1
|
Frezzetti D, Caridi V, Marra L, Camerlingo R, D’Alessio A, Russo F, Dotolo S, Rachiglio AM, Esposito Abate R, Gallo M, Maiello MR, Morabito A, Normanno N, De Luca A. The Impact of Inadequate Exposure to Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors on the Development of Resistance in Non-Small-Cell Lung Cancer Cells. Int J Mol Sci 2024; 25:4844. [PMID: 38732063 PMCID: PMC11084975 DOI: 10.3390/ijms25094844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancer (NSCLC) patients treated with EGFR-tyrosine kinase inhibitors (TKIs) inevitably develop resistance through several biological mechanisms. However, little is known on the molecular mechanisms underlying acquired resistance to suboptimal EGFR-TKI doses, due to pharmacodynamics leading to inadequate drug exposure. To evaluate the effects of suboptimal EGFR-TKI exposure on resistance in NSCLC, we obtained HCC827 and PC9 cell lines resistant to suboptimal fixed and intermittent doses of gefitinib and compared them to cells exposed to higher doses of the drug. We analyzed the differences in terms of EGFR signaling activation and the expression of epithelial-mesenchymal transition (EMT) markers, whole transcriptomes byRNA sequencing, and cell motility. We observed that the exposure to low doses of gefitinib more frequently induced a partial EMT associated with an induced migratory ability, and an enhanced transcription of cancer stem cell markers, particularly in the HCC827 gefitinib-resistant cells. Finally, the HCC827 gefitinib-resistant cells showed increased secretion of the EMT inducer transforming growth factor (TGF)-β1, whose inhibition was able to partially restore gefitinib sensitivity. These data provide evidence that different levels of exposure to EGFR-TKIs in tumor masses might promote different mechanisms of acquired resistance.
Collapse
Affiliation(s)
- Daniela Frezzetti
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Vincenza Caridi
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Laura Marra
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Rosa Camerlingo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Amelia D’Alessio
- Laboratory of Toxicology Analysis, Department for the Treatment of Addictions, ASL Salerno, 84124 Salerno, Italy;
| | - Francesco Russo
- Institute of Endocrinology and Experimental Oncology, National Research Council of Italy, 80131 Naples, Italy;
| | - Serena Dotolo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Anna Maria Rachiglio
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Riziero Esposito Abate
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Marianna Gallo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Monica Rosaria Maiello
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Alessandro Morabito
- Thoracic Department, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Antonella De Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| |
Collapse
|
2
|
Hu D, Zhou YY, Ma HB, Tao MM, Huang QZ, Yang ZZ, Zhou Q. Efficacy and safety of EGFR-TKIs in combination with angiogenesis inhibitors as first-line therapy for advanced EGFR-mutant non-small-cell lung cancer: a systematic review and meta-analysis. BMC Pulm Med 2023; 23:207. [PMID: 37316870 PMCID: PMC10268338 DOI: 10.1186/s12890-023-02472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/08/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND For patients with advanced non-small-cell lung cancer (NSCLC) with EGFR mutations, the suggested course of action is epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs). Even with a high disease control rate, a majority of patients develop acquired EGFR-TKIs resistance and eventually advance. To increase the benefits of treatment, clinical trials are increasingly exploring the value of EGFR-TKIs combined with angiogenesis inhibitors as a first-line treatment in advanced NSCLC carrying EGFR mutations. METHOD Using PubMed, EMBASE and Cochrane Library, to locate published full-text articles in print or online, a thorough literature search was done from the database's inception to February 2021. Additionally, oral presentation RCTs from ESMO and ASCO were obtained. We sifted out RCTs that used EGFR-TKIs along with angiogenesis inhibitors as first-line therapy for advanced EGFR-mutant NSCLC. ORR, AEs, OS, and PFS were the endpoints. Review Manager version 5.4.1 was used for data analysis. RESULTS One thousand eight hundred twenty-one patients were involved in 9 RCTs. According to the results, combining EGFR-TKIs with angiogenesis inhibitors therapy prolonged PFS of advanced EGFR-mutation NSCLC patients on the whole [HR:0.65 (95%CI: 0.59~0.73, P<0.00001)]. No significant statistical difference was identified between the combination group and single drug group in OS(P=0.20) and ORR (P=0.11). There are more adverse effects when EGFR-TKIs are used in combination with angiogenesis inhibitors than when used alone. CONCLUSION The combination of EGFR-TKIs and angiogenesis inhibitors prolonged PFS in patients with EGFR-mutant advanced NSCLC, but the OS and ORR benefit was not significant, and the risk of adverse events was higher, more pronounced with hypertension and proteinuria; PFS in subgroups suggested that the combination was associated with better PFS in the smoking, liver metastasis, and no brain metastasis groups, and the included studies suggested that the smoking group , liver metastasis group, and brain metastasis group may have a potential OS benefit.
Collapse
Affiliation(s)
- Di Hu
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing University Fuling Hospital, Chongqing, China
| | | | - Hong-Bo Ma
- Chongqing University Fuling Hospital, Chongqing, China
| | - Miao-Miao Tao
- Chongqing University Fuling Hospital, Chongqing, China
| | | | - Zhen-Zhou Yang
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Zhou
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing University Fuling Hospital, Chongqing, China
| |
Collapse
|
3
|
Liu M, Xiao K, Yang L. EGFR inhibitor erlotinib plus monoclonal antibody versus erlotinib alone for first-line treatment of advanced non-small cell lung carcinoma: A systematic review and meta-analysis. Int Immunopharmacol 2023; 119:110001. [PMID: 37075672 DOI: 10.1016/j.intimp.2023.110001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 04/21/2023]
Abstract
PURPOSE Immuno-combination therapy is emerging as an effective treatment for advanced non-small cell lung carcinoma (NSCLC). However, compared to monotherapy, such as monoclonal antibodies or kinase inhibitors, whether combination therapy can enhance antitumor efficacy or alleviate side effects remains unclear. METHODS A systematic literature search was undertaken using the PubMed, Embase, Web of Science and Cochrane Central Register of Controlled Trials databases to identify eligible studies concentrating on treatment with erlotinib or erlotinib plus monoclonal antibodies in NSCLC patients published between January 2017 and June 2022. The primary outcomes included progression-free survival (PFS), overall survival (OS), response rate (RR) and treatment-related adverse events (AEs). RESULTS Seven independent randomized, controlled clinical trials including 1513 patients were obtained for the final analysis. Erlotinib plus monoclonal antibodies was significantly associated with the improvement of PFS (hazards ratio [HR], 0.60; 95% CI 0.53-0.69; z = 7.59, P < 0.01) and with moderate performance regarding OS (HR, 0.81; 95% CI 0.58-1.13; z = 1.23, P = 0.22) and RR (odds ratio [OR], 1.25; 95% CI 0.98-1.59; z = 1.80, P = 0.07), irrespective of EGFR mutation status. In the safety evaluation, erlotinib plus monoclonal antibodies had a markedly higher occurrence of adverse events (AEs) of Clavien grade 3 or higher (OR, 3.32; 95% CI 2.66-4.15; z = 10.64, P < 0.01). CONCLUSION Compared with erlotinib alone, combination therapy (erlotinib plus monoclonal antibodies) was associated with significantly improved PFS in NSCLC therapy, accompanied by increased treatment-related AEs. REGISTRATION Our systematic review protocol was registered in the PROSPERO international register of systematic reviews (CRD42022347667).
Collapse
Affiliation(s)
- Mohan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Kaiwen Xiao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Audit of Molecular Mechanisms of Primary and Secondary Resistance to Various Generations of Tyrosine Kinase Inhibitors in Known Epidermal Growth Factor Receptor-Mutant Non-small Cell Lung Cancer Patients in a Tertiary Centre. Clin Oncol (R Coll Radiol) 2022; 34:e451-e462. [PMID: 35810049 DOI: 10.1016/j.clon.2022.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/30/2022] [Accepted: 06/13/2022] [Indexed: 01/31/2023]
Abstract
AIMS Presently, three generations of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are approved against oncogene addicted EGFR-mutant non-small cell lung cancer (NSCLC). Patients with actionable EGFR mutations invariably develop resistance. This resistance can be intrinsic (primary) or acquired (secondary). MATERIALS AND METHODS This was a retrospective study carried out between January 2016 and April 2021 analysing 486 samples of NSCLC for primary and secondary resistance to first- (erlotinib, gefitinb), second- (afatinib) and/or third-generation (osimertinib) TKIs in EGFR-mutant NSCLCs by next generation sequencing (NGS). Tissue NGS was carried out using the Thermofischer Ion Torrent™ Oncomine™ Focus 52 gene assay; liquid biopsy NGS was carried out using the Oncomine Lung Cell-Free Total Nucleic Acid assay. All cases were previously tested for a single EGFR gene with the Therascreen® EGFR RGQ PCR kit. RESULTS The results were divided into four groups: (i) group 1: primary resistance to first- and/or second-generation TKIs. This group, with 21 cases, showed EGFR exon 20 insertions, dual, complex mutations and variant of unknown significance, de novo MET gene amplification besides other mutations. (ii) Group 2: primary resistance to third-generation TKIs. This group showed two cases, with one showing dual EGFR mutation (L858R and E709A) and EGFR gene amplification. (iii) Group 3: secondary resistance to first- and second-generation TKIs. This group had 27 cases, which were previously reported negative for EGFR T790M by single gene testing. Significant findings were MET gene amplification in four cases, with one also showing MET exon 14 skipping mutation. Three cases showed small cell change and one showed loss of primary mutation. (iv) Group 4: secondary resistance to third-generation TKIs. The latter group was further subgrouped into group 4A: secondary resistance to osimertinib (third-generation TKI) when offered as second-line therapy after first- and second-generation TKIs on detection of T790M mutation. This group had 15 cases. EGFR T790M mutation was lost in 10 (10/15; 67%) cases and was retained in five cases. Patients with T790M loss experienced early resistance (6.9 months versus 12.6 months mean, P = 0.0024) compared with cases that retained T790M. Two cases gained MET amplification as the resistance mechanisms. Other mutations that were found when EGFR T790M was lost were in FGFR3, KRAS, PIK3CA, CTNNB1, BRAF genes. One case had EML4-ALK translocation. Two cases showed driver EGFR deletion 19, retained T790M and C797S mutation in Cis form. Group 4B: secondary resistance to osimertinib (when given as first-line therapy) in EGFR-mutant NSCLC. This group had three cases. The duration of osimertinib treatment ranged from 11 to 17 months. Two patients showed additional C797S mutation along with primary EGFR mutation. CONCLUSION This study shows the wide spectrum of primary and secondary EGFR resistance mechanisms to first, second and third generation of TKIs and helps us to identify newer therapeutic targets that could carry forward the initial advantage offered by EGFR TKIs.
Collapse
|
5
|
Hanke B, Jünger ST, Kirches E, Waldt N, Schreiber J, Lücke E, Franke S, Sandalcioglu IE, Warnke JP, Meisel HJ, Prell J, Scheller C, Braunsdorf WEK, Preusser M, Schildhaus HU, Mawrin C. Frequency of actionable molecular drivers in lung cancer patients with precocious brain metastases. Clin Neurol Neurosurg 2021; 208:106841. [PMID: 34343913 DOI: 10.1016/j.clineuro.2021.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/27/2022]
Abstract
Brain metastases frequently occur during the course of disease in patients suffering from lung cancer. Occasionally, neurological symptoms caused by brain metastases (BM) might represent the first sign of systemic tumor disease (so called precocious metastases), leading to the detection of the primary lung tumor. The biological basis of precocious BM is largely unknown, and treatment options are not well established for this subgroup of patients. Therefore, we retrospectively analyzed 33 patients (24 non-small cell lung cancer (NSCLC)), 9 small cell lung cancer (SCLC)) presenting with precocious BM focusing on molecular alterations potentially relevant for the tumor's biology and treatment. We found five FGFR1 amplifications (4 adenocarcinoma, 1 SCLC) among 31 analyzed patients (16.1%), eight MET amplifications among 30 analyzed tumors (7 NSCLC, 1 SCLC; 26.7%), three EGFR mutations within 33 patients (all adenocarcinomas, 9.1%), and five KRAS mutations among 32 patients (all adenocarcinomas; 15.6%). No ALK, ROS1 or RET gene rearrangements were detected. Our findings suggest that patients with precocious BM of lung cancer harbor EGFR mutations, MET amplifications or FGFR1 amplifications as potential targeted treatment options.
Collapse
Affiliation(s)
- Benjamin Hanke
- Department of Neuropathology, Otto-von-Guericke University Magdeburg, Germany
| | - Stephanie T Jünger
- Centre for Neurosurgery, Department of General Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elmar Kirches
- Department of Neuropathology, Otto-von-Guericke University Magdeburg, Germany
| | - Natalie Waldt
- Department of Neuropathology, Otto-von-Guericke University Magdeburg, Germany
| | - Jens Schreiber
- Department of Pneumonology, Otto-von-Guericke University Magdeburg, Germany
| | - Eva Lücke
- Department of Pneumonology, Otto-von-Guericke University Magdeburg, Germany
| | - Sabine Franke
- Department of Pathology, Otto-von-Guericke University Magdeburg, Germany
| | | | - Jan-Peter Warnke
- Department of Neurosurgery, Paracelsus Hospital Zwickau, Germany
| | - Hans-Jörg Meisel
- Department of Neurosurgery, Bergmannstrost Hospital Halle/Saale, Germany
| | - Julian Prell
- Department of Neurosurgery, University Hospital Halle/Saale, Germany
| | | | | | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Austria
| | | | - Christian Mawrin
- Department of Neuropathology, Otto-von-Guericke University Magdeburg, Germany.
| |
Collapse
|
6
|
Chen F, Chen N, Yu Y, Cui J. Efficacy and Safety of Epidermal Growth Factor Receptor (EGFR) Inhibitors Plus Antiangiogenic Agents as First-Line Treatments for Patients With Advanced EGFR-Mutated Non-small Cell Lung Cancer: A Meta-Analysis. Front Oncol 2020; 10:904. [PMID: 32714857 PMCID: PMC7344312 DOI: 10.3389/fonc.2020.00904] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/11/2020] [Indexed: 01/04/2023] Open
Abstract
Background: Tyrosine kinase inhibitors (TKIs) are standard treatment options for non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations. Increasing clinical investigations have explored the value of EGFR-TKIs plus antiangiogenic drugs as the first-line treatment for EGFR-mutated NSCLC. Methods: We systematically searched PubMed, Cochrane Library, and EMBASE for randomized controlled trials (RCTs) investigating EGFR-TKIs administered with or without antiangiogenic agents for advanced EGFR-mutated NSCLC. The latest RCT that was presented orally at the 2019 European Society for Medical Oncology Congress was obtained online. The endpoints included progression-free survival (PFS), overall survival (OS), objective response rate (ORR), disease control rates (DCRs), and grade 3 or higher adverse events (AEs). Results: We included seven articles on five trials with 1,226 patients. The interventions for the experimental group were the first-generation EGFR-TKI erlotinib combined with bevacizumab (four studies) or ramucirumab (one study), and erlotinib monotherapy (four studies) or erlotinib plus placebo (one study) for the control group. All studies reached their primary study endpoints (i.e., PFS). Compared to erlotinib monotherapy, erlotinib plus antiangiogenic agents remarkably prolonged PFS [hazard ratio (HR) = 0.59, 95% confidence interval (CI) = 0.51-0.69, P = 0.000]; however, ORR, DCR, and OS were similar between the two groups. The overall grade 3-5 AEs increased in combination group (OR = 5.772, 95% CI = 2.38-13.94, P = 0.000), particularly the incidence of diarrhea (OR = 2.51, 95% CI = 1.21-5.23, P = 0.014), acneiform (OR = 1.815, 95% CI = 1.084-3.037, P = 0.023), hypertension (OR = 6.77, 95% CI = 3.62-12.66, P = 0.000), and proteinuria (OR = 13.48, 95% CI = 4.11-44.22, P = 0.000). Additionally, subgroup analysis demonstrated that Asian patients could significantly benefit from combination therapy (HR = 0.59, 95% CI = 0.50-0.69, P = 0.000). Patients with exon 19 deletions (HR = 0.61, 95% CI = 0.49-0.75, P = 0.000) and 21 Leu858Arg mutations (HR = 0.59, 95% CI = 0.47-0.73, P = 0.000) had almost equivalent PFS benefits when treated with double-blocking therapy. Patients with brain metastases at baseline in the combination group had a trend toward better PFS (HR = 0.55, 95% CI = 0.30-1.01, P = 0.001). Conclusions: Erlotinib plus bevacizumab or ramucirumab in EFGR-mutated NSCLC first-line setting yielded remarkable PFS benefits; however, this was accompanied by higher AEs. Epidermal growth factor receptor-TKI plus antiangiogenic agent therapy may be considered a new option for advanced EGFR-mutated NSCLC patients.
Collapse
Affiliation(s)
| | | | | | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Kobayashi N, Hashimoto H, Kamimaki C, Nagasawa R, Tanaka K, Kubo S, Katakura S, Chen H, Hirama N, Ushio R, Aoki A, Nakashima K, Teranishi S, Manabe S, Watanabe H, Horita N, Watanabe K, Hara Y, Yamamoto M, Kudo M, Piao H, Kaneko T. Afatinib + bevacizumab combination therapy in EGFR-mutant NSCLC patients with osimertinib resistance: Protocol of an open-label, phase II, multicenter, single-arm trial. Thorac Cancer 2020; 11:2125-2129. [PMID: 32495514 PMCID: PMC7396380 DOI: 10.1111/1759-7714.13503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 11/26/2022] Open
Abstract
Introduction As most patients with epidermal growth factor receptor (EGFR)‐mutant non‐small cell lung cancer (NSCLC) develop progressive disease after treatment with osimertinib, it is important to develop more effective treatment options. Afatinib has been shown to be more effective in in vitro studies than osimertinib when used in cancer cell lines containing some specific EGFR mutations. Therefore, afatinib may be an effective solution, especially when used in combination with an anti‐VEGF agent such as bevacizumab. Methods A phase II multicenter, open‐label, single‐arm trial has been initiated to evaluate the efficacy and safety of afatinib and bevacizumab combination as salvage therapy for EGFR‐mutated lung cancer in patients previously treated with osimertinib. The primary endpoint will be the objective response rate (ORR) and secondary endpoints are progression‐free survival (PFS), overall survival (OS), disease control rate (DCR), and adverse events (AEs). Discussion A previous study indicated that afatinib inhibits lung cancer cells with specific EGFR mutations more effectively than other EGFR‐TKIs such as osimertinib. Therefore, we expect that combination therapy using afatinib and bevacizumab will be effective in patients previously treated with osimertinib (registration no. jRCTs031190077).
Collapse
Affiliation(s)
- Nobuaki Kobayashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hisashi Hashimoto
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Chisato Kamimaki
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryo Nagasawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Katsushi Tanaka
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sousuke Kubo
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Seigo Katakura
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hao Chen
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuyuki Hirama
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Ryota Ushio
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Ayako Aoki
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kentaro Nakashima
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shuhei Teranishi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Saki Manabe
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Hiroki Watanabe
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuyuki Horita
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keisuke Watanabe
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yu Hara
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masaki Yamamoto
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Makoto Kudo
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Hongmei Piao
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
8
|
Chen Z, Wei J, Ma X, Yu J. Efficacy of EGFR-TKIs with or without angiogenesis inhibitors in advanced non-small-cell lung cancer: A systematic review and meta-analysis. J Cancer 2020; 11:686-695. [PMID: 31942192 PMCID: PMC6959046 DOI: 10.7150/jca.34957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 10/21/2019] [Indexed: 11/07/2022] Open
Abstract
In the present study, we evaluated the efficacy and safety of epidermal growth factor receptor tyrosine kinases (EGFR-TKIs) combined with or without angiogenesis inhibitors in advanced non-small-cell lung cancer (NSCLC). We searched published randomized controlled trials (RCTs) comparing EGFR-TKIs with and without angiogenesis inhibitors for the treatment of advanced NSCLC. PubMed, EMBASE, PMC, the American Society of Clinical Oncology (ASCO) and the European Society of Medical Oncology (ESMO) databases were searched. The extracted data on progression-free survival (PFS) and overall survival (OS) were measured in terms of hazard ratios (HRs) and corresponding 95% confidence intervals (CIs). In addition, odds ratios (ORs) and corresponding 95% CIs were pooled for objective response rate (ORR) and disease control rate (DCR). Risk ratios (RRs) and corresponding 95% CIs were pooled for risk of adverse events (AEs). EGFR-TKIs combined with angiogenesis inhibitors showed significant improvements in PFS (HR 0.72, 95% CI 0.61-0.84, P <0.0001), ORR (OR 1.51, 95% CI 1.17-1.97, P=0.002) and DCR (OR 1.49, 95% CI 1.24-1.81, P<0.0001) compared with EGFR-TKIs combined with placebo. However, EGFR-TKIs combined with angiogenesis inhibitors failed to improve OS (HR 0.94, 95% CI 0.84-1.05, P = 0.26). In addition, diarrhea, hypertension, thrombocytopenia, neutropenia, fatigue, rash, and dermatitis acneiform were significantly increased in patients treated with angiogenesis inhibitors. Thus, EGFR-TKIs combined with angiogenesis inhibitors were superior to EGFR-TKIs alone in advanced NSCLC due to their effects on PFS, ORR and DCR, but the increased incidence of AEs had an influence on the tolerability of this combination therapy.
Collapse
Affiliation(s)
- Zhaoxin Chen
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Jia Wei
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Xiaoting Ma
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Jing Yu
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| |
Collapse
|
9
|
Suda K, Rivard CJ, Mitsudomi T, Hirsch FR. Overcoming resistance to EGFR tyrosine kinase inhibitors in lung cancer, focusing on non-T790M mechanisms. Expert Rev Anticancer Ther 2017; 17:779-786. [PMID: 28701107 DOI: 10.1080/14737140.2017.1355243] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION despite initial dramatic efficacy of EGFR tyrosine kinase inhibitors (TKIs) in EGFR-mutant lung cancer patients, emergence of acquired resistance is almost inevitable. The EGFR T790M secondary mutation that accounts for ~50% of resistance is now treatable with osimertinib. However, for the remaining 50% of patients who develop resistance mechanisms other than T790M mutation, cytotoxic chemotherapies are still the standard of care and novel treatment strategies are urgently needed. Areas covered: In this review, we discuss current experimental and clinical evidence to develop better treatment strategies to overcome or prevent acquired resistance to EGFR-TKIs in lung cancers, focusing on non-T790M mechanisms. Expert commentary: There are numerous non-T790M resistant mechanisms to EGFR-TKIs, and therefore, strategies that can be applied to many of these resistance mechanisms may be reasonable and useful in clinical practice. Although the combination of cytotoxic chemotherapy plus an EGFR-TKI has proved to be detrimental following front-line EGFR-TKI treatment failure, promising experimental and/or early clinical data have been reported for the combination of bevacizumab or anti-EGFR monoclonal antibody plus EGFR-TKIs. Upfront polytherapy, which co-targets potential resistance mechanisms or other important signaling for EGFR-mutant lung cancer cells, is also a promising strategy.
Collapse
Affiliation(s)
- Kenichi Suda
- a Division of Medical Oncology , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,b Division of Thoracic Surgery, Department of Surgery , Kindai University Faculty of Medicine , Osaka-Sayama , JAPAN
| | - Christopher J Rivard
- a Division of Medical Oncology , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Tetsuya Mitsudomi
- b Division of Thoracic Surgery, Department of Surgery , Kindai University Faculty of Medicine , Osaka-Sayama , JAPAN
| | - Fred R Hirsch
- a Division of Medical Oncology , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|
10
|
Yu R, Han L, Ni X, Wang M, Xue P, Zhang L, Yuan M. Kruppel-like factor 4 inhibits non–small cell lung cancer cell growth and aggressiveness by stimulating transforming growth factor-β1-meidated ERK/JNK/NF-κB signaling pathways. Tumour Biol 2017. [PMID: 28631556 DOI: 10.1177/1010428317705574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Renzhi Yu
- Department of Respiratory Medicine, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Lei Han
- Department of Respiratory Medicine, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Xin Ni
- Department of Respiratory Medicine, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Minghuan Wang
- Community Health Service Center, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Ping Xue
- Department of Respiratory Medicine, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Li Zhang
- Department of Respiratory Medicine, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Mei Yuan
- Department of Respiratory Medicine, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, China
| |
Collapse
|
11
|
Low plasma concentration of gefitinib in patients with EGFR exon 21 L858R point mutations shortens progression-free survival. Cancer Chemother Pharmacol 2017; 79:1013-1020. [PMID: 28391354 DOI: 10.1007/s00280-017-3285-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/09/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE The relationship between the pharmacokinetics and effects of gefitinib in patients with epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC) is unknown. In this study, we examined the correlation between gefitinib plasma concentration and progression-free survival (PFS) in patients with two common types of EGFR mutations: a deletion in exon 19 and point mutations in exon 21 L858R. METHODS The retrospective analysis examined 40 patients who were administered 250 mg of gefitinib daily. All patients were diagnosed with and treated for advanced non-small cell lung carcinoma with sensitive EGFR mutations between January 2011 and November 2013 at Akita University Hospital, Akita, Japan. The 40 patients were divided into four groups by trough plasma concentration (high or low) and mutation type (exon 19 deletions or exon 21 L858R point mutations). PFS, response rate, and toxic effects were analyzed in all four groups. RESULTS After excluding 5 patients, the remaining 35 were successfully analyzed. For the patients with exon 19 deletions, there was no significant difference in PFS between the high and low plasma concentration groups (median survival: 12.0 vs. 17.0 months, P = 0.9548). In contrast, the PFS was significantly shorter for patients with exon 21 point mutations and low vs. high concentrations of gefitinib (median survival: 8.0 vs. 16.0 months, P < 0.05). CONCLUSIONS The results suggest that low gefitinib plasma concentrations in patients with exon 21 L858R point mutations may be associated with shorter PFS in NSCLC patients.
Collapse
|
12
|
Down-regulation of miR-214 reverses erlotinib resistance in non-small-cell lung cancer through up-regulating LHX6 expression. Sci Rep 2017; 7:781. [PMID: 28396596 PMCID: PMC5429707 DOI: 10.1038/s41598-017-00901-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/16/2017] [Indexed: 02/06/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are standard treatments for advanced non-small-cell lung cancer (NSCLC) patients. However, acquired resistance to EGFR-TKIs is widely detected across the world, and the exact mechanisms have not been fully demonstrated until now. This study aimed to examine the role of miR-214 in the acquired resistance to erlotinib in NSCLC, and elucidate the underlying mechanisms. qRT-PCR assay detected higher miR-214 expression in the plasma of NSCLC patients with acquired EGFR-TKI resistance than prior to EGFR-TKI therapy, and in the generated erlotinib-resistant HCC827 (HCC827/ER) cells than in HCC827 cells. Bioinformatics analysis and dual-luciferase reporter assay indentified LHX6 as a direct target gene of miR-214, and LHX6 expression was detected to be down-regulated in erlotinib-resistant HCC827 cells. Transwell invasion assay revealed that overexpressing LHX6 reversed the increase in the invasive ability of HCC827 cells induced by miR-214 overexpression, and the CRISPR-Cas9 system-mediated LHX6 knockdown reversed the reduction in the invasion of erlotinib-resistant HCC827 cells caused by miR-214 down-regulation. The results of the present study demonstrate that down-regulation of miR-214 may reverse acquired resistance to erlotinib in NSCLC through mediating its direct target gene LHX6 expression.
Collapse
|
13
|
Primary Double-Strike Therapy for Cancers to Overcome EGFR Kinase Inhibitor Resistance: Proposal from the Bench. J Thorac Oncol 2016; 12:27-35. [PMID: 27642065 DOI: 10.1016/j.jtho.2016.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/07/2016] [Indexed: 01/12/2023]
Abstract
Diverse molecular mechanisms that confer acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) in lung cancers with sensitive EGFR mutations have been reported. However, it is not realistic to analyze for all these mechanisms at the time of resistance in clinical practice and establish adequate treatment targeting these numerous resistance mechanisms. Therefore, we believe that we should move our research focus from the exploration of "established" diverse resistance mechanisms to the elucidation of molecular mechanisms that enable cancer cells to remain alive at the early phase of the treatment. Here in this review, we summarize up-to-date molecular mechanisms that maintain residual tumor cells against EGFR TKI monotherapy in lung cancers with EGFR mutations. We classified these mechanisms into three categories. The first is a preexisting minor subpopulation with a resistance mechanism such as a pretreatment T790M mutation that can be detected by highly sensitivity methods. The second is the reversible drug-tolerant state that is often observed in cell line models and accounts for the lack of complete response and continued survival of cells exposed to EGFR TKIs in patients. And the last is the role of the microenvironment, including survival signaling from fibroblasts or dying cancer cells and the role of poor vascularization. Primary double-strike cancer therapy, or even initial multiple-strike therapy, to cancer cells that cotarget EGFR and survival mechanism(s) simultaneously would be a promising strategy to improve the outcomes of patients with EGFR mutations.
Collapse
|
14
|
Suda K, Murakami I, Yu H, Ellison K, Shimoji M, Genova C, Rivard CJ, Mitsudomi T, Hirsch FR. Heterogeneity of EGFR Aberrations and Correlation with Histological Structures: Analyses of Therapy-Naive Isogenic Lung Cancer Lesions with EGFR Mutation. J Thorac Oncol 2016; 11:1711-7. [PMID: 27257133 DOI: 10.1016/j.jtho.2016.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 01/15/2023]
Abstract
INTRODUCTION EGFR gene somatic mutation is reportedly homogeneous. However, there are few data regarding the heterogeneity of expression of mutant EGFR protein and EGFR gene copy number, especially in extrathoracic lesions. These types of data may enhance our understanding of the biology of EGFR-mutated lung cancer and our understanding of the heterogeneous response patterns to EGFR TKIs. METHODS An 81-year-old never-smoking female with lung adenocarcinoma could not receive any systemic therapy because of her poor performance status. After her death, 15 tumor specimens from different sites were obtained by autopsy. Expression of mutant EGFR protein and EGFR gene copy numbers were assessed by immunohistochemical analysis and by silver in situ hybridization, respectively. Heterogeneity in these EGFR aberrations was compared between metastatic sites (distant versus lymph node) or histological structures (micropapillary versus nonmicropapillary). RESULTS All lesions showed positive staining for mutant EGFR protein, except for 40% of the papillary component in one of the pulmonary metastases (weak staining below the 1+ threshold). Expression of mutant-specific EGFR protein, evaluated by H-score, was significantly higher in the micropapillary components than in the nonmicropapillary components (Mann-Whitney U test, p = 0.014). EGFR gene copy number was quite different between lesions but not correlated with histological structure or metastatic form. However, EGFR gene copy numbers were similar between histological structures in each lesion. CONCLUSION These data indicate that expression of EGFR mutant protein and EGFR gene copy number do not change as a consequence of tumor progression. This also justifies using the biopsy specimens from metastases as a surrogate for primary tumors.
Collapse
Affiliation(s)
- Kenichi Suda
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Division of Thoracic Surgery, Department of Surgery, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Isao Murakami
- Department of Respiratory Medicine, Higashihiroshima Medical Center, Higashihiroshima, Japan
| | - Hui Yu
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kim Ellison
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Masaki Shimoji
- Division of Thoracic Surgery, Department of Surgery, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Carlo Genova
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Christopher J Rivard
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Tetsuya Mitsudomi
- Division of Thoracic Surgery, Department of Surgery, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Fred R Hirsch
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
15
|
Mizuuchi H, Suda K, Murakami I, Sakai K, Sato K, Kobayashi Y, Shimoji M, Chiba M, Sesumi Y, Tomizawa K, Takemoto T, Sekido Y, Nishio K, Mitsudomi T. Oncogene swap as a novel mechanism of acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitor in lung cancer. Cancer Sci 2016; 107:461-8. [PMID: 26845230 PMCID: PMC4832847 DOI: 10.1111/cas.12905] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/28/2016] [Accepted: 01/30/2016] [Indexed: 12/27/2022] Open
Abstract
Mutant selective epidermal growth factor receptor‐tyrosine kinase inhibitors (EGFR‐TKIs), such as rociletinib and AZD9291, are effective for tumors with T790M secondary mutation that become refractory to first‐generation EGFR‐TKI. However, acquired resistance to these prospective drugs is anticipated considering the high adaptability of cancer cells and the mechanisms remain largely obscure. Here, CNX‐2006 (tool compound of rociletinib) resistant sublines were established by chronic exposure of HCC827EPR cells harboring exon 19 deletion and T790M to CNX‐2006. Through the analyses of these resistant subclones, we identified two resistant mechanisms accompanied by MET amplification. One was bypass signaling by MET amplification in addition to T790M, which was inhibited by the combination of CNX‐2006 and MET‐TKI. Another was loss of amplified EGFR mutant allele including T790M while acquiring MET amplification. Interestingly, MET‐TKI alone was able to overcome this resistance, suggesting that oncogenic dependence completely shifted from EGFR to MET. We propose describing this phenomenon as an “oncogene swap.” Furthermore, we analyzed multiple lesions from a patient who died of acquired resistance to gefitinib, then found a clinical example of an oncogene swap in which the EGFR mutation was lost and a MET gene copy was gained. In conclusion, an “oncogene swap” from EGFR to MET is a novel resistant mechanism to the EGFR‐TKI. This novel mechanism should be considered in order to avoid futile inhibition of the original oncogene.
Collapse
Affiliation(s)
- Hiroshi Mizuuchi
- Division of Thoracic Surgery, Department of Surgery, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kenichi Suda
- Division of Thoracic Surgery, Department of Surgery, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
| | - Isao Murakami
- Department of Respiratory Medicine, Higashi-Hiroshima Medical Center, Higashi-Hiroshima, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
| | - Katsuaki Sato
- Division of Thoracic Surgery, Department of Surgery, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
| | - Yoshihisa Kobayashi
- Division of Thoracic Surgery, Department of Surgery, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masaki Shimoji
- Division of Thoracic Surgery, Department of Surgery, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masato Chiba
- Division of Thoracic Surgery, Department of Surgery, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
| | - Yuichi Sesumi
- Division of Thoracic Surgery, Department of Surgery, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kenji Tomizawa
- Division of Thoracic Surgery, Department of Surgery, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
| | - Toshiki Takemoto
- Division of Thoracic Surgery, Department of Surgery, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
| | - Yoshitaka Sekido
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
| | - Tetsuya Mitsudomi
- Division of Thoracic Surgery, Department of Surgery, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
16
|
Epidermal growth factor receptor status and Notch inhibition in non-small cell lung cancer cells. J Biomed Sci 2015; 22:98. [PMID: 26497899 PMCID: PMC4619334 DOI: 10.1186/s12929-015-0196-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/06/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Notch may behave as an oncogene or a tumor suppressor gene in lung cancer cells. Notch receptor undergoes cleavage by enzymes, including γ-secretase, generating the active Notch intracellular domain (NICD). The aim of the present study was to investigate the effect of DAPT, a γ-secretase inhibitor, in non-small cell lung cancer (NSCLC) cells, as well as the impact of epidermal growth factor (EGF) that is over-expressed by NSCLC cells, on Notch signaling. H23, A549, H661 and HCC827 human NSCLC cell lines were used, expressing various NICD and EGF receptor (EGFR) protein levels. RESULTS DAPT decreased the number of H661 cells in a concentration-dependent manner, while it had a small effect on H23 and A549 cells and no effect on HCC827 cells that carry mutated EGFR. Notch inhibition did not affect the stimulatory effect of EGF on cell proliferation, while EGF prevented DAPT-induced NICD decrease in H23 and H661 cells. The type of cell death induced by DAPT seems to depend on the cell type. CONCLUSIONS Our data indicate that inhibition of Notch cleavage may not affect cell number in the presence of EGFR mutations and that EGFR may affect Notch signalling suggesting that a dual inhibition of these pathways might be promising in NSCLC.
Collapse
|
17
|
Furugaki K, Fukumura J, Iwai T, Yorozu K, Kurasawa M, Yanagisawa M, Moriya Y, Yamamoto K, Suda K, Mizuuchi H, Mitsudomi T, Harada N. Impact of bevacizumab in combination with erlotinib on EGFR-mutated non-small cell lung cancer xenograft models with T790M mutation or MET amplification. Int J Cancer 2015; 138:1024-32. [PMID: 26370161 DOI: 10.1002/ijc.29848] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/28/2015] [Indexed: 11/09/2022]
Abstract
Erlotinib (ERL), an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, shows notable efficacy against non-small cell lung cancer (NSCLC) harboring EGFR mutations. Bevacizumab (BEV), a humanized monoclonal antibody to vascular endothelial cell growth factor (VEGF), in combination with ERL (BEV+ERL) significantly extended progression-free survival in patients with EGFR-mutated NSCLC compared with ERL alone. However, the efficacy of BEV+ERL against EGFR-mutated NSCLC harboring T790M mutation or MET amplification, is unclear. Here, we examined the antitumor activity of BEV+ERL in four xenograft models of EGFR-mutated NSCLC (three harboring ERL resistance mutations). In the HCC827 models (exon 19 deletion: DEL), ERL significantly inhibited tumor growth by blocking EGFR signal transduction. Although there was no difference between ERL and BEV+ERL in maximum tumor growth inhibition, BEV+ERL significantly suppressed tumor regrowth during a drug-cessation period. In the HCC827-EPR model (DEL+T790M) and HCC827-vTR model (DEL+MET amplification), ERL reduced EGFR signal transduction and showed less pronounced but still significant tumor growth inhibition than in the HCC827 model. In these models, tumor growth inhibition was significantly stronger with BEV+ERL than with each single agent. In the NCI-H1975 model (L858R+T790M), ERL did not inhibit growth or EGFR signal transduction, and BEV+ERL did not inhibit growth more than BEV. BEV alone significantly decreased microvessel density in each tumor. In conclusion, addition of BEV to ERL did not enhance antitumor activity in primarily ERL-resistant tumors with T790M mutation; however, BEV+ERL enhanced antitumor activity in T790M mutation- or MET amplification-positive tumors as long as their growth remained significantly suppressed by ERL.
Collapse
Affiliation(s)
- Koh Furugaki
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical, Kanagawa, Japan
| | - Junko Fukumura
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical, Kanagawa, Japan
| | - Toshiki Iwai
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical, Kanagawa, Japan
| | - Keigo Yorozu
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical, Kanagawa, Japan
| | - Mitsue Kurasawa
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical, Kanagawa, Japan
| | - Mieko Yanagisawa
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical, Kanagawa, Japan
| | - Yoichiro Moriya
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical, Kanagawa, Japan
| | - Kaname Yamamoto
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical, Kanagawa, Japan
| | - Kenichi Suda
- Division of Thoracic Surgery, Department of Surgery, Kinki University Faculty of Medicine, Osaka, Japan
| | - Hiroshi Mizuuchi
- Division of Thoracic Surgery, Department of Surgery, Kinki University Faculty of Medicine, Osaka, Japan
| | - Tetsuya Mitsudomi
- Division of Thoracic Surgery, Department of Surgery, Kinki University Faculty of Medicine, Osaka, Japan
| | - Naoki Harada
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical, Kanagawa, Japan
| |
Collapse
|
18
|
Mizuuchi H, Suda K, Sato K, Tomida S, Fujita Y, Kobayashi Y, Maehara Y, Sekido Y, Nishio K, Mitsudomi T. Collateral chemoresistance to anti-microtubule agents in a lung cancer cell line with acquired resistance to erlotinib. PLoS One 2015; 10:e0123901. [PMID: 25875914 PMCID: PMC4397071 DOI: 10.1371/journal.pone.0123901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/23/2015] [Indexed: 12/29/2022] Open
Abstract
Various alterations underlying acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have been described. Although treatment strategies specific for these mechanisms are under development, cytotoxic agents are currently employed to treat many patients following failure of EGFR-TKIs. However, the effect of TKI resistance on sensitivity to these cytotoxic agents is mostly unclear. This study investigated the sensitivity of erlotinib-resistant tumor cells to five cytotoxic agents using an in vitro EGFR-TKI-resistant model. Four erlotinib-sensitive lung adenocarcinoma cell lines and their resistant derivatives were tested. Of the resistant cell lines, all but one showed a similar sensitivity to the tested drugs as their parental cells. HCC4006ER cells with epithelial mesenchymal transition features acquired resistance to the three microtubule-targeting agents, docetaxel, paclitaxel and vinorelbine, but not to cisplatin and gemcitabine. Gene expression array and immunoblotting demonstrated that ATP-binding cassette subfamily B, member 1 (ABCB1) was up-regulated in HCC4006ER cells. ABCB1 knockdown by siRNA partially restored sensitivity to the anti-microtubule agents but not to erlotinib. Moreover, the histone deacetylase inhibitor entinostat sensitized HCC4006ER cells to anti-microtubule agents through ABCB1 suppression. Our study indicates that sensitivity of tumor cells to cytotoxic agents in general does not change before and after failure of EGFR-TKIs. However, we describe that two different molecular alterations confer acquired resistance to EGFR-TKIs and cytotoxic agents, respectively. This phenomenon should be kept in mind in selection of subsequent therapy after failure of EGFR-TKIs.
Collapse
Affiliation(s)
- Hiroshi Mizuuchi
- Division of Thoracic Surgery, Department of Surgery, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenichi Suda
- Division of Thoracic Surgery, Department of Surgery, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuaki Sato
- Division of Thoracic Surgery, Department of Surgery, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
| | - Shuta Tomida
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
| | - Yoshihiko Fujita
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
| | - Yoshihisa Kobayashi
- Division of Thoracic Surgery, Department of Surgery, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitaka Sekido
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
| | - Tetsuya Mitsudomi
- Division of Thoracic Surgery, Department of Surgery, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
- * E-mail:
| |
Collapse
|
19
|
Duan X, Shi J. [Advance in microRNAs and EGFR-TKIs secondary resistance research in non-small cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2014; 17:860-4. [PMID: 25539612 PMCID: PMC6000411 DOI: 10.3779/j.issn.1009-3419.2014.12.07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
近年来,在非小细胞肺癌(non-small cell lung cancer, NSCLC)靶向治疗中,尤其是伴有表皮生长因子受体(epidermal growth factor receptor, EGFR)基因突变的患者,EGFR酪氨酸激酶抑制剂(tyrosine kinase inhibitor, TKI)越来越多地进入到临床治疗,但EGFR-TKI耐药的产生不仅影响药物敏感性,甚至出现疾病进展,成为制约其疗效的主要瓶颈。微小RNA(microRNAs, miRNAs)是一种非编码蛋白的RNA,参与转录后水平基因的表达调控,最近研究发现,miRNAs参与了EGFR-TKIs耐药,影响肿瘤细胞对吉非替尼的敏感性。本文就NSCLC中miRNAs与EGFR-TKIs继发性耐药之间的相关性研究进展做简要的综述。
Collapse
Affiliation(s)
- Xiaoyang Duan
- Graduate Student of Hebei Medical University, Shijiazhuang 050000, China
| | - Jian Shi
- Department of Medical Oncology,
Hebei Province Cancer Hospital, Shijiazhuang 050000, China
| |
Collapse
|
20
|
Seto T, Kato T, Nishio M, Goto K, Atagi S, Hosomi Y, Yamamoto N, Hida T, Maemondo M, Nakagawa K, Nagase S, Okamoto I, Yamanaka T, Tajima K, Harada R, Fukuoka M, Yamamoto N. Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (JO25567): an open-label, randomised, multicentre, phase 2 study. Lancet Oncol 2014; 15:1236-44. [PMID: 25175099 DOI: 10.1016/s1470-2045(14)70381-x] [Citation(s) in RCA: 573] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND With use of EGFR tyrosine-kinase inhibitor monotherapy for patients with activating EGFR mutation-positive non-small-cell lung cancer (NSCLC), median progression-free survival has been extended to about 12 months. Nevertheless, new strategies are needed to further extend progression-free survival and overall survival with acceptable toxicity and tolerability for this population. We aimed to compare the efficacy and safety of the combination of erlotinib and bevacizumab compared with erlotinib alone in patients with non-squamous NSCLC with activating EGFR mutation-positive disease. METHODS In this open-label, randomised, multicentre, phase 2 study, patients from 30 centres across Japan with stage IIIB/IV or recurrent non-squamous NSCLC with activating EGFR mutations, Eastern Cooperative Oncology Group performance status 0 or 1, and no previous chemotherapy for advanced disease received erlotinib 150 mg/day plus bevacizumab 15 mg/kg every 3 weeks or erlotinib 150 mg/day monotherapy as a first-line therapy until disease progression or unacceptable toxicity. The primary endpoint was progression-free survival, as determined by an independent review committee. Randomisation was done with a dynamic allocation method, and the analysis used a modified intention-to-treat approach, including all patients who received at least one dose of study treatment and had tumour assessment at least once after randomisation. This study is registered with the Japan Pharmaceutical Information Center, number JapicCTI-111390. FINDINGS Between Feb 21, 2011, and March 5, 2012, 154 patients were enrolled. 77 were randomly assigned to receive erlotinib and bevacizumab and 77 to erlotinib alone, of whom 75 patients in the erlotinib plus bevacizumab group and 77 in the erlotinib alone group were included in the efficacy analyses. Median progression-free survival was 16·0 months (95% CI 13·9-18·1) with erlotinib plus bevacizumab and 9·7 months (5·7-11·1) with erlotinib alone (hazard ratio 0·54, 95% CI 0·36-0·79; log-rank test p=0·0015). The most common grade 3 or worse adverse events were rash (19 [25%] patients in the erlotinib plus bevacizumab group vs 15 [19%] patients in the erlotinib alone group), hypertension (45 [60%] vs eight [10%]), and proteinuria (six [8%] vs none). Serious adverse events occurred at a similar frequency in both groups (18 [24%] patients in the erlotinib plus bevacizumab group and 19 [25%] patients in the erlotinib alone group). INTERPRETATION Erlotinib plus bevacizumab combination could be a new first-line regimen in EGFR mutation-positive NSCLC. Further investigation of the regimen is warranted. FUNDING Chugai Pharmaceutical Co Ltd.
Collapse
Affiliation(s)
| | - Terufumi Kato
- Kanagawa Cardiovascular and Respiratory Center, Kanagawa, Japan
| | - Makoto Nishio
- The Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koichi Goto
- National Cancer Center Hospital East, Chiba, Japan
| | | | - Yukio Hosomi
- Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|