1
|
Chen Y, Guo W, Guo X, Wanqing Q, Yin Z. The clinical utilization of SNIP1 and its pathophysiological mechanisms in disease. Heliyon 2024; 10:e24601. [PMID: 38304835 PMCID: PMC10831730 DOI: 10.1016/j.heliyon.2024.e24601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Smad intranuclear binding protein 1 (SNIP1), a highly conserved nuclear protein, functions as a transcriptional regulator and exerts a significant influence on disease progression. In addition, the N-terminal domain of SNIP1 facilitates its interaction with Smad4, a signaling protein associated with the TGF-β family, and RelA/p65, a transcription factor connected to NF-κB. This interaction further enhances the transcriptional activation of c-Myc-dependent genes. Presently, the primary emphasis in research is directed towards targeting the catalytic domain of SNIP1, as it holds promise as a potential therapeutic target for various diseases. While the significance of SNIP1 in pathological mechanisms remains uncertain, this review aims to comprehensively examine the existing literature on the association between SNIP1 and proteins implicated in the regulation of diverse clinical conditions, including cancer, inflammation, and related diseases.
Collapse
Affiliation(s)
- Yinzhong Chen
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Orthopedics, the Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, China
| | - Wei Guo
- Department of Medical Imaging, the Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, China
| | - Xiucheng Guo
- Department of Orthopedics, the Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, China
| | - Qiao Wanqing
- Department of Orthopedics, the Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, China
| | - Zongsheng Yin
- Department of Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Matsui Y, Djekidel MN, Lindsay K, Samir P, Connolly N, Wu G, Yang X, Fan Y, Xu B, Peng JC. SNIP1 and PRC2 coordinate cell fates of neural progenitors during brain development. Nat Commun 2023; 14:4754. [PMID: 37553330 PMCID: PMC10409800 DOI: 10.1038/s41467-023-40487-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
Stem cell survival versus death is a developmentally programmed process essential for morphogenesis, sizing, and quality control of genome integrity and cell fates. Cell death is pervasive during development, but its programming is little known. Here, we report that Smad nuclear interacting protein 1 (SNIP1) promotes neural progenitor cell survival and neurogenesis and is, therefore, integral to brain development. The SNIP1-depleted brain exhibits dysplasia with robust induction of caspase 9-dependent apoptosis. Mechanistically, SNIP1 regulates target genes that promote cell survival and neurogenesis, and its activities are influenced by TGFβ and NFκB signaling pathways. Further, SNIP1 facilitates the genomic occupancy of Polycomb complex PRC2 and instructs H3K27me3 turnover at target genes. Depletion of PRC2 is sufficient to reduce apoptosis and brain dysplasia and to partially restore genetic programs in the SNIP1-depleted brain in vivo. These findings suggest a loci-specific regulation of PRC2 and H3K27 marks to toggle cell survival and death in the developing brain.
Collapse
Affiliation(s)
- Yurika Matsui
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Mohamed Nadhir Djekidel
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Katherine Lindsay
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Parimal Samir
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 7, 138E, Galveston, TX, 77550, USA
| | - Nina Connolly
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Xiaoyang Yang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jamy C Peng
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
3
|
Wu J, Han X, Yang X, Li Y, Liang Y, Sun G, Wang R, Wang P, Xie S, Feng J, Sun H. MiR-138-5p suppresses the progression of lung cancer by targeting SNIP1. Thorac Cancer 2023; 14:612-623. [PMID: 36597175 PMCID: PMC9968603 DOI: 10.1111/1759-7714.14791] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play crucial roles in the development of various cancers. Here, we aimed to evaluate the roles of miR-138-5p in lung cancer progression and the value of miR-138-5p in lung cancer diagnosis. METHODS Quantitative real-time PCR was performed to examine the expressions of miR-138-5p and smad nuclear interacting protein 1 (SNIP1) mRNA. The diagnostic value of miR-138-5p was analyzed using receiver operating characteristic (ROC) curve analysis, sensitivity, and specificity. We explored the effect of miR-138-5p on cell proliferation and metastasis by CCK-8, colony formation, wound healing and transwell assays. Western blot was employed to detect the protein expression of SNIP1 and related genes. Lung cancer cell growth was evaluated in vivo using xenograft tumor assay. RESULTS MiR-138-5p was decreased in the serum of patients with non-small cell lung cancer (NSCLC) and in NSCLC cells and tissues. The area under the ROC curve of serum miR-138-5p in the diagnosis of NSCLC was 0.922. This finding indicates the high diagnostic efficiency for lung cancer. MiR-138-5p suppressed but its inhibitor promoted cell proliferation and migration compared with control treatment in vitro and in vivo. MiR-138-5p directly binds to the 3'-untranslated region of SNIP1 and negatively regulated the expression of SNIP1, thereby inhibiting the expression of cyclin D1 and c-Myc. Moreover, overexpression of SNIP1 rescues the miR-138-5p-mediated inhibition in NSCLC cells. CONCLUSIONS The results suggested that miR-138-5p suppressed lung cancer cell proliferation and migration by targeting SNIP1. Serum miR-138-5p is a novel and valuable biomarker for NSCLC diagnosis.
Collapse
Affiliation(s)
- Jiaen Wu
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina,Department of Laboratory MedicineYantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Xuejia Han
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina,Department of Laboratory MedicineYantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Xiancong Yang
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina
| | - Youjie Li
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina
| | - Yan Liang
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina
| | - Guangbin Sun
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina
| | - Ranran Wang
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina
| | - Pingyu Wang
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina
| | - Shuyang Xie
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina
| | - Jiankai Feng
- Department of Laboratory MedicineYantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Hongfang Sun
- Department of Biochemistry and Molecular BiologyBinzhou Medical UniversityYantaiChina
| |
Collapse
|
4
|
Zhu D, Chen J, Hou T. Development and Validation of a Prognostic Model of RNA-Binding Proteins in Colon Adenocarcinoma: A Study Based on TCGA and GEO Databases. Cancer Manag Res 2021; 13:7709-7722. [PMID: 34675667 PMCID: PMC8517423 DOI: 10.2147/cmar.s330434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background Previous studies reported that dysregulation of RNA-binding proteins (RBPs) is significantly associated with the development of cancer. However, there are few studies to date on the role of RBPs in colon adenocarcinoma (COAD). Methods RNA sequencing and clinical data for COAD patients were downloaded from The Cancer Genome Atlas (TCGA) database to identify differentially expressed (DE) RBPs between COAD tissue and normal colon tissue, and then the expression and prognostic significance of these RBPs were investigated in detail by systematic bioinformatics analysis. qRT-PCR was used to validate the expressions of prognosis-related RBP-encoding genes. Results Seven RBPs (RPL10L, ERI1, POP1, CAPRIN2, TDRD7, SNIP1 and PPARGC1A) were identified as hub genes associated with prognosis by a series of regression analyses, and were then used to construct a prognostic model. Further analysis based on this model indicated that the overall survival (OS) of the high-risk groups was lower than that of the low-risk groups. In this prognostic model, the area under the ROC curve (AUC) was 0.694, 0.709 and 0.665 for the TCGA cohort at 1, 3 and 5 years, respectively, while the AUC was 0.671, 0.633 and 0.601 for the GEO combined cohort at 1, 3 and 5 years, respectively, indicating the good predictive ability of the model. We also built a nomogram based on the 7 RBPs in the TCGA cohort, and the model showed good discriminatory ability for COAD. Conclusion We screened seven prognosis-related genes in COAD patients based on RBP-related genes, validated the expressions of the seven prognosis-related RBP-encoding genes by qRT-PCR and constructed a prognosis-related nomogram for patients with COAD.
Collapse
Affiliation(s)
- Dandan Zhu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China.,Department of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Jierong Chen
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Tieying Hou
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China.,Department of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| |
Collapse
|
5
|
Long non-coding RNA AFAP1-AS1 accelerates lung cancer cells migration and invasion by interacting with SNIP1 to upregulate c-Myc. Signal Transduct Target Ther 2021; 6:240. [PMID: 34168109 PMCID: PMC8225811 DOI: 10.1038/s41392-021-00562-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/29/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Actin filament associated protein 1 antisense RNA 1 (named AFAP1-AS1) is a long non-coding RNA and overexpressed in many cancers. This study aimed to identify the role and mechanism of AFAP1-AS1 in lung cancer. The AFAP1-AS1 expression was firstly assessed in 187 paraffin-embedded lung cancer and 36 normal lung epithelial tissues by in situ hybridization. The migration and invasion abilities of AFAP1-AS1 were investigated in lung cancer cells. To uncover the molecular mechanism about AFAP1-AS1 function in lung cancer, we screened proteins that interact with AFAP1-AS1 by RNA pull down and the mass spectrometry analyses. AFAP1-AS1 was highly expressed in lung cancer clinical tissues and its expression was positively correlated with lung cancer patients’ poor prognosis. In vivo experiments confirmed that AFAP1-AS1 could promote lung cancer metastasis. AFAP1-AS1 promoted lung cancer cells migration and invasion through interacting with Smad nuclear interacting protein 1 (named SNIP1), which inhibited ubiquitination and degradation of c-Myc protein. Upregulation of c-Myc molecule in turn promoted the expression of ZEB1, ZEB2, and SNAIL gene, which ultimately enhanced epithelial to mesenchymal transition (EMT) and lung cancer metastasis. Understanding the molecular mechanism by which AFAP1-AS1 promotes lung cancer’s migration and invasion may provide novel therapeutic targets for lung cancer patients’ early diagnosis and therapy.
Collapse
|
6
|
Chen Y, Zhang W, Yan L, Zheng P, Li J. miR-29a-3p directly targets Smad nuclear interacting protein 1 and inhibits the migration and proliferation of cervical cancer HeLa cells. PeerJ 2020; 8:e10148. [PMID: 33150075 PMCID: PMC7583608 DOI: 10.7717/peerj.10148] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022] Open
Abstract
Smad nuclear interacting protein 1 (SNIP1) is a nuclear protein and involved in essential biological processes. MicroRNAs are effective regulators of tumorigenesis and cancer progression via targeting multiple genes. In present study, we aimed to investigate the function of SNIP1 and identify novel miRNA-SNIP1 axis in the development of cervical cancer. The results showed for the first time that silencing of the SNIP1 gene inhibited the migration and proliferation in HeLa cells significantly. Bioinformatics analysis and dual luciferase reporter assay demonstrated that miR-29a-3p could target 3' UTR of SNIP1 directly. The mRNA and protein expression levels of SNIP1 were negative regulated by miR-29a-3p according to the RT-qPCR and Western blot analysis, respectively. Furthermore, functional studies showed that over-expression of miR-29a-3p restrained HeLa cells migration and proliferation, and the mRNA expression of SNIP1 downstream genes (HSP27, c-Myc, and cyclin D1) were down-regulated by miR-29a-3p. Together, we concluded that miR-29a-3p suppressed the migration and proliferation in HeLa cells by directly targeting SNIP1. The newly identified miR-29a-3p/SNIP1 axis could provide new insight into the development of cervical cancer.
Collapse
Affiliation(s)
- Ying Chen
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Weiji Zhang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Lijun Yan
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Peng Zheng
- Institute of Biology and Medicine, College of Life Science and Healthy, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jin Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
7
|
Xie Y, Deng H, Wei R, Sun W, Qi Y, Yao S, Cai L, Wang Y, Deng Z. Overexpression of miR-335 inhibits the migration and invasion of osteosarcoma by targeting SNIP1. Int J Biol Macromol 2019; 133:137-147. [DOI: 10.1016/j.ijbiomac.2019.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 01/14/2023]
|
8
|
Song M, He G, Wang Y, Pang X, Zhang B. Lentivirus-mediated Knockdown of HDAC1 Uncovers Its Role in Esophageal Cancer Metastasis and Chemosensitivity. J Cancer 2016; 7:1694-1700. [PMID: 27698906 PMCID: PMC5039390 DOI: 10.7150/jca.15086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/07/2016] [Indexed: 01/28/2023] Open
Abstract
Histone deacetylationase 1 (HDAC1) is ubiquitously expressed in various cell lines and tissues and play an important role of regulation gene expression. Overexpression of HDAC1 has been observed in various types of cancers, which indicated that it might be a target for cancer therapy. To test HDAC1 inhibition for cancer treatment, the gene expression of HDAC1 was knockdown mediated by a lentivirus system. Our data showed the gene expression of HDAC1 could be efficiently knockdown by RNAi mediated by lentivirus in esophageal carcinoma EC109 cells. Knockdown of HDAC1 led to significant decrease of cell growth and altered cell cycle distribution. The result of transwell assay showed that the numbers of cells travelled through the micropore membrane was significantly decreased as HDAC1 expression was knockdown. Moreover, HDAC1 knockdown inhibited the migration of EC109 cells as determining by scratch test. Additionally, enhancement of cisplatin-stimulated apoptosis was detected by HDAC1 knockdown. Our data suggested inhibition of HDAC1 expression by lentivirus mediated shRNA might be further applied for esophageal cancer chemotherapy.
Collapse
Affiliation(s)
- Min Song
- Department of Medical Genetics, Third Military Medical University; Department of neurology, the second Affiliated Hospital of Chongqing Medical University
| | - Gang He
- Department of Medical Genetics, Third Military Medical University
| | - Yan Wang
- Department of Medical Genetics, Third Military Medical University
| | - Xueli Pang
- Department of oncology, Southwest Hospital, Third Military Medical University
| | - Bo Zhang
- Department of Medical Genetics, Third Military Medical University
| |
Collapse
|
9
|
Burdelski C, Ruge OM, Melling N, Koop C, Simon R, Steurer S, Sauter G, Kluth M, Hube-Magg C, Minner S, Wittmer C, Wilczak W, Hinsch A, Lebok P, Izbicki JR, Heinzer H, Graefen M, Huland H, Schlomm T, Krech T. HDAC1 overexpression independently predicts biochemical recurrence and is associated with rapid tumor cell proliferation and genomic instability in prostate cancer. Exp Mol Pathol 2015; 98:419-26. [DOI: 10.1016/j.yexmp.2015.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 03/16/2015] [Indexed: 10/23/2022]
|