1
|
Chaudhary M, Sharma P, Mukherjee TK. Applications of CRISPR/Cas technology against drug-resistant lung cancers: an update. Mol Biol Rep 2022; 49:11491-11502. [PMID: 36097111 DOI: 10.1007/s11033-022-07766-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/01/2022] [Indexed: 12/24/2022]
Abstract
Out of all the cancer types, the most prevalent one is lung cancer. Multiple genes and signaling pathways play role in the progression of lung cancer. Considering the wider prevalence and fatality of lung cancer it has become the focus of current cancer research. Though currently used approaches have shown positive results against lung cancer but success against non-small cell lung cancer (NSCLC) still looms as an enigma for the entire research fraternity. The development of resistance against inhibitors within a short span is one of the reasons responsible for the failure and relapse of lung cancer. Under these prevailing conditions genome/gene-editing technology using clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR associated proteins (Cas), popularly known as CRISPR/Cas technology offers a convenient and flexible method for inducing precise changes within the lung cancer cell. Additionally, CRISPR-barcoding and CRISPR knockout screens at the genome-wide level can help in the functional investigation of specific mutations and identification of novel cancer drivers respectively. Several variants of the CRISPR/Cas system are being developed to limit off-targeting with enhanced precision. The present review article updates the usefulness of CRISPR/Cas technology against various types of lung cancers.
Collapse
Affiliation(s)
- Mayank Chaudhary
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Pooja Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Tapan Kumar Mukherjee
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India.
| |
Collapse
|
2
|
Asano T, Ohishi T, Takei J, Nakamura T, Nanamiya R, Hosono H, Tanaka T, Sano M, Harada H, Kawada M, Kaneko MK, Kato Y. Anti‑HER3 monoclonal antibody exerts antitumor activity in a mouse model of colorectal adenocarcinoma. Oncol Rep 2021; 46:173. [PMID: 34184091 PMCID: PMC8261196 DOI: 10.3892/or.2021.8124] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/21/2021] [Indexed: 01/10/2023] Open
Abstract
HER3 belongs to the epidermal growth factor receptor (EGFR) family and is known to form an active heterodimer with other three family members EGFR, HER2, and HER4. HER3 is overexpressed in lung, breast, colon, prostate, and gastric cancers. In the present study, we developed and validated an anti-HER3 monoclonal antibody (mAb), H3Mab-17 (IgG2a, kappa), by immunizing mice with HER3-overexpressed CHO-K1 cells (CHO/HER3). H3Mab-17 was found to react specifically with endogenous HER3 in colorectal carcinoma cell lines, using flow cytometry. The KD for H3Mab-17 in CHO/HER3 and Caco-2 (a colon cancer cell line) were determined to be 3.0×10−9 M and 1.5×10−9 M via flow cytometry, respectively, suggesting high binding affinity of H3Mab-17 to HER3. Then, we assessed the H3Mab-17 antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against Caco-2, and evaluated its antitumor capacity in a Caco-2 ×enograft model. In vitro experiments revealed H3Mab-17 had strongly induced both ADCC and CDC against Caco-2 cells. In vivo experiments on Caco-2 ×enografts revealed that H3Mab-17 treatment significantly reduced tumor growth compared with the control mouse IgG. These data indicated that H3Mab-17 could be a promising treatment option for HER3-expressing colon cancers.
Collapse
Affiliation(s)
- Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu‑shi, Shizuoka 410‑0301, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Hideki Hosono
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo‑ku, Tokyo 113‑8510, Japan
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu‑shi, Shizuoka 410‑0301, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan
| |
Collapse
|
3
|
Manickavasagar T, Yuan W, Carreira S, Gurel B, Miranda S, Ferreira A, Crespo M, Riisnaes R, Baker C, O'Brien M, Bhosle J, Popat S, Banerji U, Lopez J, de Bono J, Minchom A. HER3 expression and MEK activation in non-small-cell lung carcinoma. Lung Cancer Manag 2021; 10:LMT48. [PMID: 34084213 PMCID: PMC8162178 DOI: 10.2217/lmt-2020-0031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We explore HER3 expression in lung adenocarcinoma (adeno-NSCLC) and identify potential mechanisms of HER3 expression. Materials & methods: Tumor samples from 45 patients with adeno-NSCLC were analyzed. HER3 and HER2 expression were identified using immunohistochemistry and bioinformatic interrogation of The Cancer Genome Atlas (TCGA). Results: HER3 was highly expressed in 42.2% of cases. ERBB3 copy number did not account for HER3 overexpression. Bioinformatic analysis of TCGA demonstrated that MEK activity score (a surrogate of functional signaling) did not correlate with HER3 ligands. ERBB3 RNA expression levels were significantly correlated with MEK activity after adjusting for EGFR expression. Conclusion: HER3 expression is common and is a potential therapeutic target by virtue of frequent overexpression and functional downstream signaling. HER3 expression is common in adeno-NSCLC and is a potential therapeutic target by virtue of frequent overexpression and functional downstream signaling.
Collapse
Affiliation(s)
| | - Wei Yuan
- Drug Development Unit, Royal Marsden Hospital, Downs Road, Sutton, London, SM2 5PT, UK
| | - Suzanne Carreira
- Drug Development Unit, Royal Marsden Hospital, Downs Road, Sutton, London, SM2 5PT, UK
| | - Bora Gurel
- Drug Development Unit, Royal Marsden Hospital, Downs Road, Sutton, London, SM2 5PT, UK
| | - Susana Miranda
- Drug Development Unit, Royal Marsden Hospital, Downs Road, Sutton, London, SM2 5PT, UK
| | - Ana Ferreira
- Drug Development Unit, Royal Marsden Hospital, Downs Road, Sutton, London, SM2 5PT, UK
| | - Mateus Crespo
- Drug Development Unit, Royal Marsden Hospital, Downs Road, Sutton, London, SM2 5PT, UK
| | - Ruth Riisnaes
- Drug Development Unit, Royal Marsden Hospital, Downs Road, Sutton, London, SM2 5PT, UK
| | - Chloe Baker
- Drug Development Unit, Royal Marsden Hospital, Downs Road, Sutton, London, SM2 5PT, UK
| | - Mary O'Brien
- Lung Unit, Royal Marsden Hospital, Sutton, SM2 5PT, UK
| | | | - Sanjay Popat
- Lung Unit, Royal Marsden Hospital, Fulham Road, London, SW3 6JJ, UK
| | - Udai Banerji
- Drug Development Unit, Royal Marsden Hospital, Downs Road, Sutton, London, SM2 5PT, UK
| | - Juanita Lopez
- Drug Development Unit, Royal Marsden Hospital, Downs Road, Sutton, London, SM2 5PT, UK
| | - Johann de Bono
- Drug Development Unit, Royal Marsden Hospital, Downs Road, Sutton, London, SM2 5PT, UK
| | - Anna Minchom
- Drug Development Unit, Royal Marsden Hospital, Downs Road, Sutton, London, SM2 5PT, UK.,Lung Unit, Royal Marsden Hospital, Sutton, SM2 5PT, UK
| |
Collapse
|
4
|
Jiang C, Lin X, Zhao Z. Applications of CRISPR/Cas9 Technology in the Treatment of Lung Cancer. Trends Mol Med 2019; 25:1039-1049. [DOI: 10.1016/j.molmed.2019.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/12/2019] [Accepted: 07/22/2019] [Indexed: 12/18/2022]
|
5
|
Nadeem Abbas M, Kausar S, Wang F, Zhao Y, Cui H. Advances in Targeting the Epidermal Growth Factor Receptor Pathway by Synthetic Products and Its Regulation by Epigenetic Modulators As a Therapy for Glioblastoma. Cells 2019; 8:cells8040350. [PMID: 31013819 PMCID: PMC6523687 DOI: 10.3390/cells8040350] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023] Open
Abstract
Glioma is the most common primary tumor of the nervous system, and approximately 50% of patients exhibit the most aggressive form of the cancer, glioblastoma. The biological function of epidermal growth factor receptor (EGFR) in tumorigenesis and progression has been established in various types of cancers, since it is overexpressed, mutated, or dysregulated. Its overexpression has been shown to be associated with enhanced metastatic potential in glioblastoma, with EGFR at the top of a downstream signaling cascade that controls basic functional properties of glioblastoma cells such as survival, cell proliferation, and migration. Thus, EGFR is considered as an important therapeutic target in glioblastoma. Many anti-EGFR therapies have been investigated both in vivo and in vitro, making their way to clinical studies. However, in clinical trials, the potential efficacy of anti-EGFR therapies is low, primarily because of chemoresistance. Currently, a range of epigenetic drugs including histone deacetylase (HDAC) inhibitors, DNA methylation and histone inhibitors, microRNA, and different types of EGFR inhibitor molecules are being actively investigated in glioblastoma patients as therapeutic strategies. Here, we describe recent knowledge on the signaling pathways mediated by EGFR/EGFR variant III (EGFRvIII) with regard to current therapeutic strategies to target EGFR/EGFRvIII amplified glioblastoma.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China.
- Cancer center, Medical Research Institute, Southwest University, Chongqing 400715, China.
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China.
- Cancer center, Medical Research Institute, Southwest University, Chongqing 400715, China.
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China.
- Cancer center, Medical Research Institute, Southwest University, Chongqing 400715, China.
| | - Yongju Zhao
- College of Animal and Technology, Southwest University, Chongqing 400715, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China.
- Cancer center, Medical Research Institute, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Ligand-Based Pharmacophore Screening Strategy: a Pragmatic Approach for Targeting HER Proteins. Appl Biochem Biotechnol 2018; 186:85-108. [PMID: 29508211 DOI: 10.1007/s12010-018-2724-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
Targeting ErbB family of receptors is an important therapeutic option, because of its essential role in the broad spectrum of human cancers, including non-small cell lung cancer (NSCLC). Therefore, in the present work, considerable effort has been made to develop an inhibitor against HER family proteins, by combining the use of pharmacophore modelling, docking scoring functions, and ADME property analysis. Initially, a five-point pharmacophore model was developed using known HER family inhibitors. The generated model was then used as a query to screen a total of 468,880 compounds of three databases namely ZINC, ASINEX, and DrugBank. Subsequently, docking analysis was carried out to obtain hit molecules that could inhibit the HER receptors. Further, analysis of GLIDE scores and ADME properties resulted in one hit namely BAS01025917 with higher glide scores, increased CNS involvement, and good pharmaceutically relevant properties than reference ligand, afatinib. Furthermore, the inhibitory activity of the lead compounds was validated by performing molecular dynamic simulations. Of note, BAS01025917 was found to possess scaffolds with a broad spectrum of antitumor activity. We believe that this novel hit molecule can be further exploited for the development of a pan-HER inhibitor with low toxicity and greater potential.
Collapse
|
7
|
Abstract
The therapeutic landscape of non-small-cell lung cancer (NSCLC) has dramatically changed in the last few years with the introduction of molecularly targeted agents, leading to unprecedented results in lung tumors with a paradigmatic shift from a "one size fits all" approach to an histologic and molecular-based approach. The discovery of epidermal growth factor receptor (EGFR) mutations in NSCLC in 2004 and the marked response to the EGFR tyrosine kinase inhibitor gefitinib, in a small subset of patients harboring these genetic abnormalities, stimulated the study of other kinase mutants involvement in NSCLC. The incredible story of ALK rearranged tumors, with the rapid Food and Drug Administration approval of Crizotinib after only 4 years from the discovery of EML4-ALK translocation in NSCLC, has profoundly influenced the concept of drug development in NSCLC, paving the way to a novel series of molecularly selected studies with specific inhibitors. The identification of these oncogenic drivers has dramatically changed the genetic landscape of NSCLC moving away from the old concept of a large indistinct histological entity to a combination of rare clinically relevant molecular subsets. Recently, a renewed interest has been emerging on the human epidermal growth factor-2 (HER2) pathway. Genetic aberrations of this signaling pathway have been reported over time to be associated in NSCLC with different sensitivity to the EGFR tyrosine kinase inhibitors, to have a possible prognostic role and more recently HER2 amplification has been emerged as a possible mechanism in EGFR-mutated tumors of acquired resistance to the EGFR tyrosine kinase inhibitors. In addition, dysregulation of the HER2 pathway, in particular HER2 mutations (mostly, in-frame exon 20 insertions), may represent a possible novel therapeutic target in NSCLC, paving the way for a new generation of targeted agents in NSCLC. Since anecdotal case reports of clinical activity of anti-HER2 agents in NSCLC patients with HER2 mutations, several targeted agents have been evaluated in HER2-mutated patients, generating a growing interest upon this oncogenic driver, leading to the design of molecularly selected trials with anti-HER2 compounds and the rediscover of hastily thrown out drugs, such as neratinib. The aim of this article is to provide an overview of the role of HER2 dysregulation in NSCLCs, trying to throw a light not only on the strengths but also the weaknesses of the studies conducted so far. It is a long way to the clinical implementation of these biomarkers and probably the increasing use of next generation sequencing techniques, the creation of large multi-institutional molecular testing platforms and the design of rationally based trials can get closer personalized medicine in NSCLC.
Collapse
|
8
|
Masroor M, Javid J, Mir R, Y P, A I, Z M, Mohan A, Ray PC, Saxena A. Prognostic significance of serum ERBB3 and ERBB4 mRNA in lung adenocarcinoma patients. Tumour Biol 2015; 37:857-63. [PMID: 26254096 DOI: 10.1007/s13277-015-3859-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/28/2015] [Indexed: 11/29/2022] Open
|
9
|
Ultrasensitive electrochemical detection of cancer associated biomarker HER3 based on anti-HER3 biosensor. Talanta 2014; 120:355-61. [DOI: 10.1016/j.talanta.2013.11.090] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 11/27/2013] [Accepted: 11/30/2013] [Indexed: 11/19/2022]
|
10
|
Co-expression of receptors of the HER family correlates with clinical outcome in non-small cell lung cancer (NSCLC). Virchows Arch 2013; 463:663-71. [PMID: 24013863 DOI: 10.1007/s00428-013-1445-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/02/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
Abstract
HER family receptors play a critical role in lung carcinogenesis. There is a growing body of evidence showing that cooperation between them contributes to a more aggressive tumor phenotype and impacts on their response to targeted therapy. We explored immunohistochemical co-expression of HER family receptors (HER1, HER2, HER3, HER4) and its potential role as prognostic factor in resected non-small cell lung cancer (NSCLC). Expression of HER family receptors was assessed by immunohistochemistry on 125 surgically resected NSCLC. Kaplan-Meier estimates of overall survival (OS), disease-free survival (DFS), and time to recurrence were calculated for clinical variables and HER expression, using the Cox model for multivariate analysis. HER1 and HER3 expression was detected more frequently in squamous cell carcinoma (p = 0.002 and p = <0.001, respectively). HER4 was more often expressed in patients older than 60 years (p = 0.02) and in tumors of low histological grade (p = 0.04). Cases which expressed only HER1 had a worse DFS (p = 0.01) and OS (p = 0.01) compared to cases expressing HER1 and one or more of the other family members and to cases which did not express HER1 but one of the other HERs. By multivariate analysis, stage was an independent prognostic factor for DFS and OS. Furthermore, different patterns of co-expression of HER family receptors showed a statistically significant correlation with a shorter DFS (p = 0.03) and OS (p = 0.02). Our findings suggest that expression of HER1 only is correlated with worse DFS and OS. A better understanding of the functional relationships between these receptors may lead to a useful predictive indicator of response to targeted therapy.
Collapse
|
11
|
Carrión-Salip D, Panosa C, Menendez JA, Puig T, Oliveras G, Pandiella A, De Llorens R, Massaguer A. Androgen-independent prostate cancer cells circumvent EGFR inhibition by overexpression of alternative HER receptors and ligands. Int J Oncol 2012; 41:1128-38. [PMID: 22684500 DOI: 10.3892/ijo.2012.1509] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/04/2012] [Indexed: 11/05/2022] Open
Abstract
The deregulation of the epidermal growth factor receptor (EGFR) pathway plays a major role in the pathogenesis of prostate cancer (PCa). However, therapies targeting EGFR have demonstrated limited effectiveness in PCa. A potential mechanism to overcome EGFR blockade in cancer cells is the autocrine activation of alternative receptors of the human EGFR (HER) family through the overexpression of the HER receptors and ligands. In the present study, we were interested in analyzing if this intrinsic resistance mechanism might contribute to the inefficacy of EGFR inhibitors in PCa. To this end, we selected two androgen-independent human prostate carcinoma cell lines (DU145 and PC3) and established DU145 erlotinib-resistant cells (DUErR). Cells were treated with three EGFR inhibitors (cetuximab, gefinitib and erlotinib) and the sensitivity to each treatment was assessed. The gene expression of the four EGFR/HER receptors and seven ligands of the HER family was analyzed by real-time PCR prior to and after each treatment. The receptors expression and activation were further characterized by flow cytometry and western blot analysis. EGFR inhibition rapidly induced enhanced gene expression of the EGF, betacellulin and neuregulin-1 ligands along with HER2, HER3 and HER4 receptors in the DU145 cells. In contrast, slight changes were observed in the PC3 cells, which are defective in the phosphatase and tensin homolog (PTEN) tumor suppressor gene. In the erlotinib-resistant DUErR cells, the expression of HER2 and HER3 was increased at mRNA and protein levels together with neuregulin-1, leading to enhanced HER3 phosphorylation and the activation of the downstream PI3K/Akt survival pathway. HER3 blockage by a monoclonal antibody restored the cytostatic activity of erlotinib in DUErR cells. Our results confirm that the overexpression and autocrine activation of HER3 play a key role in mediating the resistance to EGFR inhibitors in androgen-independent PCa cells.
Collapse
Affiliation(s)
- Dolors Carrión-Salip
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona 17071, Spain
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Qiao J, Chen W. [Resistant mechanism and treatment strategy of tyrosine kinase inhibitors]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2011; 14:806-10. [PMID: 22008111 PMCID: PMC5999947 DOI: 10.3779/j.issn.1009-3419.2011.10.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jianbing Qiao
- Department of Medical Respiration, Nanjing Chest Hospital, China.
| | | |
Collapse
|
13
|
Clinical significance of epidermal growth factor receptors in non-small cell lung cancer and a prognostic role for HER2 gene copy number in female patients. J Thorac Oncol 2011; 5:1536-43. [PMID: 20802349 DOI: 10.1097/jto.0b013e3181ea510a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION To compare the efficacy of silver in situ hybridization (SISH) and immunohistochemistry (IHC) in detecting HER2 alterations and to investigate the prevalence and prognostic significance of Erb family members in non-small cell lung cancer (NSCLC). METHODS Stage I to IIIA tumors from 335 patients with NSCLC were immunohistochemically tested for protein expression of all Erb family members. Membranous HER2 expression was compared with its gene copy number by SISH in paraffin-embedded, formalin-fixed material. Correlations were made with clinicopathological variables. RESULTS Synchronous high immunohistochemical expression of all Erb family members was seen in 8% of tumor samples. There was a significant correlation between the HER2 gene copy number and HER2 protein expression (p = 0.003). High nuclear HER3 expression correlated significantly with high HER2 gene copy numbers (p = 0.015). In univariate analyses, high HER2 gene copy number was a highly significant negative prognostic indicator for disease-specific survival in women (p = 0.005), whereas it did not show prognostic influence in men (p = 0.9). Neither polysomy of chromosome 17 nor the IHC expression of Erb family member proteins as singles or pairs correlated significantly with survival. In the multivariate analysis, high HER2 gene copy number in tumor epithelial cells (p = 0.03) was an independent prognostic factor for disease-specific survival in female patients. CONCLUSIONS IHC does not consistently identify patients likely to have a poor prognosis, whereas SISH provides superior prognostic information for female patients with NSCLC. High HER2 gene copy number in tumor epithelial cells is an independent predictor of inferior survival in female patients with primary NSCLC.
Collapse
|
14
|
Comparison of EGFR and K-RAS gene status between primary tumours and corresponding metastases in NSCLC. Br J Cancer 2009; 99:923-9. [PMID: 19238633 PMCID: PMC2538768 DOI: 10.1038/sj.bjc.6604629] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In non-small-cell lung cancer (NSCLC), epidermal growth factor receptor (EGFR) and K-RAS mutations of the primary tumour are associated with responsiveness and resistance to tyrosine kinase inhibitors (TKIs), respectively. However, the EGFR and K-RAS mutation status in metastases is not well studied. We compared the mutation status of these genes between the primary tumours and the corresponding metastases of 25 patients. Epidermal growth factor receptor and K-RAS mutation status was different between primary tumours and corresponding metastases in 7 (28%) and 6 (24%) of the 25 patients, respectively. Among the 25 primary tumours, three ‘hotspot’ and two non-classical EGFR mutations were found; none of the corresponding metastases had the same mutation pattern. Among the five (20%) K-RAS mutations detected in the primary tumours, two were maintained in the corresponding metastasis. Epidermal growth factor receptor and K-RAS mutations were detected in the metastatic tumours of three (12%) and five (20%) patients, respectively. The expressions of EGFR and phosphorylated EGFR showed 10 and 50% discordance, in that order. We conclude that there is substantial discordance in EGFR and K-RAS mutational status between the primary tumours and corresponding metastases in patients with NSCLC and this might have therapeutic implications when treatment with TKIs is considered.
Collapse
|
15
|
|
16
|
Shepard HM, Brdlik CM, Schreiber H. Signal integration: a framework for understanding the efficacy of therapeutics targeting the human EGFR family. J Clin Invest 2009; 118:3574-81. [PMID: 18982164 DOI: 10.1172/jci36049] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human EGFR (HER) family is essential for communication between many epithelial cancer cell types and the tumor microenvironment. Therapeutics targeting the HER family have demonstrated clinical success in the treatment of diverse epithelial cancers. Here we propose that the success of HER family-targeted monoclonal antibodies in cancer results from their ability to interfere with HER family consolidation of signals initiated by a multitude of other receptor systems. Ligand/receptor systems that initiate these signals include cytokine receptors, chemokine receptors, TLRs, GPCRs, and integrins. We further extrapolate that improvements in cancer therapeutics targeting the HER family are likely to incorporate mechanisms that block or reverse stromal support of malignant progression by isolating the HER family from autocrine and stromal influences.
Collapse
|
17
|
Jin P, Zhang J, Beryt M, Turin L, Brdlik C, Feng Y, Bai X, Liu J, Jorgensen B, Shepard HM. Rational optimization of a bispecific ligand trap targeting EGF receptor family ligands. Mol Med 2008; 15:11-20. [PMID: 19048033 DOI: 10.2119/molmed.2008.00103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 11/17/2008] [Indexed: 11/06/2022] Open
Abstract
The human epidermal growth factor (EGF) receptor (HER) family members cooperate in malignancy. Of this family, HER2 does not bind growth factors and HER3 does not encode an active tyrosine kinase. This diversity creates difficulty in creating pan-specific therapeutic HER family inhibitors. We have identified single amino acid changes in epidermal growth factor receptor (EGFR) and HER3 which create high affinity sequestration of the cognate ligands, and may be used as receptor decoys to downregulate aberrant HER family activity. In silico modeling and high throughput mutagenesis were utilized to identify receptor mutants with very high ligand binding activity. A single mutation (T15S; EGFR subdomain I) enhanced affinity for EGF (two-fold), TGF-alpha (twenty-six-fold), and heparin-binding (HB)-EGF (six-fold). This indicates that T15 is an important, previously undescribed, negative regulatory amino acid for EGFR ligand binding. Another mutation (Y246A; HER 3 subdomain II) enhanced neuregulin (NRG)1-beta binding eight-fold, probably by interfering with subdomain II-IV interactions. Further work revealed that the HER3 subunit of an EGFR:HER3 heterodimer suppresses EGFR ligand binding. Optimization required reversing this suppression by mutation of the EGFR tether domain (G564A; subdomain IV). This mutation resulted in enhanced ligand binding (EGF, ten-fold; TGF-alpha, thirty-four-fold; HB-EGF, seventeen-fold; NRG1-beta, thirty-one-fold). This increased ligand binding was reflected in improved inhibition of in vitro tumor cell proliferation and tumor suppression in a human non-small cell lung cancer xenograft model. In conclusion, amino acid substitutions were identified in the EGFR and HER3 ECDs that enhance ligand affinity, potentially enabling a pan-specific therapeutic approach for downregulating the HER family in cancer.
Collapse
Affiliation(s)
- Pei Jin
- Receptor BioLogix Inc., Palo Alto, California, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
'Classical' but not 'other' mutations of EGFR kinase domain are associated with clinical outcome in gefitinib-treated patients with non-small cell lung cancer. Br J Cancer 2007; 97:1560-6. [PMID: 18000506 PMCID: PMC2360265 DOI: 10.1038/sj.bjc.6604068] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
‘Classical’ mutations in the EGFR tyrosine kinase domain (exons 18, 19 and 21) have been associated with sensitivity to tyrosine kinase inhibitors (TKIs) in patients with NSCLC. The aim of the current study was to evaluate whether other than the classical G719X, DEL19 and L858R mutations of EGFR confer sensitivity to TKIs. Genomic DNA was extracted from microdissected formalin-fixed paraffin-embedded tumour tissue from 86 patients treated with gefitinib. Exons 18, 19 and 21 were amplified and subjected to direct sequencing. Eleven (13%) patients harboured the classical exon's 18, 19 and 21 mutations, while 14 (16%) had ‘other’ variants. There was a significantly higher percentage of ‘never-smoker’ patients with ‘classical’ EGFR mutations (P=0.002). Among patients with ‘classical’ mutations 3 patients achieved PR and 7 SD, while in the ‘other’ mutations group 10 patients had SD as best response. In the wild-type group, there were 3 patients with PR and 25 with SD. Median TTP was 16, 64 (P=0.002) and 21 weeks and median survival was 36, 78 and 67 weeks for patients with wild-type, ‘classical’ and ‘other’ EGFR mutations, respectively. The clinical relevance of ‘other’ EGFR mutation variants remains uncertain and requires further assessment in a prospective study.
Collapse
|