1
|
Mazenq J, Dubus JC, Chanez P, Gras D. Post viral bronchiolitis obliterans in children: A rare and potentially devastating disease. Paediatr Respir Rev 2024; 52:58-65. [PMID: 39214823 DOI: 10.1016/j.prrv.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 09/04/2024]
Abstract
Post infectious bronchiolitis obliterans (PIBO) is a rare but severe disease in children. Several respiratory pathogens are incriminated but adenovirus is still the most represented. Risk factors are well described: the male gender, hypoxemia at diagnosis and required mechanical ventilation. No risk factor is linked to the newborn period. The clinical spectrum of PIBO is broad, ranging from asymptomatic patients with fixed airflow obstruction to severe respiratory insufficiency requiring continuous oxygen supplementation. Diagnosis includes a combination of a clinical history, absence of reversible airflow obstructions and ground glass and gas trapping on high resolution computed tomography. PIBO is primarily a neutrophilic pathology of small bronchioles characterized by high levels of pro-inflammatory cytokines leading to tissue remodeling and fibrosis of the small airways. The difficulty is to discriminate between the host's normal response, an exaggerated inflammatory response and the potential iatrogenic consequences of the initial infection treatment, particularly prolonged mechanical ventilation. Damage to the respiratory epithelium with a possible link to viral infections are considered as potential mechanisms of PIBO. No specific management exists. Much remains to be done in this field to clarify the underlying mechanisms, identify biomarkers, and develop clear monitoring pathways and treatment protocols.
Collapse
Affiliation(s)
- Julie Mazenq
- Service de pneumologie pédiatrique, CHU Timone enfants, Assistante Publique des Hôpitaux de Marseille, France; Aix-Marseille Université, INSERM, INRAE, C2VN Marseille, France.
| | - Jean-Christophe Dubus
- Service de pneumologie pédiatrique, CHU Timone enfants, Assistante Publique des Hôpitaux de Marseille, France; Aix-Marseille Université, INSERM, INRAE, C2VN Marseille, France
| | - Pascal Chanez
- Aix-Marseille Université, INSERM, INRAE, C2VN Marseille, France; Clinique des bronches, de l'allergie et du sommeil, CHU Nord, Assistante Publique des Hôpitaux de Marseille, France
| | - Delphine Gras
- Aix-Marseille Université, INSERM, INRAE, C2VN Marseille, France
| |
Collapse
|
2
|
Xu Y, Sun Y, Chen M, Dong M. A rare interstitial lung disease in children caused by novel mutations of FARSA gene. Pediatr Pulmonol 2024; 59:3720-3723. [PMID: 39185634 DOI: 10.1002/ppul.27224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Affiliation(s)
- Yuqing Xu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Yi Sun
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Chen
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Minyue Dong
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
| |
Collapse
|
3
|
Griese M, Kurland G, Cidon M, Deterding RR, Epaud R, Nathan N, Schwerk N, Warburton D, Weinman JP, Young LR, Deutsch GH. Pulmonary fibrosis may begin in infancy: from childhood to adult interstitial lung disease. Thorax 2024; 79:1162-1172. [PMID: 39153860 PMCID: PMC11671978 DOI: 10.1136/thorax-2024-221772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/25/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Childhood interstitial lung disease (chILD) encompasses a group of rare heterogeneous respiratory conditions associated with significant morbidity and mortality. Reports suggest that many patients diagnosed with chILD continue to have potentially progressive or fibrosing disease into adulthood. Over the last decade, the spectrum of conditions within chILD has widened substantially, with the discovery of novel entities through advanced genetic testing. However, most evidence is often limited to small case series, with reports disseminated across an array of subspecialty, clinical and molecular journals. In particular, the frequency, management and outcome of paediatric pulmonary fibrosis is not well characterised, unlike in adults, where clear diagnosis and treatment guidelines are available. METHODS AND RESULTS This review assesses the current understanding of pulmonary fibrosis in chILD. Based on registry data, we have provisionally estimated the occurrence of fibrosis in various manifestations of chILD, with 47 different potentially fibrotic chILD entities identified. Published evidence for fibrosis in the spectrum of chILD entities is assessed, and current and future issues in management of pulmonary fibrosis in childhood, continuing into adulthood, are considered. CONCLUSIONS There is a need for improved knowledge of chILD among pulmonologists to optimise the transition of care from paediatric to adult facilities. Updated evidence-based guidelines are needed that incorporate recommendations for the diagnosis and management of immune-mediated disorders, as well as chILD in older children approaching adulthood.
Collapse
Affiliation(s)
- Matthias Griese
- German Center for Lung Research (DZL), University of Munich, LMU Hospital Department of Pediatrics at Dr von Hauner Children's Hospital, Munchen, Germany
| | - Geoffrey Kurland
- Division of Pediatric Pulmonology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Michal Cidon
- Children’s Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Robin R Deterding
- Section of Pediatric Pulmonary and Sleep Medicine Department of Pediatrics, University of Colorado Denver, Denver, Colorado, USA
- Children's Hospital Colorado, Aurora, Colorado, USA
| | - Ralph Epaud
- Pediatric Pulmonology Department, Centre Hospitalier Intercommunal de Créteil; Centre des Maladies Respiratoires Rares (RESPIRARE®); University Paris Est Créteil, INSERM, IMRB, Créteil, France
| | - Nadia Nathan
- Paediatric Pulmonology Department and Reference Centre for Rare Lung Diseases RespiRare, Laboratory of Childhood Genetic Diseases, Inserm UMS_S933, Sorbonne Université and AP-HP, Hôpital Trousseau, Paris, France
| | - Nicolaus Schwerk
- Clinic for Paediatric Pneumology, Allergy and Neonatology, Hannover Medical School, German Center for Lung Research (DZL), Hannover, Germany
| | - David Warburton
- Children’s Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Jason P Weinman
- Department of Radiology, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Lisa R Young
- Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Gail H Deutsch
- Department of Pathology, Seattle Children's Hospital and University of Washington Medical Center, Seattle, Washington, USA
| |
Collapse
|
4
|
Drobňaková S, Vargová V, Barkai L. The Clinical Approach to Interstitial Lung Disease in Childhood: A Narrative Review Article. CHILDREN (BASEL, SWITZERLAND) 2024; 11:904. [PMID: 39201839 PMCID: PMC11352674 DOI: 10.3390/children11080904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024]
Abstract
Interstitial lung disease (ILD) comprises a group of respiratory diseases affecting the interstitium of the lungs, which occur when a lung injury triggers an abnormal healing response, and an inflammatory process leads to altered diffusion and restrictive respiratory dysfunction. The term "interstitial" may be misleading, as other components of the lungs are usually also involved (epithelium, airways, endothelium, and so on). Pediatric conditions (childhood interstitial lung disease, chILD) are different from adult forms, as growing and developing lungs are affected and more diverse and less prevalent diseases are seen in childhood. Diffuse parenchymal lung disease (DPLD) and diffuse lung disease (DLD) can be used interchangeably with ILD. Known etiologies of chILD include chronic infections, bronchopulmonary dysplasia, aspiration, genetic mutations leading to surfactant dysfunction, and hypersensitivity pneumonitis due to drugs or environmental exposures. Many forms are seen in disorders with pulmonary involvement (connective tissue disorders, storage diseases, malignancies, and so on), but several conditions have unknown origins (desquamative pneumonitis, pulmonary interstitial glycogenosis, neuroendocrine cell hyperplasia in infancy, and so on). Currently, there is no consensus on pediatric classification; however, age grouping is proposed as some specific forms are more prevalent in infancy (developmental and growth abnormalities, surfactant dysfunction mutations, etc.) and others are usually seen in older cohorts (disorders in normal or immunocompromised hosts, systemic diseases, etc.). Clinical manifestations vary from mild nonspecific symptoms (recurrent respiratory infections, exercise intolerance, failure to thrive, dry cough, etc.) to a severe clinical picture (respiratory distress) and presentation related to the child's age. The diagnostic approach relies on imaging techniques (CT), but further investigations including genetic tests, BAL, and lung biopsy (VATS) are needed in uncertain cases. Pharmacological treatment is mostly empiric and based on anti-inflammatory and immunomodulatory drugs. Lung transplantation for selected cases in a pediatric transplantation center could be an option; however, limited data and evidence are available regarding long-term survival. International collaboration is warranted to understand chILD entities better and improve the outcomes of these patients.
Collapse
Affiliation(s)
- Simona Drobňaková
- Department of Paediatrics and Adolescent Medicine, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia; (V.V.); or (L.B.)
| | - Veronika Vargová
- Department of Paediatrics and Adolescent Medicine, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia; (V.V.); or (L.B.)
| | - László Barkai
- Department of Paediatrics and Adolescent Medicine, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia; (V.V.); or (L.B.)
- Physiological Controls Research Center, University Research and Innovation Center, Óbuda University, 1034 Budapest, Hungary
| |
Collapse
|
5
|
Lettieri S, Bonella F, Marando VA, Franciosi AN, Corsico AG, Campo I. Pathogenesis-driven treatment of primary pulmonary alveolar proteinosis. Eur Respir Rev 2024; 33:240064. [PMID: 39142709 PMCID: PMC11322829 DOI: 10.1183/16000617.0064-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/28/2024] [Indexed: 08/16/2024] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a syndrome that results from the accumulation of lipoproteinaceous material in the alveolar space. According to the underlying pathogenetic mechanisms, three different forms have been identified, namely primary, secondary and congenital. Primary PAP is caused by disruption of granulocyte-macrophage colony-stimulating factor (GM-CSF) signalling due to the presence of neutralising autoantibodies (autoimmune PAP) or GM-CSF receptor genetic defects (hereditary PAP), which results in dysfunctional alveolar macrophages with reduced phagocytic clearance of particles, cholesterol and surfactant. The serum level of GM-CSF autoantibody is the only disease-specific biomarker of autoimmune PAP, although it does not correlate with disease severity. In PAP patients with normal serum GM-CSF autoantibody levels, elevated serum GM-CSF levels is highly suspicious for hereditary PAP. Several biomarkers have been correlated with disease severity, although they are not specific for PAP. These include lactate dehydrogenase, cytokeratin 19 fragment 21.1, carcinoembryonic antigen, neuron-specific enolase, surfactant proteins, Krebs von Lungen 6, chitinase-3-like protein 1 and monocyte chemotactic proteins. Finally, increased awareness of the disease mechanisms has led to the development of pathogenesis-based treatments, such as GM-CSF augmentation and cholesterol-targeting therapies.
Collapse
Affiliation(s)
- Sara Lettieri
- Pneumology Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Francesco Bonella
- Center for interstitial and rare lung diseases, Ruhrlandklinik, University of Essen, Essen, Germany
| | | | | | - Angelo Guido Corsico
- Pneumology Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
- Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Ilaria Campo
- Pneumology Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| |
Collapse
|
6
|
Schweikert A, Kenny S, Oglesby I, Glasgow A, de Santi C, Gensch I, Lachmann N, Desroziers T, Fletcher C, Snijders D, Nathan N, Hurley K. An evaluation of an open access iPSC training course: "How to model interstitial lung disease using patient-derived iPSCs". Stem Cell Res Ther 2023; 14:377. [PMID: 38124115 PMCID: PMC10734099 DOI: 10.1186/s13287-023-03598-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Interstitial lung diseases (ILD) are a group of rare lung diseases with severe outcomes. The COST Innovator Grant aims to establish a first-of-a-kind open-access Biorepository of patient-derived induced pluripotent stem cells (iPSC) and to train researchers in the skills required to generate a robust preclinical model of ILD using these cells. This study aims to describe and evaluate the effectiveness of a training course designed to train researchers in iPSC techniques to model ILD. METHODS 74 researchers, physicians and stakeholders attended the training course in Dublin in May 2022 with 31 trainees receiving teaching in practical iPSC culturing skills. The training course learners were divided into the Hands-on (16 trainees) and Observer groups (15 trainees), with the Observers attending a supervised live-streamed experience of the laboratories skills directly delivered to the Hands-on group. All participants were asked to participate in an evaluation to analyse their satisfaction and knowledge gained during the Training Course, with means compared using t-tests. RESULTS The gender balance in both groups was predominantly females (77.4%). The Hands-on group consisted mainly of researchers (75%), whereas all participants of the Observer group described themselves as clinicians. All participants in the Hands-on group were at least very satisfied with the training course compared to 70% of the participants in the Observer group. The knowledge assessment showed that the Hands-on group retained significantly more knowledge of iPSC characteristics and culturing techniques compared to the Observers (* < 0.05; p = 0.0457). A comprehensive learning video detailing iPSC culturing techniques was produced and is included with this manuscript. CONCLUSIONS The majority of participants were highly or very satisfied with the training course and retained significant knowledge about iPSC characteristics and culturing techniques after attending the training course. Overall, our findings demonstrate the feasibility of running hybrid Hands-on and Observer teaching events and underscore the importance of this type of training programme to appeal to a broad spectrum of interested clinicians and researchers particularly in rare disease. The long-term implications of this type of training event requires further study to determine its efficacy and impact on adoption of iPSC disease modelling techniques in participants' laboratories.
Collapse
Affiliation(s)
- Anja Schweikert
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Sarah Kenny
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Irene Oglesby
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Arlene Glasgow
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin 9, Ireland
| | - Chiara de Santi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Ingrid Gensch
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
- Regenerative Biology to Reconstructive Therapy (REBIRTH) Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Nico Lachmann
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
- Regenerative Biology to Reconstructive Therapy (REBIRTH) Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Tifenn Desroziers
- Laboratory of Childhood Genetic Disorders Inserm UMR_S933, Armand Trousseau Hospital, Sorbonne University, Paris, France
| | - Camille Fletcher
- Laboratory of Childhood Genetic Disorders Inserm UMR_S933, Armand Trousseau Hospital, Sorbonne University, Paris, France
| | - Deborah Snijders
- Department of Woman and Child Health (SDB), Primary Ciliary Dyskinesia Centre, University of Padova, Padua, Italy
| | - Nadia Nathan
- Laboratory of Childhood Genetic Disorders Inserm UMR_S933, Armand Trousseau Hospital, Sorbonne University, Paris, France
- Pediatric Pulmonology Department and Reference Centre for Rare Lung Diseases RespiRare, Armand Trousseau Hospital, APHP Sorbonne University, Paris, France
| | - Killian Hurley
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland.
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| |
Collapse
|
7
|
Barzaghini B, Carelli S, Messa L, Rey F, Avanzini MA, Jacchetti E, Maghraby E, Berardo C, Zuccotti G, Raimondi MT, Cereda C, Calcaterra V, Pelizzo G. Bone Marrow Mesenchymal Stem Cells Expanded Inside the Nichoid Micro-Scaffold: a Focus on Anti-Inflammatory Response. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2023:1-12. [PMID: 37363698 PMCID: PMC10027280 DOI: 10.1007/s40883-023-00296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/08/2023] [Accepted: 02/19/2023] [Indexed: 03/28/2023]
Abstract
Purpose Mesenchymal stem cells (MSCs) represent a promising source for stem cell therapies in numerous diseases, including pediatric respiratory system diseases. Characterized by low immunogenicity, high anti-inflammatory, and immunoregulatory features, MSCs demonstrated an excellent therapeutic profile in numerous in vitro and preclinical models. MSCs reside in a specialized physiologic microenvironment, characterized by a unique combination of biophysical, biochemical, and cellular properties. The exploitation of the 3D micro-scaffold Nichoid, which simulates the native niche, enhanced the anti-inflammatory potential of stem cells through mechanical stimulation only, overcoming the limitation of biochemical and xenogenic growth factors application. Materials and Methods In this work, we expanded pediatric bone marrow MSCs (BM-MSCs) inside the Nichoid and performed a complete cellular characterization with different approaches including viability assays, immunofluorescence analyses, RNA sequencing, and gene expression analysis. Results We demonstrated that BM-MSCs inside the scaffold remain in a stem cell quiescent state mimicking the condition of the in vivo environment. Moreover, the gene expression profile of these cells shows a significant up-regulation of genes involved in immune response when compared with the flat control. Conclusion The significant changes in the expression profile of anti-inflammatory genes could potentiate the therapeutic effect of BM-MSCs, encouraging the possible clinical translation for the treatment of pediatric congenital and acquired pulmonary disorders, including post-COVID lung manifestations. Lay Summary Regenerative medicine is the research field integrating medicine, biology, and biomedical engineering. In this context, stem cells, which are a fundamental cell source able to regenerate tissues and restore damage in the body, are the key component for a regenerative therapeutic approach. When expanded outside the body, stem cells tend to differentiate spontaneously and lose regenerative potential due to external stimuli. For this reason, we exploit the scaffold named Nichoid, which mimics the in vivo cell niche architecture. In this scaffold, mesenchymal stem cells "feel at home" due to the three-dimensional mechanical stimuli, and our findings could be considered as an innovative culture system for the in vitro expansion of stem cells for clinical translation. Future Perspective The increasing demand of safe and effective cell therapies projects our findings toward the possibility of improving cell therapies based on the use of BM-MSCs, particularly for their clinical translation in lung diseases. Graphical Abstract
Collapse
Affiliation(s)
- Bianca Barzaghini
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta,” Politecnico Di Milano, Milan, Italy
| | - Stephana Carelli
- Pediatric Research Center “Romeo Ed Enrica Invernizzi,” Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children’s Hospital, Milan, Italy
| | - Letizia Messa
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children’s Hospital, Milan, Italy
- Department of Electronic, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Federica Rey
- Pediatric Research Center “Romeo Ed Enrica Invernizzi,” Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children’s Hospital, Milan, Italy
| | - Maria Antonietta Avanzini
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta,” Politecnico Di Milano, Milan, Italy
| | - Erika Maghraby
- Pediatric Research Center “Romeo Ed Enrica Invernizzi,” Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Clarissa Berardo
- Pediatric Research Center “Romeo Ed Enrica Invernizzi,” Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children’s Hospital, Milan, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Research Center “Romeo Ed Enrica Invernizzi,” Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Department of Pediatrics, Buzzi Children’s Hospital, Milan, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta,” Politecnico Di Milano, Milan, Italy
| | - Cristina Cereda
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children’s Hospital, Milan, Italy
| | - Valeria Calcaterra
- Department of Pediatrics, Buzzi Children’s Hospital, Milan, Italy
- Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Gloria Pelizzo
- Pediatric Surgery Unit, Buzzi Children’s Hospital, Milan, Italy
- Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Nayir Buyuksahin H, Kiper N. Childhood Interstitial Lung Disease. PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2023; 36:5-15. [PMID: 36695653 DOI: 10.1089/ped.2022.0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Childhood interstitial lung disease (chILD) is a heterogeneous group of diseases with various clinical and imaging findings. The incidence and prevalence have increased in recent years, probably due to better comprehension of these rare diseases and increased awareness among physicians. chILDs present with nonspecific pulmonary symptoms, such as tachypnea, hypoxemia, cough, rales, and failure to thrive. Unnecessary invasive procedures can be avoided if specific mutations are detected through genetic examinations or if typical imaging patterns are recognized on computed tomography. Disease knowledge and targeted therapies are improving through international collaboration. Pulmonary involvement in systemic diseases is not uncommon. Pulmonary involvement may be the first finding in connective tissue diseases. This review aims to present a systematic patient-targeted approach to the diagnosis of chILD.
Collapse
Affiliation(s)
- Halime Nayir Buyuksahin
- Department of Pediatric Pulmonology, School of Medicine, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Nural Kiper
- Department of Pediatric Pulmonology, School of Medicine, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| |
Collapse
|
9
|
Nathan N, Griese M, Michel K, Carlens J, Gilbert C, Emiralioglu N, Torrent-Vernetta A, Marczak H, Willemse B, Delestrain C, Epaud R. Diagnostic workup of childhood interstitial lung disease. Eur Respir Rev 2023; 32:32/167/220188. [PMID: 36813289 PMCID: PMC9945877 DOI: 10.1183/16000617.0188-2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/18/2022] [Indexed: 02/24/2023] Open
Abstract
Childhood interstitial lung diseases (chILDs) are rare and heterogeneous diseases with significant morbidity and mortality. An accurate and quick aetiological diagnosis may contribute to better management and personalised treatment. On behalf of the European Respiratory Society Clinical Research Collaboration for chILD (ERS CRC chILD-EU), this review summarises the roles of the general paediatrician, paediatric pulmonologists and expert centres in the complex diagnostic workup. Each patient's aetiological chILD diagnosis must be reached without prolonged delays in a stepwise approach from medical history, signs, symptoms, clinical tests and imaging, to advanced genetic analysis and specialised procedures including bronchoalveolar lavage and biopsy, if necessary. Finally, as medical progress is fast, the need to revisit a diagnosis of "undefined chILD" is stressed.
Collapse
Affiliation(s)
- Nadia Nathan
- AP-HP, Sorbonne Université, Pediatric Pulmonology Department and Reference Center for Rare Lung Disease RespiRare, Armand Trousseau Hospital, Paris, France .,Sorbonne Université, Inserm UMR_S933 Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, Paris, France
| | - Matthias Griese
- Department of Paediatric Pneumology, Dr von Hauner Children's Hospital, German Centre for Lung Research, University of Munich, Munich, Germany
| | - Katarzyna Michel
- Department of Paediatric Pneumology, Dr von Hauner Children's Hospital, German Centre for Lung Research, University of Munich, Munich, Germany
| | - Julia Carlens
- Clinic for Pediatric Pneumology, Hannover Medical School, Hannover, Germany
| | - Carlee Gilbert
- Institute of Population Health, University of Liverpool, Liverpool, UK
| | - Nagehan Emiralioglu
- Department of Pediatric Pulmonology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alba Torrent-Vernetta
- Pediatric Allergy and Pulmonology Section, Department of Pediatrics, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Honorata Marczak
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Brigitte Willemse
- Department of Pediatric Pneumology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Céline Delestrain
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands,Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Créteil, France,Centre des Maladies Respiratoires Rares (RESPIRARE®), CRCM, Créteil, France
| | - Ralph Epaud
- Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Créteil, France,Centre des Maladies Respiratoires Rares (RESPIRARE®), CRCM, Créteil, France,University Paris Est Créteil, INSERM, IMRB, Créteil, France
| |
Collapse
|
10
|
Interstitial Lung Disease in Children: “Specific Conditions of Undefined Etiology” Becoming Clearer. CHILDREN 2022; 9:children9111744. [PMID: 36421193 PMCID: PMC9688624 DOI: 10.3390/children9111744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Background: Children’s interstitial lung disease (chILD) is a rare group of pediatric lung diseases affecting the lung interstitium diffusely. In this work, we focused our attention on a specific infant group of chILD, also known as “specific conditions of undefined aetiology”, including pulmonary interstitial glycogenosis (PIG) and neuroendocrine cell hyperplasia of infancy (NEHI). Methods: PubMed was searched to conduct this narrative review. We searched for articles in English using the following keywords: (1) neuroendocrine cell hyperplasia of infancy; (2) NEHI; (3) pulmonary interstitial glycogenosis; (4) PIG; (5) chILD. Results: An increasing interest and insight into these two conditions have been reported. The updated literature suggests that it is possible to look at these disorders as a continuum of diseases, rather than two different entities, since they share a pulmonary dysmaturity. Conclusions: NEHI and PIG are featured by dysmaturity of airway development and consequent respiratory distress. Understanding the underlying pathogenic mechanisms would lead to identifying new targeted therapies to ameliorate the mortality and morbidity of these rare conditions.
Collapse
|
11
|
Paszkowska A, Kolenda T, Guglas K, Kozłowska-Masłoń J, Podralska M, Teresiak A, Bliźniak R, Dzikiewicz-Krawczyk A, Lamperska K. C10orf55, CASC2, and SFTA1P lncRNAs Are Potential Biomarkers to Assess Radiation Therapy Response in Head and Neck Cancers. J Pers Med 2022; 12:jpm12101696. [PMID: 36294833 PMCID: PMC9605465 DOI: 10.3390/jpm12101696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/07/2022] Open
Abstract
Long non-coding RNAs have proven to be important molecules in carcinogenesis. Due to little knowledge about them, the molecular mechanisms of tumorigenesis are still being explored. The aim of this work was to study the effect of ionizing radiation on the expression of lncRNAs in head and neck squamous cell carcinoma (HNSCC) in patients responding and non-responding to radiotherapy. The experimental model was created using a group of patients with response (RG, n = 75) and no response (NRG, n = 75) to radiotherapy based on the cancer genome atlas (TCGA) data. Using the in silico model, statistically significant lncRNAs were defined and further validated on six HNSCC cell lines irradiated at three different doses. Based on the TCGA model, C10orf55, C3orf35, C5orf38, CASC2, MEG3, MYCNOS, SFTA1P, SNHG3, and TMEM105, with the altered expression between the RG and NRG were observed. Analysis of pathways and immune profile indicated that these lncRNAs were associated with changes in processes, such as epithelial-to-mesenchymal transition, regulation of spindle division, and the p53 pathway, and differences in immune cells score and lymphocyte infiltration signature score. However, only C10orf55, CASC2, and SFTA1P presented statistically altered expression after irradiation in the in vitro model. In conclusion, the expression of lncRNAs is affected by ionization radiation in HNSCC, and these lncRNAs are associated with pathways, which are important for radiation response and immune response. Potentially presented lncRNAs could be used as biomarkers for personalized radiotherapy in the future. However, these results need to be verified based on an in vitro experimental model to show a direct net of interactions.
Collapse
Affiliation(s)
- Anna Paszkowska
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Garbary Street 15, 61-866 Poznan, Poland
- Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Garbary Street 15, 61-866 Poznan, Poland
| | - Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Garbary Street 15, 61-866 Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Garbary Street 15, 61-866 Poznan, Poland
- Correspondence: (T.K.); (K.L.)
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Garbary Street 15, 61-866 Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Garbary Street 15, 61-866 Poznan, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki and Wigury Street 61, 02-091 Warsaw, Poland
| | - Joanna Kozłowska-Masłoń
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Garbary Street 15, 61-866 Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Garbary Street 15, 61-866 Poznan, Poland
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland
| | - Marta Podralska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Garbary Street 15, 61-866 Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Garbary Street 15, 61-866 Poznan, Poland
| | - Renata Bliźniak
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Garbary Street 15, 61-866 Poznan, Poland
| | | | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater Poland Cancer Center, Garbary Street 15, 61-866 Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Center, Garbary Street 15, 61-866 Poznan, Poland
- Correspondence: (T.K.); (K.L.)
| |
Collapse
|
12
|
Hamouda S, de Becdelièvre A, Ben Ameur S, Trabelsi I, Fabre M, Epaud R, Fanen P, Boussetta K. Variable Expression of Lung Disease Due to a Novel Homozygous ABCA3 Variant. PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2022; 35:124-128. [PMID: 36121785 DOI: 10.1089/ped.2022.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Background: Mutations in the ATP-binding cassette transporter A3 (ABCA3) gene are one of the most common surfactant disorders leading to interstitial lung diseases (ILD). The clinical spectrum and severity of lung disease caused by ABCA3 deficiency due to missense variants is variable. Case Presentations: A novel ABCA3 c.3135G>C (p.Gln1045His) mutation was identified at the homozygous state in 3 subjects from 2 unrelated families: one 19-month-old boy with severe ILD and his homozygous pauci-symptomatic mother, and one 10-year-old girl with moderate late-onset ILD. Corticosteroid pulses associated with hydroxychloroquine were beneficial for both children. Conclusion: We illustrate here the huge intra- and interfamilial phenotypic variability associated with the same homozygous missense ABCA3 mutation, and the benefit of identifying the disease for treatment, follow-up, and appropriate genetic counseling.
Collapse
Affiliation(s)
- Samia Hamouda
- Department B, Bechir Hamza Children's Hospital of Tunis, Faculty of Medicine of Tunis, University El Manar, Tunis, Tunisia
| | - Alix de Becdelièvre
- AP-HP, Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, Hôpital Henri Mondor, Créteil, France
- Univ Paris Est Creteil, INSERM, IMRB, Créteil, France
| | - Salma Ben Ameur
- Pediatric Department, HediChaker Hospital of Sfax, Sfax, Tunisia
| | - Ines Trabelsi
- Department B, Bechir Hamza Children's Hospital of Tunis, Faculty of Medicine of Tunis, University El Manar, Tunis, Tunisia
| | - Monique Fabre
- Anatomic Pathology Department, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Ralph Epaud
- Service de Pédiatrie Générale, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Pascale Fanen
- AP-HP, Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, Hôpital Henri Mondor, Créteil, France
- Univ Paris Est Creteil, INSERM, IMRB, Créteil, France
| | - Khadija Boussetta
- Department B, Bechir Hamza Children's Hospital of Tunis, Faculty of Medicine of Tunis, University El Manar, Tunis, Tunisia
| |
Collapse
|
13
|
Severe Nonspecific Interstitial Pneumonia (NSIP) in an Adolescent. Case Rep Pulmonol 2022; 2022:7757776. [PMID: 35982826 PMCID: PMC9381257 DOI: 10.1155/2022/7757776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Childhood interstitial lung disease (chILD) is remarkably rare with a reported prevalence from 0.13 per 100,000 children under 17 years to 16.2 per 100,000 children under 15 years of age (Kornum et al., 2008). Here, we present a case of a 15-year-old with subacute hypoxemic respiratory failure, admitted to the critical care unit. Her imaging on admission showed bilateral interstitial infiltrates; her laboratory workup, including autoimmune serologies, was unrevealing. A bronchoscopy revealed the diagnosis of nonspecific interstitial pneumonia. She had a partial recovery after a course of steroids.
Collapse
|
14
|
Kingdom R, Wright CF. Incomplete Penetrance and Variable Expressivity: From Clinical Studies to Population Cohorts. Front Genet 2022; 13:920390. [PMID: 35983412 PMCID: PMC9380816 DOI: 10.3389/fgene.2022.920390] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
The same genetic variant found in different individuals can cause a range of diverse phenotypes, from no discernible clinical phenotype to severe disease, even among related individuals. Such variants can be said to display incomplete penetrance, a binary phenomenon where the genotype either causes the expected clinical phenotype or it does not, or they can be said to display variable expressivity, in which the same genotype can cause a wide range of clinical symptoms across a spectrum. Both incomplete penetrance and variable expressivity are thought to be caused by a range of factors, including common variants, variants in regulatory regions, epigenetics, environmental factors, and lifestyle. Many thousands of genetic variants have been identified as the cause of monogenic disorders, mostly determined through small clinical studies, and thus, the penetrance and expressivity of these variants may be overestimated when compared to their effect on the general population. With the wealth of population cohort data currently available, the penetrance and expressivity of such genetic variants can be investigated across a much wider contingent, potentially helping to reclassify variants that were previously thought to be completely penetrant. Research into the penetrance and expressivity of such genetic variants is important for clinical classification, both for determining causative mechanisms of disease in the affected population and for providing accurate risk information through genetic counseling. A genotype-based definition of the causes of rare diseases incorporating information from population cohorts and clinical studies is critical for our understanding of incomplete penetrance and variable expressivity. This review examines our current knowledge of the penetrance and expressivity of genetic variants in rare disease and across populations, as well as looking into the potential causes of the variation seen, including genetic modifiers, mosaicism, and polygenic factors, among others. We also considered the challenges that come with investigating penetrance and expressivity.
Collapse
Affiliation(s)
| | - Caroline F. Wright
- Institute of Biomedical and Clinical Science, Royal Devon & Exeter Hospital, University of Exeter Medical School, Exeter, United Kingdom
| |
Collapse
|
15
|
Chen F, Xie Z, Zhang VW, Chen C, Fan H, Zhang D, Jiang W, Wang C, Wu P. Case Report: Report of Two Cases of Interstitial Lung Disease Caused by Novel Compound Heterozygous Variants in the ABCA3 Gene. Front Genet 2022; 13:875015. [PMID: 35464853 PMCID: PMC9019779 DOI: 10.3389/fgene.2022.875015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Interstitial lung disease (ILD) is a heterogeneous group of pulmonary disorders involving the lung interstitium and distal airways, also known as diffuse lung disease. The genetic defects resulting in alveolar surfactant protein dysfunction are a rare cause of ILD in pediatric patients. We report two unrelated pediatric patients with shortness of breath, dyspnea and hypoxemia, and the chest CT findings including patchy ground-glass opacity in both lung fields, suggestive of diffuse ILD. One patient was a full-term male infant who had shortness of breath a few hours after the birth, and then developed into severe respiratory distress syndrome (RDS). Whole exome sequencing revealed novel compound heterozygous variants in the ABCA3 gene (NM_001,089.3): paternally inherited c.4035+5G > A and c.668T > C (p.M223T), and maternally inherited c.1285+4A > C. The second patient was a 34-month-old boy with onset of chronic repeated cough and hypoxemia at 9 months of age. We unveiled novel compound heterozygous ABCA3 variants (c.704T > C, p.F235S; c.4037_4040del, p.T1346Nfs*15) in this patient. Surfactant protein dysfunction due to bi-allelic mutations in the ABCA3 gene was the cause of ILD in two patients. The novel mutations found in this study expanded the spectrum of known mutations in the ABCA3 gene.
Collapse
Affiliation(s)
- Fang Chen
- Respiratory Department of Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Zhiwei Xie
- Respiratory Department of Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Victor Wei Zhang
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, United States.,AmCare Genomics Lab, Guangzhou, China
| | - Chen Chen
- Respiratory Department of Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Huifeng Fan
- Respiratory Department of Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Dongwei Zhang
- Respiratory Department of Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Wenhui Jiang
- Respiratory Department of Guangzhou Women and Children's Medical Center, Guangzhou, China
| | | | - Peiqiong Wu
- Respiratory Department of Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
16
|
Laenger FP, Schwerk N, Dingemann J, Welte T, Auber B, Verleden S, Ackermann M, Mentzer SJ, Griese M, Jonigk D. Interstitial lung disease in infancy and early childhood: a clinicopathological primer. Eur Respir Rev 2022; 31:31/163/210251. [PMID: 35264412 PMCID: PMC9488843 DOI: 10.1183/16000617.0251-2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
Children's interstitial lung disease (chILD) encompasses a wide and heterogeneous spectrum of diseases substantially different from that of adults. Established classification systems divide chILD into conditions more prevalent in infancy and other conditions occurring at any age. This categorisation is based on a multidisciplinary approach including clinical, radiological, genetic and histological findings. The diagnostic evaluation may include lung biopsies if other diagnostic approaches failed to identify a precise chILD entity, or if severe or refractory respiratory distress of unknown cause is present. As the majority of children will be evaluated and diagnosed outside of specialist centres, this review summarises relevant clinical, genetic and histological findings of chILD to provide assistance in clinical assessment and rational diagnostics. ILD of childhood is comparable by name only to lung disease in adults. A dedicated interdisciplinary team is required to achieve the best possible outcome. This review summarises the current clinicopathological criteria and associated genetic alterations.https://bit.ly/3mpxI3b
Collapse
Affiliation(s)
- Florian Peter Laenger
- Institute of Pathology, Medical School Hannover, Hannover, Germany .,German Center for Lung Research (DZL), Hannover, Germany
| | - Nicolaus Schwerk
- German Center for Lung Research (DZL), Hannover, Germany.,Clinic for Pediatric Pneumology, Allergology and Neonatology, Medical School Hannover, Hannover, Germany
| | - Jens Dingemann
- German Center for Lung Research (DZL), Hannover, Germany.,Dept of Pediatric Surgery, Medical School Hannover, Hannover, Germany
| | - Tobias Welte
- German Center for Lung Research (DZL), Hannover, Germany.,Dept of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Bernd Auber
- Dept of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Stijn Verleden
- Antwerp Surgical Training, Anatomy and Research Center, University of Antwerp, Antwerp, Belgium
| | - Maximilian Ackermann
- Division of Thoracic Surgery, Dept of Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Steven J Mentzer
- Division of Thoracic Surgery, Dept of Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Matthias Griese
- German Center for Lung Research (DZL), Hannover, Germany.,Hauner Children's Hospital, University of Munich, Munich, Germany
| | - Danny Jonigk
- Institute of Pathology, Medical School Hannover, Hannover, Germany.,German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
17
|
Pediatric hypersensitivity pneumonitis: literature update and proposal of a diagnostic algorithm. Ital J Pediatr 2022; 48:51. [PMID: 35346317 PMCID: PMC8962565 DOI: 10.1186/s13052-022-01239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/09/2022] [Indexed: 11/10/2022] Open
Abstract
Hypersensitivity pneumonitis (HP) is a rare disease in childhood with the prevalence of 4 cases per 1 million children and an incidence of 2 cases per year. The average age of diagnosis at pediatric age is approximately 10 years. The pathogenesis of HP is characterized by an immunological reaction caused by recurrent exposure to triggering environmental agents (mostly bird antigens in children). The clinical picture of HP is complex and variable in children, often presenting in subacute forms with cough and exertion dyspnea. A diagnosis of HP should be considered in patients with an identified exposure to a triggering antigen, respiratory symptoms, and radiologic signs of interstitial lung disease. Blood tests and pulmonary function tests (PFT) support the diagnosis. Bronchoscopy (with bronchoalveolar lavage and tissue biopsy) may be needed in unclear cases. Antigen provocation test is rarely required. Of note, the persistence of symptoms despite various treatment regimens may support HP diagnosis. The avoidance of single/multiple triggers is crucial for effective treatment. No evidence- based guidelines for treatment are available; in particular, the role of systemic glucocorticoids in children is unclear. With adequate antigen avoidance, the prognosis in children with HP is generally favorable.
Collapse
|
18
|
Alharbi SD. Childhood Interstitial Lung Disease in an Immunocompetent Patient Without Exposure. Cureus 2022; 14:e22266. [PMID: 35198335 PMCID: PMC8853930 DOI: 10.7759/cureus.22266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 01/19/2023] Open
Abstract
Childhood interstitial and diffuse lung disease (chILD) is a heterogeneous group of rare and chronic respiratory disorders with an estimated prevalence of 1.5 cases per million children aged 0-18 years. Various etiologies for chILD include but are not limited to systemic diseases, medications, exposure to tobacco, metabolic disorders, and organ diseases. Presented is the case of an immunocompetent young girl who presented with symptoms of recurrent cough and clubbing and was found to have interstitial lung disease.
Collapse
|
19
|
Marczak H, Peradzyńska J, Seidl E, Griese M, Urbankowski T, Lange J, Bogusławski S, Krenke K. The improved clinical course of persistent tachypnea of infancy with inhaled bronchodilators and corticosteroids. Pediatr Pulmonol 2021; 56:3952-3959. [PMID: 34520130 DOI: 10.1002/ppul.25674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/31/2021] [Accepted: 09/11/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Persistent tachypnea of infancy (PTI) is the most common interstitial lung disease in young children. As no standardized therapeutic guidelines exist, different pharmaceuticals are used to treat PTI; inhaled corticosteroids (ICS) and bronchodilators being mostly used. This observation assessed the effectiveness of bronchodilators and ICS in children with PTI enrolled in the children's interstitial lung diseases (chILD)-EU Register. METHODS Symptomatic children with PTI were observed according to a predetermined stepwise protocol including bronchodilators as the first choice treatment (6 weeks). In patients with incomplete response, additionally, ICS was given (12 weeks). Signs, symptoms, and pulmonary function were evaluated at three time points: at baseline, 6 (±1) weeks after initiation of bronchodilators, and 12 (±1) weeks after bronchodilators/ICS. RESULTS Thirty-one children (median age: 44 months, interquartile range [IQR]: 15-67) were included. The therapy was associated with a significant reduction of tachypnea (53.3% of patients, p = 0.02), exercise intolerance (52.2% of patients, p < 0.001), chest retractions (43.8% of patients, p = 0.04), and crackles (29.2% of patients, p = 0.02). Also, a significant improvement in forced expiratory volume in 1 s (FEV1 ) (median z score: -2.21 vs. -0.47, p = 0.03), residual volume (RV) (median z score 5.28 vs. 1.07, p = 0.007), RV% total lung capacity (TLC) (median z score: 6.05 vs. 1.48, p = 0.01), sRaw (median z score: 6.6 vs. 4.64, p = 0.01), R5 (median z score: 1.27 vs. 0.31, p = 0.009), and R5-R20 (median: 0.58 vs. 0.26 kPa/(l/s), p = 0.002) was demonstrated. CONCLUSIONS Inhaled bronchodilators and ICS may exert a positive effect on the severity of symptoms and pulmonary function test (PFT) in symptomatic children with PTI. However, a randomized control trial should be conducted to confirm their effectiveness.
Collapse
Affiliation(s)
- Honorata Marczak
- Department of Pediatric Pneumology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Peradzyńska
- Department of Epidemiology and Biostatistics, Medical University of Warsaw, Warsaw, Poland
| | - Elias Seidl
- Department of Pediatric Pneumology, Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | - Matthias Griese
- Department of Pediatric Pneumology, Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | | | - Joanna Lange
- Department of Pediatric Pneumology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Stanisław Bogusławski
- Department of Pediatric Pneumology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Krenke
- Department of Pediatric Pneumology and Allergy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
20
|
Pelizzo G, Silvestro S, Avanzini MA, Zuccotti G, Mazzon E, Calcaterra V. Mesenchymal Stromal Cells for the Treatment of Interstitial Lung Disease in Children: A Look from Pediatric and Pediatric Surgeon Viewpoints. Cells 2021; 10:3270. [PMID: 34943779 PMCID: PMC8699409 DOI: 10.3390/cells10123270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/11/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have been proposed as a potential therapy to treat congenital and acquired lung diseases. Due to their tissue-regenerative, anti-fibrotic, and immunomodulatory properties, MSCs combined with other therapy or alone could be considered as a new approach for repair and regeneration of the lung during disease progression and/or after post- surgical injury. Children interstitial lung disease (chILD) represent highly heterogeneous rare respiratory diseases, with a wild range of age of onset and disease expression. The chILD is characterized by inflammatory and fibrotic changes of the pulmonary parenchyma, leading to gas exchange impairment and chronic respiratory failure associated with high morbidity and mortality. The therapeutic strategy is mainly based on the use of corticosteroids, hydroxychloroquine, azithromycin, and supportive care; however, the efficacy is variable, and their long-term use is associated with severe toxicity. The role of MSCs as treatment has been proposed in clinical and pre-clinical studies. In this narrative review, we report on the currently available on MSCs treatment as therapeutical strategy in chILD. The progress into the therapy of respiratory disease in children is mandatory to ameliorate the prognosis and to prevent the progression in adult age. Cell therapy may be a future therapy from both a pediatric and pediatric surgeon's point of view.
Collapse
Affiliation(s)
- Gloria Pelizzo
- Pediatric Surgery Department, Children’s Hospital “Vittore Buzzi”, 20154 Milano, Italy
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy;
| | - Serena Silvestro
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (E.M.)
| | - Maria Antonietta Avanzini
- Cell Factory, Pediatric Hematology Oncology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Gianvincenzo Zuccotti
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy;
- Department of Pediatrics, Children’s Hospital “Vittore Buzzi”, 20154 Milano, Italy;
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (E.M.)
| | - Valeria Calcaterra
- Department of Pediatrics, Children’s Hospital “Vittore Buzzi”, 20154 Milano, Italy;
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
21
|
Sleep in children and young adults with interstitial and diffuse lung disease. Sleep Med 2021; 80:23-29. [PMID: 33548566 DOI: 10.1016/j.sleep.2021.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Obstructive sleep apnea (OSA) is common in adult patients with interstitial lung disease (ILD). The aim of the study was to evaluate the prevalence of OSA and sleep quality in children and young adults with children's interstitial and diffuse lung disease (chILD). METHODS A polysomnography (PSG) was performed in room air in all consecutive patients followed at a national reference centre between June 2018 and September 2019. Clinical and PSG data were collected. RESULTS The PSG data of 20 patients (12 girls, median age 9 (range 0.5-20) years), were analyzed. Seven (35%) patients had pulmonary alveolar proteinosis (PAP), 5 (25%) a disorder of surfactant metabolism, 3 (15%) diffuse pulmonary hemorrhage, 4 (20%) chILD of unknown etiology and one patient had laryngeal and pulmonary sarcoidosis. The median obstructive apnea-hypnea index (OAHI) was normal at 0 events/hour, with a value > 4 events/hour being observed in 2 young adults: an 18-year-old male with PAP and a vital capacity of 27% predicted who had an OAHI of 10.7 events/hour, and a 20-year-old male with laryngeal and pulmonary sarcoidosis who had positional OSA with an OAHI of 19.5 events/hour. The median total sleep time, sleep efficiency, % of wake after sleep onset, and sleep stages were moderately disturbed. CONCLUSIONS Moderate or severe OSA was not observed in children <18 years with chILD. Mild or moderate OSA was observed in 2 young adults with PAP and sarcoidosis. As opposed to adults, OSA seems uncommon in children with chILD.
Collapse
|
22
|
Atag E, Krivec U, Ersu R. Non-invasive Ventilation for Children With Chronic Lung Disease. Front Pediatr 2020; 8:561639. [PMID: 33262959 PMCID: PMC7687222 DOI: 10.3389/fped.2020.561639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/13/2020] [Indexed: 11/24/2022] Open
Abstract
Advances in medical care and supportive care options have contributed to the survival of children with complex disorders, including children with chronic lung disease. By delivering a positive pressure or a volume during the patient's inspiration, NIV is able to reverse nocturnal alveolar hypoventilation in patients who experience hypoventilation during sleep, such as patients with chronic lung disease. Bronchopulmonary dysplasia (BPD) is a common complication of prematurity, and despite significant advances in neonatal care over recent decades its incidence has not diminished. Most affected infants have mild disease and require a short period of oxygen supplementation or respiratory support. However, severely affected infants can become dependent on positive pressure support for a prolonged period. In case of established severe BPD, respiratory support with non-invasive or invasive positive pressure ventilation is required. Patients with cystic fibrosis (CF) and advanced lung disease develop hypoxaemia and hypercapnia during sleep and hypoventilation during sleep usually predates daytime hypercapnia. Hypoxaemia and hypercapnia indicates poor prognosis and prompts referral for lung transplantation. The prevention of respiratory failure during sleep in CF may prolong survival. Long-term oxygen therapy has not been shown to improve survival in people with CF. A Cochrane review on the use NIV in CF concluded that NIV in combination with oxygen therapy improves gas exchange during sleep to a greater extent than oxygen therapy alone in people with moderate to severe CF lung disease. Uncontrolled, non-randomized studies suggest survival benefit with NIV in addition to being an effective bridge to transplantation. Complications of NIV relate mainly to prolonged use of a face or nasal mask which can lead to skin trauma, and neurodevelopmental delay by acting as a physical barrier to social interaction. Another associated risk is pulmonary aspiration caused by vomiting whilst wearing a face mask. Adherence to NIV is one of the major barriers to treatment in children. This article will review the current evidence for indications, adverse effects and long term follow up including adherence to NIV in children with chronic lung disease.
Collapse
Affiliation(s)
- Emine Atag
- Division of Pediatric Pulmonology, Medipol University, Istanbul, Turkey
| | - Uros Krivec
- Division of Pediatric Pulmonology, University Children's Hospital, University Medical Centre, Ljubljana, Slovenia
| | - Refika Ersu
- Division of Pediatric Respirology, Children's Hospital of Ontario, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|