyzed by next-generation sequencing. And the inheritance pattern of causative genes was analyzed by the study of family pedigrees. RESULTS Our results showed that 57 patients (51.82%) carried biallelic mutations (containing compound heterozygous mutations and homozygous mutations) in six genes (DUOX2, DUOXA2, DUOXA1, TG, TPO and TSHR) involved in thyroid hormone synthesis. Autosomal recessive inheritance of CH caused by mutations in DUOX2, DUOXA2, TG and TPO was confirmed by analysis of 22 family pedigrees. Notably, eight mutations in four genes (FOXE1, NKX2-1, PAX8 and HHEX) that lead to thyroid dysgenesis were identified in eight probands. These mutations were heterozygous in all cases and hypothyroidism was not observed in parents of these probands. CONCLUSIONS Most cases of congenital hypothyroidism in China were caused by thyroid dyshormonogenesis rather than thyroid dysgenesis. This study identified previously reported causative genes for 57/110 Chinese patients and revealed DUOX2 was the most frequently mutated gene in these patients. Our study expanded the mutation spectrum of CH in Chinese patients, which was significantly different from Western countries.
Collapse
Affiliation(s)
- Feng Sun
- The Core Laboratory in Medical Center of Clinical ResearchDepartment of Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun-Xiu Zhang
- Department of EndocrinologyMaternal and Child Health Institute of Bozhou, Bozhou, China
| | - Chang-Yi Yang
- Department of EndocrinologyFujian Province Maternity & Children Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Guan-Qi Gao
- Department of EndocrinologyThe Linyi People’s Hospital, Linyi, Shandong Province, China
| | - Wen-Bin Zhu
- Department of EndocrinologyFujian Province Maternity & Children Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Bing Han
- The Core Laboratory in Medical Center of Clinical ResearchDepartment of Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Le-Le Zhang
- The Core Laboratory in Medical Center of Clinical ResearchDepartment of Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yue-Yue Wan
- The Core Laboratory in Medical Center of Clinical ResearchDepartment of Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao-Ping Ye
- The Core Laboratory in Medical Center of Clinical ResearchDepartment of Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu-Ru Ma
- The Core Laboratory in Medical Center of Clinical ResearchDepartment of Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Man-Man Zhang
- The Core Laboratory in Medical Center of Clinical ResearchDepartment of Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liu Yang
- The Core Laboratory in Medical Center of Clinical ResearchDepartment of Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qian-Yue Zhang
- The Core Laboratory in Medical Center of Clinical ResearchDepartment of Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Liu
- The Core Laboratory in Medical Center of Clinical ResearchDepartment of Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Cui-Cui Guo
- The Core Laboratory in Medical Center of Clinical ResearchDepartment of Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Gang Chen
- Department of EndocrinologyFujian Province Hospital, Fuzhou, Fujian Province, China
| | - Shuang-Xia Zhao
- The Core Laboratory in Medical Center of Clinical ResearchDepartment of Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ke-Yi Song
- Department of EndocrinologyThe People’s Hospital of Bozhou, Bozhou, Anhui Province, China
| | - Huai-Dong Song
- The Core Laboratory in Medical Center of Clinical ResearchDepartment of Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Correspondence should be addressed to H-D Song;
| |
Collapse
|
5
|
Gouveia CHA, Miranda-Rodrigues M, Martins GM, Neofiti-Papi B. Thyroid Hormone and Skeletal Development. VITAMINS AND HORMONES 2018; 106:383-472. [PMID: 29407443 DOI: 10.1016/bs.vh.2017.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thyroid hormone (TH) is essential for skeletal development from the late fetal life to the onset of puberty. During this large window of actions, TH has key roles in endochondral and intramembranous ossifications and in the longitudinal bone growth. There is evidence that TH acts directly in skeletal cells but also indirectly, specially via the growth hormone/insulin-like growth factor-1 axis, to control the linear skeletal growth and maturation. The presence of receptors, plasma membrane transporters, and activating and inactivating enzymes of TH in skeletal cells suggests that direct actions of TH in these cells are crucial for skeletal development, which has been confirmed by several in vitro and in vivo studies, including mouse genetic studies, and clinical studies in patients with resistance to thyroid hormone due to dominant-negative mutations in TH receptors. This review examines progress made on understanding the mechanisms by which TH regulates the skeletal development.
Collapse
Affiliation(s)
- Cecilia H A Gouveia
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Experimental Pathophysiology Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil.
| | | | - Gisele M Martins
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Experimental Pathophysiology Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil; Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Bianca Neofiti-Papi
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Experimental Pathophysiology Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
6
|
Abstract
Thyroid hormones are essential for skeletal development and are important regulators of bone maintenance in adults. Childhood hypothyroidism causes delayed skeletal development, retarded linear growth and impaired bone mineral accrual. Epiphyseal dysgenesis is evidenced by classic features of stippled epiphyses on X-ray. In severe cases, post-natal growth arrest results in a complex skeletal dysplasia. Thyroid hormone replacement stimulates catch-up growth and bone maturation, but recovery may be incomplete dependent on the duration and severity of hypothyroidism prior to treatment. A severe phenotype characteristic of hypothyroidism occurs in children with resistance to thyroid hormone due to mutations affecting THRA encoding thyroid hormone receptor α (TRα). Discovery of this rare condition recapitulated animal studies demonstrating that TRα mediates thyroid hormone action in the skeleton. In adults, thyrotoxicosis is well known to cause severe osteoporosis and fracture, but cases are rare because of prompt diagnosis and treatment. Recent data, however, indicate that subclinical hyperthyroidism is associated with low bone mineral density (BMD) and an increased risk of fracture. Population studies have also shown that variation in thyroid status within the reference range in post-menopausal women is associated with altered BMD and fracture risk. Thus, thyroid status at the upper end of the euthyroid reference range is associated with low BMD and increased risk of osteoporotic fragility fracture. Overall, extensive data demonstrate that euthyroid status is required for normal post-natal growth and bone mineral accrual, and is fundamental for maintenance of adult bone structure and strength.
Collapse
Affiliation(s)
- G. R. Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, 10N5 Commonwealth Building, London, W12 0NN UK
| | - J. H. D. Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, 10N6 Commonwealth Building, London, W12 0NN UK
| |
Collapse
|
7
|
Abstract
Thyroid hormones (TH) are endocrine messengers essential for normal development and function of virtually every vertebrate. The hypothalamic-pituitary-thyroid axis is exquisitely modulated to maintain nearly constant TH (T4 and T3) levels in circulation. However peripheral tissues and the CNS control the intracellular availability of TH, suggesting that circulating concentrations of TH are not fully representative of what each cell type sees. Indeed, recent work in the field has identified that TH transporters, deiodinases and thyroid hormone receptor coregulators can strongly control tissue-specific sensitivity to a set amount of TH. Furthermore, the mechanism by which the thyroid hormone receptors regulate target gene expression can vary by gene, tissue and cellular context. This review will highlight novel insights into the machinery that controls the cellular response to TH, which include unique signaling cascades. These findings shed new light into the pathophysiology of human diseases caused by abnormal TH signaling.
Collapse
Affiliation(s)
- Arturo Mendoza
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Anthony N Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Wémeau JL. The expanding spectrum of thyroid hormone resistance concerns the entire medical field. Presse Med 2015; 44:1093-5. [PMID: 26615083 DOI: 10.1016/j.lpm.2015.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Jean-Louis Wémeau
- CHRU de Lille, clinique endocrinologique Marc-Linquette, service d'endocrinologie et des maladies métaboliques, 59037 Lille cedex, France.
| |
Collapse
|