1
|
Wesolowski R, Fish BL, Eibl M, Bähr S, Mehta SM, Czajkowski MT, Gasperetti T, Orschell CM, Asang C, Singh N, Himburg HA, Pleimes D. IEPA, a novel radiation countermeasure, alleviates acute radiation syndrome in rodents. Int J Radiat Biol 2024; 101:1-14. [PMID: 39531584 PMCID: PMC11698650 DOI: 10.1080/09553002.2024.2425312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/12/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Repurposing therapeutic agents with existing clinical data is a common strategy for developing radiation countermeasures. IEPA (imidazolyl ethanamide pentandioic acid) is an orally bioavailable small molecule pseudopeptide with myeloprotective properties, a good clinical safety profile, and stable chemical characteristics facilitating stockpiling. Here, we evaluated IEPA's radiomitigative efficacy in the hematopoietic subsyndrome of acute radiation syndrome (H-ARS) using total-body irradiation (TBI) models in C57BL/6J mice and WAG/RijCmcr rats, applying various posology schemes and introducing syringe feeding of the IEPA formulation in the pudding. Additionally, we assessed IEPA in the delayed effects of acute radiation exposure (DEARE) model after partial-body irradiation (PBI) in WAG/RijCmcr rats. Endpoints included survival, body weight, hematology, and pulmonary parameters, depending on the model. Results from mouse and rat TBI models demonstrated survival improvements with repeated IEPA dosing at 10 mg/kg, with the largest benefits observed in the bi-daily (BID) treatment over the 30-day ARS phase in female rats. Survival across PBI-DEARE subsyndromes was comparable between IEPA and vehicle groups, though IEPA improved pulmonary parameters in female rats during the lung-DEARE phase. Sex-related differences in response to irradiation and IEPA were noted, with females showing a survival advantage. IEPA treatment is compatible with Neulasta® (Pegfilgrastim; PEG-G-CSF); adequately powered studies are needed to confirm the trend toward improved survival over standard care alone. IEPA is a promising development candidate as a medical countermeasure against the effects of acute radiation syndrome. Further confirmatory studies in small and large animal models should validate the robustness and translatability of preliminary rodent data on IEPA's radiomitigative efficacy.
Collapse
Affiliation(s)
| | - Brian L. Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael Eibl
- Myelo Therapeutics GmbH, Rheinsberger Strasse 7, 10115 Berlin, Germany
| | - Stella Bähr
- Myelo Therapeutics GmbH, Rheinsberger Strasse 7, 10115 Berlin, Germany
| | | | | | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christie M. Orschell
- Department of Medicine/Division of Hematology Oncology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Corinna Asang
- Myelo Therapeutics GmbH, Rheinsberger Strasse 7, 10115 Berlin, Germany
| | - Nikita Singh
- Myelo Therapeutics GmbH, Rheinsberger Strasse 7, 10115 Berlin, Germany
| | - Heather A. Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Dirk Pleimes
- Myelo Therapeutics GmbH, Rheinsberger Strasse 7, 10115 Berlin, Germany
| |
Collapse
|
2
|
Dontre AJ. Weighing the impact of microgravity on vestibular and visual functions. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:51-61. [PMID: 38245348 DOI: 10.1016/j.lssr.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/03/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024]
Abstract
Numerous technological challenges have been overcome to realize human space exploration. As mission durations gradually lengthen, the next obstacle is a set of physical limitations. Extended exposure to microgravity poses multiple threats to various bodily systems. Two of these systems are of particular concern for the success of future space missions. The vestibular system includes the otolith organs, which are stimulated in gravity but unloaded in microgravity. This impairs perception, posture, and coordination, all of which are relevant to mission success. Similarly, vision is impaired in many space travelers due to possible intracranial pressure changes or fluid shifts in the brain. As humankind prepares for extended missions to Mars and beyond, it is imperative to compensate for these perils in prolonged weightlessness. Possible countermeasures are considered such as exercise regimens, improved nutrition, and artificial gravity achieved with a centrifuge or spacecraft rotation.
Collapse
Affiliation(s)
- Alexander J Dontre
- School of Psychology, Fielding Graduate University, 2020 De La Vina Street, Santa Barbara, CA 93105, USA; Department of Communications, Behavioral, and Natural Sciences, Franklin University, 201 South Grant Avenue, Columbus, OH 43215, USA.
| |
Collapse
|
3
|
Daniels VR, Williams ES. Exploring the complexities of drug formulation selection, storage, and shelf-life for exploration spaceflight. Br J Clin Pharmacol 2023. [PMID: 37940128 DOI: 10.1111/bcp.15957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
Medications have been a part of space travel dating back to the Apollo missions. Currently, medical kits aboard the International Space Station (ISS) contain medications and supplies to treat a variety of possible medical events. As we prepare for more distant exploration missions to Mars and beyond, risk management planning for astronaut healthcare should include the assembly of a medication formulary that is comprehensive enough to prevent or treat anticipated medical events, remains safe and chemically stable, and retains sufficient potency to last for the duration of the mission. Emerging innovation and technologies in pharmaceutical development, delivery, quality maintenance, and validation offer promise for addressing these challenges. The present editorial will summarize the current state of knowledge regarding innovative formulary optimization strategies, pharmaceutical stability assessment techniques, and storage and packaging solutions that could enhance drug safety and efficacy for future exploration spaceflight missions.
Collapse
|
4
|
Dynan WS, Chang PY, Sishc BJ, Elgart SR. Breaking the limit: Biological countermeasures for space radiation exposure to enable long-duration spaceflight. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:1-3. [PMID: 36336355 DOI: 10.1016/j.lssr.2022.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Concerns over the health effects of space radiation exposure currently limit the duration of deep-space travel. Effective biological countermeasures could allow humanity to break this limit, facilitating human exploration and sustained presence on the Moon, Mars, or elsewhere in the Solar System. In this issue, we present a collection of 20 articles, each providing perspectives or data relevant to the implementation of a countermeasure discovery and development program. Topics include agency and drug developer perspectives, the prospects for repurposing of existing drugs or other agents, and the potential for adoption of new technologies, high-throughput screening, novel animal or microphysiological models, and alternative ground-based radiation sources. Long-term goals of a countermeasures program include reduction in the risk of radiation-exposure induced cancer death to an acceptable level and reduction in risks to the brain, cardiovascular system, and other organs.
Collapse
Affiliation(s)
- William S Dynan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States.
| | - Polly Y Chang
- SRI International, Biosciences Division, Menlo Park, CA, United States
| | | | | |
Collapse
|