1
|
Yamazaki C, Yamazaki T, Kojima M, Takebayashi Y, Sakakibara H, Uheda E, Oka M, Kamada M, Shimazu T, Kasahara H, Sano H, Suzuki T, Higashibata A, Miyamoto K, Ueda J. Comprehensive analyses of plant hormones in etiolated pea and maize seedlings grown under microgravity conditions in space: Relevance to the International Space Station experiment "Auxin Transport". LIFE SCIENCES IN SPACE RESEARCH 2023; 36:138-146. [PMID: 36682823 DOI: 10.1016/j.lssr.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
Functional relationships between endogenous levels of plant hormones in the growth and development of shoots in etiolated Alaska pea and etiolated Golden Cross Bantam maize seedlings under different gravities were investigated in the "Auxin Transport" experiment aboard the International Space Station (ISS). Comprehensive analyses of 31 species of plant hormones of pea and maize seedlings grown under microgravity (μg) in space and 1 g conditions were conducted. Principal component analysis (PCA) and a multiple regression analysis with the dataset from the plant hormone analysis of the etiolated pea seedlings grown under μg and 1 g conditions in the presence and absence of 2,3,5-triiodobenzoic acid (TIBA) revealed endogenous levels of auxin correlated positively with bending and length of epicotyls. Endogenous cytokinins correlated negatively with them. These results suggest an interaction of auxin and cytokinins in automorphogenesis and growth inhibition of etiolated Alaska pea epicotyls grown under μg conditions in space. Less polar auxin transport with reduced endogenous levels of auxin increased endogenous levels of cytokinins, resulting in changing the growth direction of epicotyls and inhibiting growth. On the other hand, almost no close relationship between endogenous plant hormone levels and growth and development in etiolated maize seedlings grown was observed under μg conditions in space, as per Schulze et al. (1992). However, endogenous levels of IAA in the seedlings grown under μg conditions in space were significantly higher than those grown on Earth, similar to the cases of polar auxin transport already reported.
Collapse
Affiliation(s)
- Chiaki Yamazaki
- Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan.
| | - Tomokazu Yamazaki
- Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan.
| | - Mikiko Kojima
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science (CSRS), Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Yumiko Takebayashi
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science (CSRS), Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Hitoshi Sakakibara
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science (CSRS), Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Eiji Uheda
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Mariko Oka
- Faculty of Agriculture, Tottori University, 4-101 Koyamacho-minami, Tottori 680-8553, Japan.
| | - Motoshi Kamada
- Future Development Division, Advanced Engineering Services Co., Ltd., 1-6-1 Takezono, Tsukuba, Ibaraki 305-0032, Japan.
| | - Toru Shimazu
- Technology and Research Promotion Department, Japan Space Forum, Shin-Otemachi Bldg. 7F, 2-2-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| | - Haruo Kasahara
- Utilization Engineering Department, Japan Manned Space System Corporation, Space Station Test Building, Tsukuba Space Center, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan.
| | - Hiromi Sano
- Utilization Engineering Department, Japan Manned Space System Corporation, Space Station Test Building, Tsukuba Space Center, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan.
| | - Tomomi Suzuki
- Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan.
| | - Akira Higashibata
- Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan.
| | - Kensuke Miyamoto
- Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Junichi Ueda
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
2
|
Abstract
Gravity determines shape of body tissue and affects the functions of life, both in plants and animals. The cellular response to gravity is an active process of mechanotransduction. Although plants and animals share some common mechanisms of gravity sensing in spite of their distant phylogenetic origin, each species has its own mechanism to sense and respond to gravity. In this review, we discuss current understanding regarding the mechanisms of cellular gravity sensing in plants and animals. Understanding gravisensing also contributes to life on Earth, e.g., understanding osteoporosis and muscle atrophy. Furthermore, in the current age of Mars exploration, understanding cellular responses to gravity will form the foundation of living in space.
Collapse
|
3
|
Sathasivam M, Hosamani R, K Swamy B, Kumaran G S. Plant responses to real and simulated microgravity. LIFE SCIENCES IN SPACE RESEARCH 2021; 28:74-86. [PMID: 33612182 DOI: 10.1016/j.lssr.2020.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/22/2020] [Accepted: 10/07/2020] [Indexed: 06/12/2023]
Abstract
Plant biology experiments in real and simulated microgravity have significantly contributed to our understanding of physiology and behavior of plants. How do plants perceive microgravity? How that perception translates into stimulus? And in turn plant's response and adaptation to microgravity through physiological, cellular, and molecular changes have been reasonably well documented in the literature. Knowledge gained through these plant biology experiments in microgravity helped to successfully cultivate crops in space. For instance, salad crop such as red romaine lettuce grown on the International Space Station (ISS) is allowed to incorporate into the crew's supplementary diet. However, the use of plants as a sustainable bio-regenerative life support system (BLSS) to produce fresh food and O2, reduce CO2 level, recycle metabolic waste, and efficient water management for long-duration space exploration missions requires critical gap filling research. Hence, it is inevitable to reflect and review plant biology microgravity research findings time and again with a new set of data available in the literature. With that in focus, the current article discusses phenotypic, physiological, biochemical, cell cycle, cell wall changes and molecular responses of plants to microgravity both in real and simulated conditions with the latest literature.
Collapse
Affiliation(s)
- Malarvizhi Sathasivam
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, Karnataka, 580005, India
| | - Ravikumar Hosamani
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, Karnataka, 580005, India.
| | - Basavalingayya K Swamy
- Institute of Agricultural Biotechnology (IABT), University of Agricultural Sciences, Dharwad, Karnataka, 580005, India
| | | |
Collapse
|
4
|
Oka M, Kamada M, Inoue R, Miyamoto K, Uheda E, Yamazaki C, Shimazu T, Sano H, Kasahara H, Suzuki T, Higashibata A, Ueda J. Altered localisation of ZmPIN1a proteins in plasma membranes responsible for enhanced-polar auxin transport in etiolated maize seedlings under microgravity conditions in space. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:1062-1072. [PMID: 32635987 DOI: 10.1071/fp20133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
In the International Space Station experiment 'Auxin Transport', polar auxin transport (PAT) in shoots of etiolated maize (Zea mays L. cv. Golden Cross Bantam) grown under microgravity in space was substantially enhanced compared with those grown on Earth. To clarify the mechanism, the effects of microgravity on expression of ZmPIN1a encoding essential auxin efflux carrier and cellular localisation of its products were investigated. The amounts of ZmPIN1a mRNA in the coleoptiles and the mesocotyls in space-grown seedlings were almost the same as those in 1 g-grown seedlings, but its products were not. Immunohistochemical analysis with anti-ZmPIN1a antibody revealed a majority of ZmPIN1a localised in the basal side of plasma membranes of endodermal cells in the coleoptiles and the mesocotyls, and in the basal and lateral sides of plasma membranes in coleoptile parenchymatous cells, in which it directed towards the radial direction, but not towards the vascular bundle direction. Microgravity dramatically altered ZmPIN1a localisation in plasma membranes in coleoptile parenchymatous cells, shifting mainly towards the vascular bundle direction. These results suggest that mechanism of microgravity-enhanced PAT in maize shoots is more likely to be due to the enhanced ZmPIN1a accumulation and the altered ZmPIN1a localisation in parenchymatous cells of the coleoptiles.
Collapse
Affiliation(s)
- Mariko Oka
- Faculty of Agriculture, Tottori University, 4-101 Koyamacho-minami, Tottori 680-8553, Japan; and Corresponding authors. ;
| | - Motoshi Kamada
- Future Development Division, Advanced Engineering Services Co., Ltd, 1-6-1 Takezono, Tsukuba, Ibaraki 305-0032, Japan
| | - Riko Inoue
- Faculty of Agriculture, Tottori University, 4-101 Koyamacho-minami, Tottori 680-8553, Japan
| | - Kensuke Miyamoto
- Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Eiji Uheda
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Chiaki Yamazaki
- JEM Mission Operations and Integration Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Toru Shimazu
- Technology and Research Promotion Department, Japan Space Forum, Shin-Otemachi Bldg., 2-2-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Hiromi Sano
- Utilization Engineering Department, Japan Manned Space Systems Corporation, Space Station Test Building, Tsukuba Space Center, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Haruo Kasahara
- Kibo Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Tomomi Suzuki
- Kibo Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Akira Higashibata
- Kibo Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Junichi Ueda
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan; and Corresponding authors. ;
| |
Collapse
|
5
|
Kamada M, Oka M, Miyamoto K, Uheda E, Yamazaki C, Shimazu T, Sano H, Kasahara H, Suzuki T, Higashibata A, Ueda J. Microarray profile of gene expression in etiolated Pisum sativum seedlings grown under microgravity conditions in space: Relevance to the International Space Station experiment "Auxin Transport". LIFE SCIENCES IN SPACE RESEARCH 2020; 26:55-61. [PMID: 32718687 DOI: 10.1016/j.lssr.2020.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/22/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
This paper introduces the use of microarray data technology with Medicago (Medicago truncatula) microarrays to characterize global changes in the transcript abundance of etiolated Alaska pea (Pisum sativum L.) seedlings grown under microgravity (µg) conditions in comparison with those under artificial 1 g conditions on the International Space Station. Of the 44,000 genes of the Medicago microarray platform, more than 25,000 transcripts of pea seedlings were hybridized, suggesting that the microarray platform for Medicago could be useful in the study of gene expression of etiolated pea seedlings grown under µg conditions in space. Gene array data were analyzed according to stringent criteria that restricted the scored genes for specific hybridization values at least twofold. Expression of 1362 and 1558 genes in proximal side (the proximal side) and distal side of the epicotyl to the cotyledons (the distal side), respectively, were highly affected by µg conditions in space. Of the genes analyzed, 407 of 1362 transcripts in the proximal side and 740 of 1558 transcripts in the distal side were expressed at ratios at least twofold. However, in the presence of the auxin transport inhibitor TIBA, 212 of 399 transcripts and 255 of 477 transcripts were expressed at ratios at least twofold as high in the proximal and the distal sides of epicotyls in the seedlings grown under µg conditions, respectively. Based on Venn diagram analysis, 31 transcripts and 24 transcripts were found to commonly increase and decrease, respectively, under µg conditions in space. Venn analysis revealed six auxin-related genes and three water channel AQUAPORIN genes that were responsive to gravity. Among 6 auxin-related genes, the accumulation of transcripts of Auxin-induced protein 5NG4 and Indole-3-acetic acid-amido synthetase GH3.3 tended to increase, and that of Auxin-induced protein, Auxin response factor, SAUR-like auxin-responsive family protein and Auxin response factor tended to decrease under µg conditions, whereas there were no statistic differences between under µg and artificial 1 g conditions. Similarly there were no statistic differences between under µg conditions and artificial 1 g, but the accumulation of NIP3-1 and Plasma membrane intrinsic protein11, and AQUAPORIN1/Tonoplast intrinsic protein tended to increase and decrease, respectively. A possible role of auxin-related genes and AQUAPORIN genes in regulating growth of etiolated pea seedlings grown under µg conditions in space is discussed.
Collapse
Affiliation(s)
- Motoshi Kamada
- Future Development Division, Advanced Engineering Services Co., Ltd., 1-6-1 Takezono, Tsukuba, Ibaraki 305-0032, Japan.
| | - Mariko Oka
- Faculty of Agriculture, Tottori University, 4-101 Koyamacho-minami, Tottori 680-8553, Japan
| | - Kensuke Miyamoto
- Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Eiji Uheda
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Chiaki Yamazaki
- JEM Mission Operations and Integration Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Toru Shimazu
- Technology and Research Promotion Department, Japan Space Forum, Shin-Otemachi Bldg., 2-2-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Hiromi Sano
- Utilization Engineering Department, Japan Manned Space System Corporation, Space Station Test Building, Tsukuba Space Center, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Haruo Kasahara
- Kibo Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Tomomi Suzuki
- Kibo Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Akira Higashibata
- Kibo Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Junichi Ueda
- Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|