1
|
Wannakul T, Miyazaki H, Maekawa M, Kagawa Y, Yamamoto Y, Owada Y. Loss of fatty acid-binding protein 7 promotes B16F10 melanoma metastasis. Sci Rep 2025; 15:10495. [PMID: 40140427 PMCID: PMC11947267 DOI: 10.1038/s41598-024-80874-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/22/2024] [Indexed: 03/28/2025] Open
Abstract
Melanoma possesses the characteristic phenotypic plasticity, enhancing its metastatic formation and drug resistance. Lipid and fatty acid metabolism are usually altered to support melanoma progression and can be targeted for therapeutic development. Fatty acid binding protein 7 (FABP7) is highly expressed in melanomas and is shown to support its proliferation, migration, and invasion, but the mechanisms remain unclear. Our study aimed to link FABP7 to lipid metabolism and phenotypic shift in melanomas. We established the Fabp7-knockout (KO) B16F10 melanoma cells, which showed an enhanced invasion through matrix-coated membrane, without significant change in proliferation. Similar outcomes were obtained when using RNA interference targeting FABP7. Fabp7-KO cells injected into mice exhibited slower primary tumor growth, but formed higher metastatic foci count in the lungs. We also discovered a higher saturation in overall lipids, phosphatidylcholines, and triacylglycerols. We observed transcriptional shifts toward the invasive MITFLow/AXLHigh phenotype, with upregulation of transforming growth factor-beta (TGF-β) receptor mRNAs. In conclusion, FABP7 may help balancing lipid saturation and maintain the proliferative state of melanomas, mitigating invasiveness and metastatic formation.
Collapse
Affiliation(s)
- Tunyanat Wannakul
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, 9F Building #5, 2-1 Seiryo-Machi, Aoba-ku, Sendai, 980-8575, Japan
- Faculty of Medicine, Khon Kaen University, 123 Nai Muang, Muang, 40002, Khon Kaen, Thailand
| | - Hirofumi Miyazaki
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, 9F Building #5, 2-1 Seiryo-Machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Motoko Maekawa
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, 9F Building #5, 2-1 Seiryo-Machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yoshiteru Kagawa
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, 9F Building #5, 2-1 Seiryo-Machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yui Yamamoto
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, 9F Building #5, 2-1 Seiryo-Machi, Aoba-ku, Sendai, 980-8575, Japan
- Department of Anatomy, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi, 981-8558, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, 9F Building #5, 2-1 Seiryo-Machi, Aoba-ku, Sendai, 980-8575, Japan
| |
Collapse
|
2
|
Song Q, Wu H, Jin Y, Hou J, Liu J, Zhang X, Hu W, Sun G, Zhang Z. Fruquintinib inhibits the migration and invasion of colorectal cancer cells by modulating epithelial-mesenchymal transition via TGF-β/Smad signaling pathway. Front Oncol 2025; 15:1503133. [PMID: 40134588 PMCID: PMC11932892 DOI: 10.3389/fonc.2025.1503133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Background Fruquintinib, a selective vascular endothelial growth factor receptor (VEGFR) inhibitor, has shown considerable efficacy in colorectal cancer (CRC) treatment. Despite its promising therapeutic effects, the precise molecular mechanisms underlying its therapeutic effects remain incompletely understood. In this study, we explored the functional roles and molecular mechanisms of fruquintinib in CRC therapy. Material and methods Human CRC cells (HCT-116 and LOVO) were cultured and treated with fruquintinib. Cell counting kit-8 assay kit (CCK-8) and colony formation assays were performed to investigate the effects of fruquintinib on cell proliferation. Wound healing and transwell assays were conducted to explore the role of fruquintinib on migration and invasion. RNA sequencing and bioinformatics analysis was used to investigate the potential mechanism of fruquintinib in the development of CRC. Western blot was used to measure the protein level. Results Fruquintinib significantly inhibited the proliferation, migration, and invasion of colorectal cancer cells. Bioinformatics analysis indicated that fruquintinib modulated the epithelial-mesenchymal transition (EMT) pathway, and experimental validation confirmed its regulatory effects on core EMT-associated protein biomarkers. Notably, fruquintinib treatment resulted in the upregulation of E-cadherin and the downregulation of N-cadherin, vimentin, and MMP9. Western blot analysis revealed that fruquintinib dose-dependently suppressed SMAD2/3 expression. Notably, treatment with the TGF-β receptor agonist KRFK TFA attenuated fruquintinib's effect, reversing the upregulation of E-cadherin as well as the downregulatin of N-cadherin and SMAD2/3. Additionally, KRFK TFA partially restored CRC cell migration and invasion in transwell assays, counteracting fruquintinib's inhibitory impact. Conclusion These findings indicate that Fruquintinib effectively hampers the migration and invasion of CRC cells by disrupting the EMT process via the TGF-β/Smad signaling pathway. This study sheds light on the mechanisms by which fruquintinib inhibits CRC progression and underscores its potential for further clinical investigation.
Collapse
Affiliation(s)
- Qinqin Song
- Department of Oncology, Hebei Medical University, Shijiazhuang, China
- Affliated Tangshan Gongren Hospital, Hebei Medical University, Tangshan, China
| | - Hongjiao Wu
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Ye Jin
- College of Clinical Medicine, North China University of Science and Technology, Tangshan, China
| | - Junzhi Hou
- Department of Oncology, Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China
| | - Jiawei Liu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xuemei Zhang
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Wanning Hu
- Department of Oncology, Hebei Medical University, Shijiazhuang, China
- Affliated Tangshan Gongren Hospital, Hebei Medical University, Tangshan, China
| | - Guogui Sun
- Department of Hebei Key Laboratory of Medical-Industrial Intergration Precision Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Zhi Zhang
- Department of Oncology, Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
3
|
Bao X, Chen Y, Chang J, Du J, Yang C, Wu Y, Sha Y, Li M, Chen S, Yang M, Liu SB. Machine learning-based bulk RNA analysis reveals a prognostic signature of 13 cell death patterns and potential therapeutic target of SMAD3 in acute myeloid leukemia. BMC Cancer 2025; 25:273. [PMID: 39955536 PMCID: PMC11830216 DOI: 10.1186/s12885-025-13658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Dysregulation or abnormality of the programmed cell death (PCD) pathway is closely related to the occurrence and development of many tumors, including acute myeloid leukemia (AML). Studying the abnormal characteristics of PCD pathway-related molecular markers can provide a basis for prognosis prediction and targeted drug design in AML patients. METHODS A total of 1394 genes representing 13 different PCD pathways were examined in AML patients and healthy donors. The upregulated genes were analyzed for their ability to predict overall survival (OS) individually, and these prognostic genes were subsequently combined to construct a PCD-related prognostic signature via an integrated approach consisting of 101 models based on ten machine learning algorithms. RNA transcriptome and clinical data from multiple AML cohorts (TCGA-AML, GSE106291, GSE146173 and Beat AML) were obtained to develop and validate the AML prognostic model. RESULTS A total of 214 upregulated PCD-related genes were identified in AML patients, 39 of which were proven to be prognostic genes in the training cohort. On the basis of the average C-index and number of model genes identified from the machine learning combinations, a PCD index was developed and validated for predicting AML OS. A prognostic nomogram was then generated and validated on the basis of the PCD index, age and ELN risk stratification in the Beat AML cohort and the GSE146173 cohort, revealing satisfactory predictive power (AUC values ≥ 0.7). With different mutation patterns, a higher PCD index was associated with a worse OS. The PCD index was significantly related to higher scores for immunosuppressive cells and mature leukemia cell subtypes. As the gene most closely related to the PCD index, the expression of SMAD3 was further validated in vitro. AML cells harboring KMT2A rearrangements were more sensitive to the SMAD3 inhibitor SIS3, and the expression of the autophagy-related molecular marker LC3 was increased in KMT2A-rearranged cell lines after SIS3 monotherapy and combined treatment. CONCLUSION The PCD index and SMAD3 gene expression levels have potential prognostic value and can be used in targeted therapy for AML, and these findings can lead to the development of effective strategies for the combined treatment of high-risk AML patients.
Collapse
Affiliation(s)
- Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yao Chen
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China
| | - Jie Chang
- School of Public Health, Medical College of Soochow University, Suzhou, 215123, China
| | - Jiahui Du
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China
| | - Chen Yang
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China
| | - Yijie Wu
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China
| | - Yu Sha
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China
| | - Ming Li
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Minfeng Yang
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong, 226019, China.
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| | - Song-Bai Liu
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China.
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China.
| |
Collapse
|
4
|
Gottumukkala SB, Palanisamy A. Non-small cell lung cancer map and analysis: exploring interconnected oncogenic signal integrators. Mamm Genome 2025:10.1007/s00335-025-10110-6. [PMID: 39939487 DOI: 10.1007/s00335-025-10110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
Non-Small Cell lung cancer (NSCLC) is known for its fast progression, metastatic potency, and a leading cause of mortality globally. At diagnosis, approximately 30-40% of NSCLC patients already present with metastasis. Epithelial to mesenchymal transition (EMT) is a developmental program implicated in cancer progression and metastasis. Transforming Growth Factor-β (TGFβ) and its signalling plays a prominent role in orchestrating the process of EMT and cancer metastasis. In present study, a comprehensive molecular interaction map of TGFβ induced EMT in NSCLC was developed through an extensive literature survey. The map encompasses 394 species interconnected through 554 reactions, representing the relationship and complex interplay between TGFβ induced SMAD dependent and independent signalling pathways (PI3K/Akt, Wnt, EGFR, JAK/STAT, p38 MAPK, NOTCH, Hypoxia). The map, built using Cell Designer and compliant with SBGN and SBML standards, was subsequently translated into a logical modelling framework using CaSQ and dynamically analysed with Cell Collective. These analyses illustrated the complex regulatory dynamics, capturing the known experimental outcomes of TGFβ induced EMT in NSCLC including the co-existence of hybrid EM phenotype during transition. Hybrid EM phenotype is known to contribute for the phenotypic plasticity during metastasis. Network-based analysis identified the crucial network level properties and hub regulators, while the transcriptome-based analysis cross validated the prognostic significance and clinical relevance of key regulators. Overall, the map developed and the subsequent analyses offer deeper understanding of the complex regulatory network governing the process of EMT in NSCLC.
Collapse
Affiliation(s)
- Sai Bhavani Gottumukkala
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India
| | - Anbumathi Palanisamy
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India.
| |
Collapse
|
5
|
SenGupta S, Cohen E, Serrenho J, Ott K, Coulombe PA, Parent CA. TGFβ1-TNFα regulated secretion of neutrophil chemokines is independent of epithelial-mesenchymal transitions in breast tumor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617845. [PMID: 39416223 PMCID: PMC11483069 DOI: 10.1101/2024.10.11.617845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Neutrophils have tumor-promoting roles in breast cancer and are detected in higher numbers in aggressive breast tumors. How aggressive breast tumors recruit neutrophils remains undefined. Here, we investigated the roles of TGF-β1 and TNF-α in the regulation of neutrophil recruitment by breast cancer cells. TGF-β1 and TNF-α are pro-inflammatory factors upregulated in breast tumors and induce epithelial to mesenchymal transitions (EMT), a process linked to cancer cell aggressiveness. We report that, as expected, dual treatment with TGF-β1 and TNF-α induces EMT signatures in premalignant M2 cells, which are part of the MCF10A breast cancer progression model. Conditioned media (CM) harvested from M2 cells treated with TGF-β1/TNF-α gives rise to amplified neutrophil chemotaxis compared to CM from control M2 cells. This response correlates with higher levels of the neutrophil chemokines CXCL1, CXCL2, and CXCL8 and is significantly attenuated in the presence of a CXCL8-neutralizing antibody. Furthermore, we found that secretion of CXCL1 and CXCL8 from treated M2 cells depends on p38MAPK activity. By combining gene editing, immunological and biochemical approaches, we show that the regulation of neutrophil recruitment and EMT signatures are not mechanistically linked in treated M2 cells. Finally, analysis of publicly available cancer cell line transcriptomic databases revealed a significant correlation between CXCL8 and TGF-β1/TNF-α-regulated or effector genes in breast cancer. Together, our findings establish a novel role for the TGF-β1/TNF-α/p38 MAPK signaling axis in regulating neutrophil recruitment in breast cancer, independent of TGF-β1/TNF-α regulated EMT.
Collapse
|
6
|
Granados-Aparici S, Yang Q, Clarke HJ. SMAD4 promotes somatic-germline contact during murine oocyte growth. eLife 2024; 13:RP91798. [PMID: 38819913 PMCID: PMC11142639 DOI: 10.7554/elife.91798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Development of the mammalian oocyte requires physical contact with the surrounding granulosa cells of the follicle, which provide it with essential nutrients and regulatory signals. This contact is achieved through specialized filopodia, termed transzonal projections (TZPs), that extend from the granulosa cells to the oocyte surface. Transforming growth factor (TGFβ) family ligands produced by the oocyte increase the number of TZPs, but how they do so is unknown. Using an inducible Cre recombinase strategy together with expression of green fluorescent protein to verify Cre activity in individual cells, we examined the effect of depleting the canonical TGFβ mediator, SMAD4, in mouse granulosa cells. We observed a 20-50% decrease in the total number of TZPs in SMAD4-depleted granulosa cell-oocyte complexes, and a 50% decrease in the number of newly generated TZPs when the granulosa cells were reaggregated with wild-type oocytes. Three-dimensional image analysis revealed that TZPs of SMAD4-depleted cells were longer than controls and more frequently oriented towards the oocyte. Strikingly, the transmembrane proteins, N-cadherin and Notch2, were reduced by 50% in SMAD4-depleted cells. SMAD4 may thus modulate a network of cell adhesion proteins that stabilize the attachment of TZPs to the oocyte, thereby amplifying signalling between the two cell types.
Collapse
Affiliation(s)
- Sofia Granados-Aparici
- Research Institute, McGill University Health CentreMontrealCanada
- Present address: Cancer CIBER (CIBERONC)MadridSpain
- Present address: Pathology Department, Medical School, University of Valencia-INCLIVAValenciaSpain
| | - Qin Yang
- Research Institute, McGill University Health CentreMontrealCanada
| | - Hugh J Clarke
- Research Institute, McGill University Health CentreMontrealCanada
- Departments of Obstetrics and Gynecology and Biology, Division of Experimental Medicine, McGill UniversityMontréalCanada
| |
Collapse
|
7
|
Zhang Y, Zhang Y, Hu A, Meng F, Cui P, Li T, Cui G. Mesenchymal stem cells derived from CHIR99021 and TGF‑β induction remained on the colicomentum and improved cardiac function of a rat model of acute myocardium infarction. Exp Ther Med 2024; 27:182. [PMID: 38515646 PMCID: PMC10952379 DOI: 10.3892/etm.2024.12470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/17/2024] [Indexed: 03/23/2024] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have been regarded as a potential stem cell source for cell therapy. However, the production of cells with mesenchymal potential from hiPSCs through spontaneous differentiation is time consuming and laborious. In the present study, the combined use of the GSK-3 inhibitor CHIR99021 and TGF-β was used to obtain mesenchymal stem cell (MSC)-like cells from hiPSCs. During the induction process, the transcription of epithelial-mesenchymal transition (EMT)-related genes N-cadherin and Vimentin in the transformed cells was upregulated, whereas the transcription of E-cadherin and pluripotency-related transcription factors SOX2, OCT4 and NANOG did not change significantly. This indicated that whilst cells were pluripotent, EMT was initiated by the upregulation of transcription of EMT promoting genes. Both SMAD-dependent and independent signalling pathways were significantly activated by the combined induction treatment compared with the single factor induction. The hiPSC-derived MSC-like cells (hiPSC-MSCs) expressed MSC-related markers and acquired osteogenic, chondrogenic and adipogenic differentiation potentials. After being injected into the peritoneal cavity of rats, the hiPSC-MSCs secreted angiogenic and immune-regulatory factors and remained on the colicomentum for 3 weeks. Within an 11-week period, four intraperitoneal hiPSC-MSC injections (1x107 cells/injection) into acute myocardial infarction (AMI) model rats significantly increased the left ventricular ejection fraction, left ventricular fractional shortening and angiogenesis and significantly reduced scar size and the extent of apoptosis in the infarcted area compared with that of the control PBS injection. Symptoms of hiPSC-MSC-induced immune reaction or tumour formation were not observed over the course of the experiment in the hiSPC-MSC treated rats. In conclusion, the CHIR99021 and TGF-β combined induction was a rapid and effective method to obtain MSC-like cells from hiPSCs and multiple high dose intraperitoneal injections of hiPSC-derived MSCs were safe and effective at restoring cardiac function in an AMI rat model.
Collapse
Affiliation(s)
- Yusen Zhang
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Yanmin Zhang
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Azhen Hu
- Shenzhen Key Laboratory of Drug Addiction and Safe Medication, Shenzhen PKU-HKUST Medical Centre, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Fanhua Meng
- Reproductive Medical Centre, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Peng Cui
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Tianshi Li
- Department of Plastic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Guanghui Cui
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
8
|
Xiong Y, Chen X, Yang X, Zhang H, Li X, Wang Z, Feng S, Wen W, Xiong X. miRNA transcriptomics analysis shows miR-483-5p and miR-503-5p targeted miRNA in extracellular vesicles from severe acute pancreatitis-associated lung injury patients. Int Immunopharmacol 2023; 125:111075. [PMID: 37864909 DOI: 10.1016/j.intimp.2023.111075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/19/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
AIM This study sought to identify potential biomarkers and miRNA-mRNA networks within extracellular vesicles (EVs) for detecting severe acute pancreatitis-associated lung injury (SAPALI). METHODS Blood-derived EVs were isolated, and their miRNA transcriptomic profiles were comprehensively analyzed using miRBase v.21 database along with miRDeep2 tool to predict novel miRNAs. DEGseq R package was deployed for the identification of differentially expressed miRNAs (DEMs). Protein-protein interaction (PPI) networks were assembled using STRING and Cytoscape. A lung injury model was established using Lipopolysaccharide (LPS)-induced BEAS-2B cells, chosen for their respiratory epithelial origin and pertinent association with lung injury. The expression levels of targeted miRNA and associated proteins, TLR4, NF-κB mRNA were quantified via RT-PCR and Western Blot. Levels of IL-6, IL-1β, TNF-α, and ROS were measured using designated kits. Dual-luciferase reporter assay was conducted to examine the interaction between miRNA and proteins. RESULTS The comparisons between the SAPALI and the control group revealed 10 DEM, including miR-503-5p and miR-483-5p. The cytoHubba plugin in Cytoscape identified three principal miRNA-mRNA interactions: miR-483-5p with PTK2 and HDAC2; miR-28-5p with MAPK1, TP53BP1, SEMA3A; and miR-503-5p with PPP1CB, SEMA6D, EPHB2, UNC5B. The SAPALI model exhibited elevated miR-503-5p, HDAC2 and inflammatory markers, with a decline UNC5B, miR-483-5p and miR-28-5p. Transfection with miR-503-5p and miR-483-5p inhibitors increased the levels of their supposed binding proteins but not miR-28-5p inhibitor. The Dual-luciferase reporter gene assay identified the interaction of miR-503-5p with UNC5B, and miR-483-5p with HDAC2, but not miR-28-5p with TP53BP1. CONCLUSIONS Our study maps miRNA-mRNA interactions in SAPALI, identifying miR-503-5p and miR-483-5p as critical regulatory miRNAs.
Collapse
Affiliation(s)
- Yicheng Xiong
- Alberta Institute, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiangyang Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaodan Yang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xinmiao Li
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zilu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Sizhe Feng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Wen Wen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiangqing Xiong
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
9
|
Zhang J, Pan L, Zhang S, Yang Y, Liang J, Ma S, Wu Q. CISD2 promotes lung squamous carcinoma cell migration and invasion via the TGF-β1-induced Smad2/3 signaling pathway. Clin Transl Oncol 2023; 25:3527-3540. [PMID: 37249759 DOI: 10.1007/s12094-023-03222-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/19/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Although aberrant expression of CDGSH iron sulfur domain 2 (CISD2) contributes to the tumorigenesis and progression of numerous human cancers, the biological function of CISD2 and its specific prognostic value in lung squamous cell carcinoma (LUSC) have yet to be comprehensively explored. The current study aimed to elucidate the role of CISD2 in LUSC as well as the underlying molecular mechanisms. METHODS Immunohistochemistry was conducted to detect the protein expression of CISD2 and analyze whether high expression of CISD2 affects the overall survival (OS) of LUSC patients. Cell proliferation, colony formation, wound healing and Transwell invasion assays were performed to clarify whether CISD2 contributes to LUSC cell proliferation and disease progression. Quantitative real-time reverse transcription-PCR and western blot assays were used to detect the levels of transcription factors and key epithelial-mesenchymal transition (EMT)-related markers in LUSC cells after CISD2 knockdown and overexpression to determine whether CISD2 regulates transforming growth factor-beta (TGF-β)-induced EMT in LUSC. RESULTS Immunohistochemistry of human tissue microarrays containing 90 pairs of adjacent and cancerous tissues revealed that CISD2 is considerably overexpressed in LUSC and strongly linked to poor OS. Functional experiments suggested that silencing endogenous CISD2 inhibited the growth, colony formation, migration, and invasion of H2170 and H226 cell lines. Exogenous overexpression of CISD2 facilitated these phenotypes in SK-MES-1 and H2170 cells. Furthermore, CISD2 promoted EMT progression by increasing the expression of mesenchymal markers (N-cadherin, vimentin, Snail, and Slug) as well as SMAD2/3 and reducing the expression of the epithelial marker E-cadherin. Mechanistically, our studies provide the first evidence that CISD2 can promote EMT by enhancing TGF-β1-induced Smad2/3 expression in LUSC cells. CONCLUSION In conclusion, our research illustrates that CISD2 is highly expressed in LUSC and may facilitate LUSC proliferation and metastasis. Thus, CISD2 may serve as an independent prognostic marker and possible treatment target for LUSC.
Collapse
Affiliation(s)
- Jingjing Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lifang Pan
- Integrated Traditional Chinese and Western Medicine Oncology Laboratory, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yuhong Yang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jiafeng Liang
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Shenglin Ma
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China.
| | - Qiong Wu
- Integrated Traditional Chinese and Western Medicine Oncology Laboratory, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| |
Collapse
|
10
|
Nguyen HT, Martin LJ. Classical cadherins in the testis: how are they regulated? Reprod Fertil Dev 2023; 35:641-660. [PMID: 37717581 DOI: 10.1071/rd23084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
Cadherins (CDH) are crucial intercellular adhesion molecules, contributing to morphogenesis and creating tissue barriers by regulating cells' movement, clustering and differentiation. In the testis, classical cadherins such as CDH1, CDH2 and CDH3 are critical to gonadogenesis by promoting the migration and the subsequent clustering of primordial germ cells with somatic cells. While CDH2 is present in both Sertoli and germ cells in rodents, CDH1 is primarily detected in undifferentiated spermatogonia. As for CDH3, its expression is mainly found in germ and pre-Sertoli cells in developing gonads until the establishment of the blood-testis barrier (BTB). This barrier is made of Sertoli cells forming intercellular junctional complexes. The restructuring of the BTB allows the movement of early spermatocytes toward the apical compartment as they differentiate during a process called spermatogenesis. CDH2 is among many junctional proteins participating in this process and is regulated by several pathways. While cytokines promote the disassembly of the BTB by enhancing junctional protein endocytosis for degradation, testosterone facilitates the assembly of the BTB by increasing the recycling of endocytosed junctional proteins. Mitogen-activated protein kinases (MAPKs) are also mediators of the BTB kinetics in many chemically induced damages in the testis. In addition to regulating Sertoli cell functions, follicle stimulating hormone can also regulate the expression of CDH2. In this review, we discuss the current knowledge on regulatory mechanisms of cadherin localisation and expression in the testis.
Collapse
Affiliation(s)
- Ha Tuyen Nguyen
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
11
|
Yang X, Sun F, Gao Y, Li M, Liu M, Wei Y, Jie Q, Wang Y, Mei J, Mei J, Ma L, Shi Y, Chen M, Li Y, Li Q, Liu M, Ma Y. Histone acetyltransferase CSRP2BP promotes the epithelial-mesenchymal transition and metastasis of cervical cancer cells by activating N-cadherin. J Exp Clin Cancer Res 2023; 42:268. [PMID: 37845756 PMCID: PMC10580587 DOI: 10.1186/s13046-023-02839-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Dysregulated epithelial-mesenchymal transition (EMT) is involved in cervical cancer metastasis and associated with histone acetylation. However, the underlying molecular mechanisms of histone acetylation in cervical cancer EMT and metastasis are still elusive. METHODS We systematically investigated the expression patterns of histone acetylation genes and their correlations with the EMT pathway in cervical cancer. The expression of CSRP2BP among cervical cancer tissues and cell lines was detected using Western blotting and immunohistochemistry analyses. The effects of CSRP2BP on cervical cancer cell proliferation and tumorigenicity were examined by cell growth curve, EdU assay, flow cytometry and xenotransplantation assays. Wound healing assays, transwell migration assays and pulmonary metastasis model were used to evaluate the effects of CSRP2BP on cell invasion and metastasis of cervical cancer cells in vivo and in vitro. RNA-seq, chromatin immunoprecipitation (ChIP), co-immunoprecipitation (Co-IP) and luciferase reporter assays were used to uncover the molecular mechanisms of CSRP2BP in promoting cervical cancer EMT and metastasis. RESULTS We prioritized a top candidate histone acetyltransferase, CSRP2BP, as a key player in cervical cancer EMT and metastasis. The expression of CSRP2BP was significantly increased in cervical cancer tissues and high CSRP2BP expression was associated with poor prognosis. Overexpression of CSRP2BP promoted cervical cancer cell proliferation and metastasis both in vitro and in vivo, while knockdown of CSRP2BP obtained the opposite effects. In addition, CSRP2BP promoted resistance to cisplatin chemotherapy. Mechanistically, CSRP2BP mediated histone 4 acetylation at lysine sites 5 and 12, cooperated with the transcription factor SMAD4 to bind to the SEB2 sequence in the N-cadherin gene promotor and upregulated N-cadherin transcription. Consequently, CSRP2BP promoted cervical cancer cell EMT and metastasis through activating N-cadherin. CONCLUSIONS This study demonstrates that the histone acetyltransferase CSRP2BP promotes cervical cancer metastasis partially through increasing the EMT and suggests that CSRP2BP could be a prognostic marker and a potential therapeutic target for combating cervical cancer metastasis.
Collapse
Affiliation(s)
- Xiaohui Yang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
- Hainan Provincial Clinical Research Center for Thalassemia, National Center for International Research, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571101, China
| | - Fei Sun
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
- Hainan Provincial Clinical Research Center for Thalassemia, National Center for International Research, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571101, China
- Department of Obstetrics and Gynecology, Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangdong, 510515, China
| | - Yueying Gao
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, 571199, China
| | - MengYongwei Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
- Hainan Provincial Clinical Research Center for Thalassemia, National Center for International Research, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571101, China
| | - Mian Liu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
- Hainan Provincial Clinical Research Center for Thalassemia, National Center for International Research, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571101, China
- Department of Obstetrics and Gynecology, Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangdong, 510515, China
| | - Yunjian Wei
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
- Hainan Provincial Clinical Research Center for Thalassemia, National Center for International Research, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571101, China
| | - Qiuling Jie
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
- Hainan Provincial Clinical Research Center for Thalassemia, National Center for International Research, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571101, China
| | - Yibing Wang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
- Hainan Provincial Clinical Research Center for Thalassemia, National Center for International Research, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571101, China
| | - Jiaoqi Mei
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
- Hainan Provincial Clinical Research Center for Thalassemia, National Center for International Research, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571101, China
| | - Jingjing Mei
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
- Hainan Provincial Clinical Research Center for Thalassemia, National Center for International Research, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571101, China
| | - Linna Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
- Hainan Provincial Clinical Research Center for Thalassemia, National Center for International Research, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571101, China
| | - Yuechuan Shi
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
- Hainan Provincial Clinical Research Center for Thalassemia, National Center for International Research, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571101, China
| | - Manling Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China
| | - Yongsheng Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China.
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, 571199, China.
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China.
- Hainan Provincial Clinical Research Center for Thalassemia, National Center for International Research, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571101, China.
- Hainan Modern Women and Children's Hospital, Reproductive Medicine, Haikou, Hainan, 571101, China.
| | - Mingyao Liu
- Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Haikou Key Laboratory for Preservation of Human Genetic Resource, Department of Reproductive Medicine, Key Laboratory of Reproductive Health Diseases Research and Translation, Ministry of Education, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China.
- Hainan Provincial Clinical Research Center for Thalassemia, National Center for International Research, the First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 571101, China.
| |
Collapse
|
12
|
Wu S, Luwor RB, Zhu HJ. Dynamics of transforming growth factor β signaling and therapeutic efficacy. Growth Factors 2023; 41:82-100. [PMID: 37229558 DOI: 10.1080/08977194.2023.2215335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/14/2023] [Indexed: 05/27/2023]
Abstract
Transforming growth factor β (TGFβ) is a multifunctional cytokine, and its signalling responses are exerted via integrated intracellular pathways and complex regulatory mechanisms. Due to its high potency, TGFβ signalling is tightly controlled under normal circumstances, while its dysregulation in cancer favours metastasis. The recognised potential of TGFβ as a therapeutic target led to emerging development of anti-TGFβ reagents with preclinical success, yet these therapeutics failed to recapitulate their efficacy in experimental settings. In this review, possible reasons for this inconsistency are discussed, addressing the knowledge gap between theoretical and actual behaviours of TGFβ signalling. Previous studies on oncogenic cells have demonstrated the spatiotemporal heterogeneity of TGFβ signalling intensity. Under feedback mechanisms and exosomal ligand recycling, cancer cells may achieve cyclic TGFβ signalling to facilitate dissemination and colonisation. This challenges the current presumption of persistently high TGFβ signalling in cancer, pointing to a new direction of research on TGFβ-targeted therapeutics.
Collapse
Affiliation(s)
- Siqi Wu
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Rodney Brian Luwor
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, Australia
- Health, Innovation and Transformation Centre, Federation University, Ballarat, Australia
| | - Hong-Jian Zhu
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| |
Collapse
|
13
|
Huang K, Zhang Y, Gong H, Qiao Z, Wang T, Zhao W, Huang L, Zhou X. Inferring evolutionary trajectories from cross-sectional transcriptomic data to mirror lung adenocarcinoma progression. PLoS Comput Biol 2023; 19:e1011122. [PMID: 37228122 DOI: 10.1371/journal.pcbi.1011122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is a deadly tumor with dynamic evolutionary process. Although much endeavors have been made in identifying the temporal patterns of cancer progression, it remains challenging to infer and interpret the molecular alterations associated with cancer development and progression. To this end, we developed a computational approach to infer the progression trajectory based on cross-sectional transcriptomic data. Analysis of the LUAD data using our approach revealed a linear trajectory with three different branches for malignant progression, and the results showed consistency in three independent cohorts. We used the progression model to elucidate the potential molecular events in LUAD progression. Further analysis showed that overexpression of BUB1B, BUB1 and BUB3 promoted tumor cell proliferation and metastases by disturbing the spindle assembly checkpoint (SAC) in the mitosis. Aberrant mitotic spindle checkpoint signaling appeared to be one of the key factors promoting LUAD progression. We found the inferred cancer trajectory allows to identify LUAD susceptibility genetic variations using genome-wide association analysis. This result shows the opportunity for combining analysis of candidate genetic factors with disease progression. Furthermore, the trajectory showed clear evident mutation accumulation and clonal expansion along with the LUAD progression. Understanding how tumors evolve and identifying mutated genes will help guide cancer management. We investigated the clonal architectures and identified distinct clones and subclones in different LUAD branches. Validation of the model in multiple independent data sets and correlation analysis with clinical results demonstrate that our method is effective and unbiased.
Collapse
Affiliation(s)
- Kexin Huang
- School of Life Science and Technology, Xidian University, Xi'an, China
- West China Biomedical Big Data Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Yun Zhang
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Haoran Gong
- West China Biomedical Big Data Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Zhengzheng Qiao
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Tiangang Wang
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Weiling Zhao
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi'an, China
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
14
|
Ramundo V, Palazzo ML, Aldieri E. TGF-β as Predictive Marker and Pharmacological Target in Lung Cancer Approach. Cancers (Basel) 2023; 15:cancers15082295. [PMID: 37190223 DOI: 10.3390/cancers15082295] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Lung cancer (LC) represents the leading cause of cancer incidence and mortality worldwide. LC onset is strongly related to genetic mutations and environmental interactions, such as tobacco smoking, or pathological conditions, such as chronic inflammation. Despite advancement in knowledge of the molecular mechanisms involved in LC, this tumor is still characterized by an unfavorable prognosis, and the current therapeutic options are unsatisfactory. TGF-β is a cytokine that regulates different biological processes, particularly at the pulmonary level, and its alteration has been demonstrated to be associated with LC progression. Moreover, TGF-β is involved in promoting invasiveness and metastasis, via epithelial to mesenchymal transition (EMT) induction, where TGF-β is the major driver. Thus, a TGF-β-EMT signature may be considered a potential predictive marker in LC prognosis, and TGF-β-EMT inhibition has been demonstrated to prevent metastasis in various animal models. Concerning a LC therapeutic approach, some TGF-β and TGF-β-EMT inhibitors could be used in combination with chemo- and immunotherapy without major side effects, thereby improving cancer therapy. Overall, targeting TGF-β may be a valid possibility to fight LC, both in improving LC prognosis and cancer therapy, via a novel approach that could open up new effective strategies against this aggressive cancer.
Collapse
Affiliation(s)
- Valeria Ramundo
- Department of Oncology, University of Torino, 10126 Torino, Italy
| | | | | |
Collapse
|
15
|
Zhong G, Zhao Q, Chen Z, Yao T. TGF-β signaling promotes cervical cancer metastasis via CDR1as. Mol Cancer 2023; 22:66. [PMID: 37004067 PMCID: PMC10064584 DOI: 10.1186/s12943-023-01743-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/07/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Due to the lack of effective treatment, metastasis is the main cause of cancer related deaths. TGF-β pathway has been reported related to cervical cancer metastasis. However, mechanism is still unclear. METHODS After agonist of TGF-β treatment, RNA sequencing revealed the expression profiles of circRNA in cervical cancer. In situ hybridization was used to analysis relationship between CDR1as and prognosis. Real-time PCR, Western blot, RNA interference, Transwell assay, Wound healing assay, RNA pulldown assay and RIP assays were performed in vitro. And in vivo cervical cancer model (including foot pad model and subcutaneous tumor formation) was also performed. RESULTS CDR1as was found upregulated obviously following TGF-β activation. In situ hybridization showed CDR1as was positively correlated with lymph node metastasis and shortened survival length. Simultaneously, overexpression of CDR1as promoted cervical cancer metastasis in vitro and in vivo. It was also found that CDR1as could facilitate the orchestration of IGF2BP1 on the mRNA of SLUG and stabilize it from degradation. Silencing IGF2BP1 hampers CDR1as related metastasis in cervical cancer. Additionally, effective CDR1as has been proven to activate TGF-β signaling factors known to promote EMT, including P-Smad2 and P-Smad3. CONCLUSIONS Our study proved TGF-β signaling may promote cervical cancer metastasis via CDR1as.
Collapse
Affiliation(s)
- Guanglei Zhong
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, People's Republic of China, 510120
| | - Qian Zhao
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, People's Republic of China, 510120
| | - Zhiliao Chen
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, People's Republic of China, 510120
| | - Tingting Yao
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, People's Republic of China, 510120.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
16
|
The LCNetWork: An electronic representation of the mRNA-lncRNA-miRNA regulatory network underlying mechanisms of non-small cell lung cancer in humans, and its explorative analysis. Comput Biol Chem 2022; 101:107781. [DOI: 10.1016/j.compbiolchem.2022.107781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022]
|
17
|
Santerre K, Cortez Ghio S, Proulx S. TGF-β-Mediated Modulation of Cell-Cell Interactions in Postconfluent Maturing Corneal Endothelial Cells. Invest Ophthalmol Vis Sci 2022; 63:3. [PMID: 36194422 PMCID: PMC9547359 DOI: 10.1167/iovs.63.11.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Purpose Transforming growth factor-beta (TGF-β) is known to influence many cell functions. In the corneal endothelium, TGF-β1 exerts contextual effects, promoting endothelial–mesenchymal transition in proliferating cells and enhancing barrier integrity in early confluent maturing cells. Herein, we studied how TGF-β isoforms participate in the formation of corneal endothelial intercellular junctions. Methods Corneal endothelial cells (CECs) were cultured using a two-phase media approach. When CECs reached confluence, the proliferation medium was replaced with maturation medium, which was supplemented or not with TGF-β isoforms. The cell morphology (circularity index), intercellular junction protein expression, trans-endothelial electrical resistance (TEER), and permeability of 7-day postconfluent CECs were assessed. Gene transcription and signaling pathways that were activated following maturation in the presence of TGF-β2 were also studied. The beneficial effect of TGF-β2 on CEC maturation was evaluated using ex vivo corneas mounted on a corneal bioreactor. Results The results showed increases in circularity index, membrane localization of junction-related proteins, and TEER when TGF-β isoforms were individually added during the maturation phase, and TGF-β2 was the most effective isoform. Gene profiling revealed an increase in extracellular matrix-related gene expression. In ex vivo cell adhesion experiments, CECs that were matured in the presence of TGF-β2 had a higher circularity index and cell density and exhibited cell membrane-localized junction-related protein expression at earlier time points. Conclusions These results suggest that TGF-β2 can strengthen cell–cell and cell–substrate adhesion, which accelerates barrier integrity establishment and thus enhances CEC functionality.
Collapse
Affiliation(s)
- Kim Santerre
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval, axe médecine régénératrice, Hôpital du Saint-Sacrement, Québec, Québec, Canada.,Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada.,Département d'Ophtalmologie et d'oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de médecine, Université Laval, Québec, Québec, Canada
| | - Sergio Cortez Ghio
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval, axe médecine régénératrice, Hôpital du Saint-Sacrement, Québec, Québec, Canada.,Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada
| | - Stéphanie Proulx
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval, axe médecine régénératrice, Hôpital du Saint-Sacrement, Québec, Québec, Canada.,Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, Québec, Canada.,Département d'Ophtalmologie et d'oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de médecine, Université Laval, Québec, Québec, Canada
| |
Collapse
|
18
|
Khan MM, Serajuddin M, Malik MZ. Identification of microRNA and gene interactions through bioinformatic integrative analysis for revealing candidate signatures in prostate cancer. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Sun Z, Su Z, Zhou Z, Wang S, Wang Z, Tong X, Li C, Wang Y, Chen X, Lei Z, Zhang HT. RNA demethylase ALKBH5 inhibits TGF-β-induced EMT by regulating TGF-β/SMAD signaling in non-small cell lung cancer. FASEB J 2022; 36:e22283. [PMID: 35344216 DOI: 10.1096/fj.202200005rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 01/26/2023]
Abstract
AlkB homolog 5 (ALKBH5) has been revealed as a key RNA N6 -methyladenosine (m6 A) demethylase that is implicated in development and diseases. However, the function of ALKBH5 in TGF-β-induced epithelial-mesenchymal transition (EMT) and tumor metastasis of non-small-cell lung cancer (NSCLC) remains unknown. Here, we firstly show that ALKBH5 expression is significantly reduced in metastatic NSCLC. ALKBH5 overexpression inhibits TGF-β-induced EMT and invasion of NSCLC cells, whereas ALKBH5 knockdown promotes the corresponding phenotypes. ALKBH5 overexpression suppresses TGF-β-stimulated NSCLC cell metastasis in vivo. ALKBH5 overexpression decreases the expression and mRNA stability of TGFβR2 and SMAD3 but increases those of SMAD6, while ALKBH5 knockdown causes the opposite results. Importantly, ALKBH5 overexpression or knockdown leads respectively to an attenuated or augmented phosphorylation of SMAD3, an indispensable downstream effector that activates TGF-β/SMAD signaling. Moreover, m6 A-binding proteins YTHDF1/3 promotes TGFβR2 and SMAD3 expression, and YTHDF2 inhibits SMAD6 expression. YTHDF1/2/3 facilitates TGF-β-stimulated EMT and invasion of NSCLC cells. Mechanistically, ALKBH5 affects TGFβR2, SMAD3 and SMAD6 expression and mRNA stability by erasing m6 A modification in NSCLC cells. ALKBH5 weakens YTHDF1/3-mediated TGFβR2 and SMAD3 mRNA stabilization, and abolishes YTHDF2-mediated SMAD6 mRNA degradation, supporting the notion that ALKBH5 inhibits TGF-β-induced EMT and invasion of NSCLC cells via YTHD1/2/3-mediated mechanism. Taken together, our findings highlight an important role of ALKBH5 in regulating TGF-β/SMAD signaling, and establish a mechanistic interaction of ALKBH5 with TGFβR2/SMAD3/SMAD6 for controlling TGF-β-induced EMT in NSCLCs.
Collapse
Affiliation(s)
- Zelong Sun
- Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhiyue Su
- Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhengyu Zhou
- Laboratory Animal Center, Suzhou Medical College of Soochow University, Suzhou, China
| | - Shengjie Wang
- Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, China.,Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Zhao Wang
- Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xin Tong
- Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Chang Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuxin Wang
- Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiaoyan Chen
- Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhe Lei
- Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Hong-Tao Zhang
- Soochow University Laboratory of Cancer Molecular Genetics, Suzhou Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, China
| |
Collapse
|
20
|
miR-154-5p Affects the TGFβ1/Smad3 Pathway on the Fibrosis of Diabetic Kidney Disease via Binding E3 Ubiquitin Ligase Smurf1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7502632. [PMID: 35126820 PMCID: PMC8814716 DOI: 10.1155/2022/7502632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 11/29/2022]
Abstract
Aim The study is aimed at verifying miR-154-5p and Smurf1 combination in glomerular mesangial cells regulating TGFβ1/Smad3 pathway-related protein ubiquitination in the model of diabetic rats renal tissues, primary mesangial cells, and cell lines. Methods The diabetic SD rat model and high-glucose-cultured primary mesangial cells and cell lines were established. miR-154-5p mimic and inhibitor, Smurf1 siRNA, and TGF β 1/Smad3 inhibitor (SB431542) were pretreated to make the TGFβ1/Smad3 pathway and ubiquitin changes. Fluorescence in situ hybridization was used for the miR-154-5p renal localization; molecular biological detection was adopted for cell proliferation, renal function, urine protein, and pathway proteins. After bioinformatics predicted binding sites, luciferase and Co-IP were used to detect miRNA and protein binding. Results miR-154-5p was significantly increased and mainly concentrated in the glomerular of renal cortex in well-established diabetic rat renal tissues. Rno-miR-154-5p combined Rno-Smurf1 3′ UTR, while Smurf1 combined Smad3 directly. Meanwhile, miR-154-5p regulates TGFβ1/Smad3-mediated cell proliferation via Smurf1 ubiquitination. Conclusion miR-154-5p regulates the TGFβ1/Smads pathway through Smurf1 ubiquitination and promotes the fibrosis process of diabetic kidney disease.
Collapse
|
21
|
Ahmed FA, Klausen C, Zhu H, Leung PCK. Myostatin increases human trophoblast cell invasion by upregulating N-cadherin via SMAD2/3-SMAD4 Signaling. Biol Reprod 2022; 106:1267-1277. [PMID: 35020826 DOI: 10.1093/biolre/ioab238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 11/14/2022] Open
Abstract
Placental insufficiency disorders are major obstetric complications that share a common phenomenon of poor placental trophoblast cell invasion and remodeling of uterine tissues. Myostatin is a transforming growth factor (TGF)-β superfamily member well-known for its important role in muscle growth control. Myostatin is also produced in the placenta and has been shown to regulate some trophoblast functions. However, its roles in placental development are still poorly understood. In this study, we tested the hypothesis that myostatin increases trophoblast cell invasion by upregulating N-cadherin via SMAD2/3-SMAD4 signaling. Primary and immortalized (HTR8/SVneo) trophoblast cells were used as study models. Matrigel-coated transwell invasion assays were used to study the effects of recombinant human myostatin on trophoblast cell invasion. RT-qPCR and Western blot were used to measure myostatin effects on N-cadherin mRNA and protein levels, respectively. Small inhibitor molecules as well as siRNA-mediated knockdown were used to block myostatin receptor and downstream signaling, respectively. Data were analyzed either by unpaired Student T test or one-way ANOVA followed by Newman Keuls test for multiple group comparisons. Myostatin significantly increased primary and HTR8/SVneo trophoblast cell invasion. Moreover, myostatin upregulated N-cadherin mRNA and protein levels in a time dependent manner in both study models. These effects were blocked by inhibition of TGF-β type I receptors as well as siRNA-mediated knockdown of SMAD2/3 combined or common SMAD4. Importantly, myostatin-induced trophoblast cell invasion was abolished by knockdown of N-cadherin, SMAD2/3 or SMAD4. Myostatin may increase human trophoblast cell invasion by upregulating N-cadherin via SMAD2/3-SMAD4 signaling.
Collapse
Affiliation(s)
- Faten AbdelHafez Ahmed
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Hua Zhu
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
Zhu N, Zhang XJ, Zou H, Zhang YY, Xia JW, Zhang P, Zhang YZ, Li J, Dong L, Wumaier G, Li SQ. PTPL1 suppresses lung cancer cell migration via inhibiting TGF-β1-induced activation of p38 MAPK and Smad 2/3 pathways and EMT. Acta Pharmacol Sin 2021; 42:1280-1287. [PMID: 33536603 PMCID: PMC8285377 DOI: 10.1038/s41401-020-00596-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022]
Abstract
Epithelial-mesenchymal transition (EMT) enables dissemination of neoplastic cells and onset of distal metastasis of primary tumors. However, the regulatory mechanisms of EMT by microenvironmental factors such as transforming growth factor-β (TGF-β) remain largely unresolved. Protein tyrosine phosphatase L1 (PTPL1) is a non-receptor protein tyrosine phosphatase that plays a suppressive role in tumorigenesis of diverse tissues. In this study we investigated the role of PTPL1/PTPN13 in metastasis of lung cancer and the signaling pathways regulated by PTPL1 in terms of EMT of non-small cell lung cancer (NSCLC) cells. We showed that the expression of PTPL1 was significantly downregulated in cancerous tissues of 23 patients with NSCLC compared with adjacent normal tissues. PTPL1 expression was positively correlated with overall survival of NSCLC patients. Then we treated A549 cells in vitro with TGF-β1 (10 ng/mL) and assessed EMT. We found that knockdown of PTPL1 enhanced the migration and invasion capabilities of A549 cells, through enhancing TGF-β1-induced EMT. In nude mice bearing A549 cell xenografts, knockdown of PTPL1 significantly promoted homing of cells and formation of tumor loci in the lungs. We further revealed that PTPL1 suppressed TGF-β-induced EMT by counteracting the activation of canonical Smad2/3 and non-canonical p38 MAPK signaling pathways. Using immunoprecipitation assay we demonstrated that PTPL1 could bind to p38 MAPK, suggesting that p38 MAPK might be a direct substrate of PTPL1. In conclusion, these results unravel novel mechanisms underlying the regulation of TGF-β signaling pathway, and have implications for prognostic assessment and targeted therapy of metastatic lung cancer.
Collapse
Affiliation(s)
- Ning Zhu
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiu-Juan Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hai Zou
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yuan-Yuan Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jing-Wen Xia
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Peng Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - You-Zhi Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Liang Dong
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Gulinuer Wumaier
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Sheng-Qing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
23
|
Sarkar A, Das S, Rahaman A, Das Talukdar A, Bhattacharjee S, Mandal DP. Eugenol and capsaicin exhibit anti-metastatic activity via modulating TGF-β signaling in gastric carcinoma. Food Funct 2021; 11:9020-9034. [PMID: 33016967 DOI: 10.1039/d0fo00887g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The transforming growth factor-β (TGF-β) signaling is considered to be a key player in gastric cancer metastasis, and the inhibition of the TGF-β/SMAD4 signaling pathway may be a novel strategy for therapeutic interventions in cancer. Here, the anti-metastatic activity of two phytochemicals, eugenol and capsaicin, has been studied, and their potential to antagonize TGF-β has been investigated in gastric cancer cells. Both the phytochemicals exhibited anti-metastatic activity by inhibiting the TGF-β signaling pathway independent of P21 or P53, with capsaicin proving to be more potent than eugenol. However, unlike eugenol, the inhibitory effect of capsaicin on the TGF-β signaling pathway and metastasis was found to be dependent on SMAD4, which was validated in SMAD4-knocked down AGS cell and SMAD4-null SW620 cell line. Furthermore, the use of recombinant TGF-β and TGF-β receptor inhibitor LY2109761 confirmed that the anti-metastatic activity of eugenol is partially and that of capsaicin is principally mediated through the TGF-β signaling pathway. Identifying phytochemicals with the potential to inhibit cancer metastasis by targeting the TGF-β signaling pathway has immense scope for developing a therapeutic strategy against cancer metastasis.
Collapse
Affiliation(s)
- Arnab Sarkar
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, North-24 Parganas, Barasat, Kolkata-700126, West Bengal, India.
| | - Subrata Das
- Department of Life Science and Bioinformatics, Assam University, Silchar-788011, India
| | - Ashikur Rahaman
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, North-24 Parganas, Barasat, Kolkata-700126, West Bengal, India.
| | - Anupam Das Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar-788011, India
| | - Shamee Bhattacharjee
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, North-24 Parganas, Barasat, Kolkata-700126, West Bengal, India.
| | - Deba Prasad Mandal
- Department of Zoology, West Bengal State University, Berunanpukuria, Malikapur, North-24 Parganas, Barasat, Kolkata-700126, West Bengal, India.
| |
Collapse
|
24
|
Sławińska-Brych A, Mizerska-Kowalska M, Król SK, Stepulak A, Zdzisińska B. Xanthohumol Impairs the PMA-Driven Invasive Behaviour of Lung Cancer Cell Line A549 and Exerts Anti-EMT Action. Cells 2021; 10:cells10061484. [PMID: 34204745 PMCID: PMC8231538 DOI: 10.3390/cells10061484] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/27/2022] Open
Abstract
Xanthohumol (XN), the main prenylated flavonoid from hop cones, has been recently reported to exert significant proapoptotic, anti-proliferative, and growth inhibitory effects against lung cancer in both in vitro and in vivo studies. However, its anti-metastatic potential towards this malignancy is still unrevealed. Previously, we indicated that the human lung adenocarcinoma A549 cell line was sensitive to XN treatment. Therefore, using the same tumour cell model, we have studied the influence of XN on the phorbol-12-myristate-13-acetate (PMA)-induced cell migration and invasion. The effects of XN on the expression/activity of pro-invasive MMP-9 and MMP-2 and the expression of MMP inhibitors, i.e., TIMP-1 and TIMP-2 (anti-angiogenic factors), were evaluated. Additionally, the influence of XN on the production of the key pro-angiogenic cytokine, i.e., VEGF, and the release of TGF-β, which is both a pro-angiogenic cytokine and an epithelial-mesenchymal transition (EMT) stimulator, was studied. Furthermore, the influence of XN on the expression of EMT-associated proteins such as E-cadherin and α-E-catenin (epithelial markers), vimentin and N-cadherin (mesenchymal markers), and Snail-1 (transcriptional repressor of E-cadherin) was studied. To elucidate the molecular mechanism underpinning the XN-mediated inhibition of metastatic progression in PMA-activated cells, the phosphorylation levels of AKT, FAK, and ERK1/2 kinases, which are signalling molecules involved in EMT program activation, were assayed. The results showed that XN in non-cytotoxic concentrations impaired the PMA-driven migratory and invasive capacity of A549 cells by decreasing the level of expression of MMP-9 and concomitantly increasing the expression of the TIMP-1 protein, i.e., a specific blocker of pro-MMP-9 activation. Moreover, XN decreased the PMA-induced production of VEGF and TGF-β. Furthermore, the XN-treatment counteracted the PMA-induced EMT of the A549 cells by the upregulation of E-cadherin and α-E-catenin and the downregulation of N-cadherin, vimentin, and Snail-1 expression. The proposed mechanism underlying the anti-invasive XN activity involved the inhibition of the ERK/MAPK pathway and suppression of FAK and PI3/AKT signalling. Our results suggesting migrastatic properties of XN against lung cancer cells require further verification in in vivo assays.
Collapse
Affiliation(s)
- Adrianna Sławińska-Brych
- Department of Cell Biology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
- Correspondence: ; Tel.: +48-81-537-59-04
| | - Magdalena Mizerska-Kowalska
- Department of Virology and Immunology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (M.M.-K.); (B.Z.)
| | - Sylwia Katarzyna Król
- Laboratory of Neuro-oncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland;
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
| | - Barbara Zdzisińska
- Department of Virology and Immunology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland; (M.M.-K.); (B.Z.)
| |
Collapse
|
25
|
Choi S, Yu J, Kim W, Park KS. N-cadherin mediates the migration of bone marrow-derived mesenchymal stem cells toward breast tumor cells. Theranostics 2021; 11:6786-6799. [PMID: 34093853 PMCID: PMC8171089 DOI: 10.7150/thno.59703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Rationale: Bone marrow-derived mesenchymal stem cells (BM-MSCs) recruited into breast tumors regulate the behavior of tumor cells via various mechanisms and affect clinical outcomes. Although signaling molecules, such as transforming growth factor β (TGF-β), are known to transmit signals between BM-MSCs and breast tumor cells for recruiting BM-MSCs, it is unclear which specific intrinsic molecules involved in cell motility mediate the migration of BM-MSCs into breast tumor. It is also unclear as to how specific intrinsic molecules contribute to the migration. Methods: Conditioned medium (CM) from breast tumor cells (MCF-7 and MDA-MB-231) that simulates breast tumor secreting TGF-β was used to examine the migration of BM-MSCs into breast tumors. A three-dimensional migration assay was performed to investigate the collective migration of BM-MSCs, maintaining cell-cell adhesion, toward breast tumor cells. Results: N-cadherin formed adherens junction-like structures on the intercellular borders of BM-MSCs, and TGF-β increased the expression of N-cadherin on these borders. Knockdown of Smad4 impaired the TGF-β-mediated increase in N-cadherin expression in BM-MSCs, but inhibitors of non-canonical TGF-β pathways, such as extracellular signal-regulated kinases, Akt, and p38, did not affect it. siRNA-mediated knockdown of N-cadherin and Smad4 impaired the migration of BM-MSCs in response to TGF-β. Conditioned medium from breast tumor cells also enhanced the expression of N-cadherin in BM-MSCs, but inactivation of TGF-β type 1 receptor (TGFBR1) with SB505124 and TGFBR1 knockdown abolished the increase in N-cadherin expression. BM-MSCs collectively migrated toward CM from MDA-MB-231 in vitro while maintaining cell-cell adhesion through N-cadherin. Knockdown of N-cadherin abolished the migration of BM-MSCs toward the CM from breast tumor cells. Conclusion: In the present study, we identified N-cadherin, an intrinsic transmembrane molecule in adherens junction-like structures, on BM-MSCs as a mediator for the migration of these cells toward breast tumor. The expression of N-cadherin increases on the intercellular borders of BM-MSCs through the TGF-β canonical signaling and they collectively migrate in response to breast tumor cells expressing TGF-β via N-cadherin-dependent cell-cell adhesion. We, herein, introduce a novel promising strategy for controlling and re-engineering the breast tumor microenvironment.
Collapse
Affiliation(s)
- Sanghyuk Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jinyeong Yu
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Wootak Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ki-Sook Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- East-West Medical Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
26
|
Wang S, Tong X, Li C, Jin E, Su Z, Sun Z, Zhang W, Lei Z, Zhang HT. Quaking 5 suppresses TGF-β-induced EMT and cell invasion in lung adenocarcinoma. EMBO Rep 2021; 22:e52079. [PMID: 33769671 PMCID: PMC8183405 DOI: 10.15252/embr.202052079] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/28/2021] [Accepted: 03/08/2021] [Indexed: 01/01/2023] Open
Abstract
Quaking (QKI) proteins belong to the signal transduction and activation of RNA (STAR) family of RNA-binding proteins that have multiple functions in RNA biology. Here, we show that QKI-5 is dramatically decreased in metastatic lung adenocarcinoma (LUAD). QKI-5 overexpression inhibits TGF-β-induced epithelial-mesenchymal transition (EMT) and invasion, whereas QKI-5 knockdown has the opposite effect. QKI-5 overexpression and silencing suppresses and promotes TGF-β-stimulated metastasis in vivo, respectively. QKI-5 inhibits TGF-β-induced EMT and invasion in a TGFβR1-dependent manner. KLF6 knockdown increases TGFβR1 expression and promotes TGF-β-induced EMT, which is partly abrogated by QKI-5 overexpression. Mechanistically, QKI-5 directly interacts with the TGFβR1 3' UTR and causes post-transcriptional degradation of TGFβR1 mRNA, thereby inhibiting TGF-β-induced SMAD3 phosphorylation and TGF-β/SMAD signaling. QKI-5 is positively regulated by KLF6 at the transcriptional level. In LUAD tissues, KLF6 is lowly expressed and positively correlated with QKI-5 expression, while TGFβR1 expression is up-regulated and inversely correlated with QKI-5 expression. We reveal a novel mechanism by which KLF6 transcriptionally regulates QKI-5 and suggest that targeting the KLF6/QKI-5/TGFβR1 axis is a promising targeting strategy for metastatic LUAD.
Collapse
Affiliation(s)
- Shengjie Wang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China.,Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Xin Tong
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Chang Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, China
| | - Ersuo Jin
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Zhiyue Su
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Zelong Sun
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Weiwei Zhang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Zhe Lei
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Hong-Tao Zhang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, China.,Department of Genetics, School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China.,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, Jiangsu, China
| |
Collapse
|
27
|
Raktoe RS, Rietveld MH, Out-Luiting JJ, Kruithof-de Julio M, van Zuijlen PPM, van Doorn R, El Ghalbzouri A. The effect of TGFβRI inhibition on fibroblast heterogeneity in hypertrophic scar 2D in vitro models. Burns 2021; 47:1563-1575. [PMID: 33558094 DOI: 10.1016/j.burns.2021.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 12/24/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
In burn patients, wound healing is often accompanied by hypertrophic scarring (HTS), resulting in both functional and aesthetic problems. HTSs are characterized by abundant presence of myofibroblasts (MFs) residing in the dermis. HTS development and MF persistence is primarily regulated by TGF-β signalling. A promising method to target the transforming growth factor receptor I (TGFβRI; also known as activin-like kinase 5 (ALK5)) is by making use of exon skipping through antisense oligonucleotides. In HTS the distinguishing border between the papillary dermis and the reticular dermis is completely abrogated, thus exhibiting a one layered dermis containing a heterogenous fibroblast population, consisting of papillary fibroblasts (PFs), reticular fibroblasts (RFs) and MFs. It has been proposed that PFs, as opposed to RFs, exhibit anti-fibrotic properties. Currently, it is still unclear which fibroblast subtype is most affected by exon skipping treatment. Therefore, the aim of this study was to investigate the effect of TGFβRI inhibition by exon skipping in PF, RF and HTS fibroblast monocultures. Morphological analyses revealed the presence of a PF-like population after exon skipping in the different fibroblast cultures. This observation was further confirmed by the expression of genes specific for PFs, demonstrated by qPCR analyses. Further investigations on mRNA and protein level revealed that indeed MFs and to a lesser extent RFs are targeted by exon skipping. Furthermore, collagen gel contraction analysis showed that ALK5 exon skipping reduced TGF-β- induced contraction together with decreased alpha-smooth muscle actin expression levels. In conclusion, we show for the first time that exon skipping primarily targets pro-fibrotic fibroblasts. This could be a promising step towards reduced HTS development of burn tissue.
Collapse
Affiliation(s)
- Rajiv S Raktoe
- Department of Dermatology, Leiden University Medical Centre (LUMC), Leiden, the Netherlands.
| | - Marion H Rietveld
- Department of Dermatology, Leiden University Medical Centre (LUMC), Leiden, the Netherlands
| | - Jacoba J Out-Luiting
- Department of Dermatology, Leiden University Medical Centre (LUMC), Leiden, the Netherlands
| | - Marianna Kruithof-de Julio
- Department of Urology, LUMC, Leiden, the Netherlands; Department of Urology, University of Bern, Bern, Switzerland
| | - Paul P M van Zuijlen
- Amsterdam UMC Location VUmc, Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences, Amsterdam, the Netherlands; Burn Center and Department of Plastic and Reconstructive Surgery, Red Cross Hospital, Beverwijk, the Netherlands
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Centre (LUMC), Leiden, the Netherlands
| | | |
Collapse
|
28
|
Chen X, Yan H, Chen Y, Li G, Bin Y, Zhou X. Moderate oxidative stress promotes epithelial-mesenchymal transition in the lens epithelial cells via the TGF-β/Smad and Wnt/β-catenin pathways. Mol Cell Biochem 2021; 476:1631-1642. [PMID: 33417163 DOI: 10.1007/s11010-020-04034-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022]
Abstract
The epithelial-mesenchymal transition (EMT) plays a significant role in fibrosis and migration of lens epithelial cells (LECs), and eventually induces posterior capsule opacification (PCO). In the past, it was generally believed that the TGF-β/Smad pathway regulates lens EMT. A recent study found that attenuated glutathione level promotes LECs EMT via the Wnt/β-catenin pathway, which suggests a more complex pathogenesis of PCO. To test the hypothesis, we used the mouse cataract surgery PCO model and tested both canonical Wnt/β-catenin and TGF-β/Smad signaling pathways. The results showed that both TGF-β/Smad and Wnt/β-catenin pathways were activated during the lens capsule fibrosis. Compared with the freshly isolated posterior capsule, the expression level of phosphorylated Smad2 was highest at day3 and then slightly decreased, but the expression level of Wnt10a gradually increased from day0 to day7. It shows that these two pathways are involved in the lens epithelium's fibrotic process and may play different roles in different periods. Subsequently, we established oxidative stress-induced EMT model in primary porcine lens epithelial cells and found that both the TGF-β/Smad and Wnt/β-catenin pathways were activated. Further study suggests that block Wnt/β-catenin pathway using XAV939 alone or block TGF-β/Smad pathway using LY2109761 could partially block pLECs fibrosis, but blocking Wnt/β-catenin and TGF-β/Smad pathway using combined XAV939 and LY2109761 could completely block pLECs fibrosis. In conclusion, this study demonstrates that both TGF-β/Smad and canonical Wnt/β-catenin pathways play a significant role in regulating epithelial-mesenchymal transformation of lens epithelial cells but might be in a different stage.
Collapse
Affiliation(s)
- Xi Chen
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Hong Yan
- Shaanxi Eye Hospital, Affiliated Xi'an Fourth Hospital, Northwestern Polytechnical University, Xi'an, 710004, Shaanxi Province, China
| | - Ying Chen
- Shaanxi Eye Hospital, Affiliated Xi'an Fourth Hospital, Northwestern Polytechnical University, Xi'an, 710004, Shaanxi Province, China
| | - Guo Li
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yue Bin
- Department of Ophthalmology, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiyuan Zhou
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
29
|
Weadick B, Nayak D, Persaud AK, Hung SW, Raj R, Campbell MJ, Chen W, Li J, Williams TM, Govindarajan R. EMT-Induced Gemcitabine Resistance in Pancreatic Cancer Involves the Functional Loss of Equilibrative Nucleoside Transporter 1. Mol Cancer Ther 2020; 20:410-422. [PMID: 33298588 DOI: 10.1158/1535-7163.mct-20-0316] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/02/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022]
Abstract
Epithelial-mesenchymal transition (EMT) in cancer cells drives cancer chemoresistance, yet the molecular events of EMT that underpin the acquisition of chemoresistance are poorly understood. Here, we demonstrate a loss of gemcitabine chemosensitivity facilitated by human equilibrative nucleoside transporter 1 (ENT1) during EMT in pancreatic cancer and identify that cadherin switching from the epithelial (E) to neuronal (N) type, a hallmark of EMT, contributes to this loss. Our findings demonstrate that N-cadherin decreases ENT1 expression, membrane localization, and gemcitabine transport, while E-cadherin augments each of these. Besides E- and N-cadherin, another epithelial cell adhesion molecule, EpCAM, played a more prominent role in determining ENT1 membrane localization. Forced expression of EpCAM opposed cadherin switching with restored ENT1 expression, membrane localization, and gemcitabine transport in EMT-committed pancreatic cancer cells. In gemcitabine-treated mice, EpCAM-positive tumors had high ENT1 expression and reduced metastasis, whereas tumors with N-cadherin expression resisted gemcitabine treatment and formed extensive secondary metastatic nodules. Tissue microarray profiling and multiplexed IHC analysis of pancreatic cancer patient-derived primary tumors revealed EpCAM and ENT1 cell surface coexpression is favored, and ENT1 plasma membrane expression positively predicted median overall survival times in patients treated with adjuvant gemcitabine. Together, our findings identify ENT1 as an inadvertent target of EMT signaling mediated by cadherin switching and provide a mechanism by which mesenchymal pancreatic cancer cells evade gemcitabine therapy during EMT.
Collapse
Affiliation(s)
- Brenna Weadick
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, Ohio
| | - Debasis Nayak
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, Ohio
| | - Avinash K Persaud
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, Ohio
| | - Sau Wai Hung
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia
| | - Radhika Raj
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, Ohio
| | - Moray J Campbell
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, Ohio
| | - Wei Chen
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Junan Li
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, Ohio
| | - Terence M Williams
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Rajgopal Govindarajan
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, Ohio. .,Translational Therapeutics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
30
|
USP17-mediated de-ubiquitination and cancer: Clients cluster around the cell cycle. Int J Biochem Cell Biol 2020; 130:105886. [PMID: 33227393 DOI: 10.1016/j.biocel.2020.105886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
Abstract
Eukaryotic cells perform a range of complex processes, some essential for life, others specific to cell type, all of which are governed by post-translational modifications of proteins. Among the repertoire of dynamic protein modifications, ubiquitination is arguably the most arcane and profound due to its complexity. Ubiquitin conjugation consists of three main steps, the last of which involves a multitude of target-specific ubiquitin ligases that conjugate a range of ubiquitination patterns to protein substrates with diverse outcomes. In contrast, ubiquitin removal is catalysed by a relatively small number of de-ubiquitinating enzymes (DUBs), which can also display target specificity and impact decisively on cell function. Here we review the current knowledge of the intriguing ubiquitin-specific protease 17 (USP17) family of DUBs, which are expressed from a highly copy number variable gene that has been implicated in multiple cancers, although available evidence points to conflicting roles in cell proliferation and survival. We show that key USP17 substrates populate two pathways that drive cell cycle progression and that USP17 activity serves to promote one pathway but inhibit the other. We propose that this arrangement enables USP17 to stimulate or inhibit proliferation depending on the mitogenic pathway that predominates in any given cell and may partially explain evidence pointing to both oncogenic and tumour suppressor properties of USP17.
Collapse
|
31
|
Liu Q, Zheng S, Chen Y, Liu T, Han X, Zhang X, Shen T, Lu X. TGF-β1-Induced Upregulation of MALAT1 Promotes Kazakh's Esophageal Squamous Cell Carcinoma Invasion by EMT. J Cancer 2020; 11:6892-6901. [PMID: 33123280 PMCID: PMC7592017 DOI: 10.7150/jca.48426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/20/2020] [Indexed: 12/15/2022] Open
Abstract
Transforming growth factor β1 (TGF-β1) plays an important role in tumor initiation and development by inducing epithelial-mesenchymal Transition (EMT). Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1) is a long noncoding RNA (lncRNA) that contributes to the invasion and metastasis of tumors, including esophageal squamous cell carcinoma (ESCC). The aim of the present study was to explore the underlying mechanisms implicated in EMT and to clarify whether TGF-β1 regulates MALAT1 expression, thereby promoting the invasion of ESCC. Expression of TGF-β1, MALAT1 and EMT-related markers, including E-cadherin and Vimentin, was detected in clinical samples of Kazakh's ESCC. The role of TGF-β1 in the regulation of MALAT1 in ESCC invasion was evaluated at the ESCC cell line level. High TGF-β1 expression was significantly associated with poor survival among patients with Kazakh's ESCC. Additionally, the expression of Vimentin was upregulated, and the expression of E-cadherin was downregulated and varied. The expression of MALAT1 positively correlated with the expression of TGF-β1 both in vivo and in vitro. Furthermore, knockdown of MALAT1 inhibited TGF-β1-induced EMT. Our data indicate that MALAT1 is heavily involved in EMT induced by TGF-β1. MALAT1 may be a therapeutic target in the suppression of metastasis and invasion of ESCC.
Collapse
Affiliation(s)
- Qing Liu
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China.,State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asian, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Shutao Zheng
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China.,State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asian, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Yumei Chen
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asian, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Tao Liu
- Health Management Center, Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Xiujuan Han
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asian, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Xiao Zhang
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asian, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Tongxue Shen
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asian, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Xiaomei Lu
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China.,State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asian, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| |
Collapse
|
32
|
The association between HPV gene expression, inflammatory agents and cellular genes involved in EMT in lung cancer tissue. BMC Cancer 2020; 20:916. [PMID: 32972386 PMCID: PMC7517685 DOI: 10.1186/s12885-020-07428-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lung cancer is a leading cause of cancer morbidity and mortality worldwide. Several studies have suggested that Human papillomavirus (HPV) infection is an important risk factor in the development of lung cancer. In this study, we aim to address the role of HPV in the development of lung cancer mechanistically by examining the induction of inflammation and epithelial-mesenchymal transition (EMT) by this virus. METHODS In this case-control study, tissue samples were collected from 102 cases with lung cancer and 48 controls. We examined the presence of HPV DNA and also the viral genotype in positive samples. We also examined the expression of viral genes (E2, E6 and E7), anti-carcinogenic genes (p53, retinoblastoma (RB)), and inflammatory cytokines in HPV positive cases. RESULTS HPV DNA was detected in 52.9% (54/102) of the case samples and in 25% (12/48) of controls. A significant association was observed between a HPV positive status and lung cancer (OR = 3.37, 95% C.I = 1.58-7.22, P = 0.001). The most prevalent virus genotype in the patients was type 16 (38.8%). The expression of p53 and RB were decreased while and inflammatory cytokines were increased in HPV-positive lung cancer and HPV-positive control tissues compared to HPV-negative lung cancer and HPV-negative control tissues. Also, the expression level of E-cad and PTPN-13 genes were decreased in HPV- positive samples while the expression level of SLUG, TWIST and N-cad was increased in HPV-positive samples compared to negative samples. CONCLUSION Our study suggests that HPV infection drives the induction of inflammation and EMT which may promote in the development of lung cancer.
Collapse
|
33
|
Elie-Caille C, Lascombe I, Péchery A, Bittard H, Fauconnet S. Molecular and nanoscale evaluation of N-cadherin expression in invasive bladder cancer cells under control conditions or GW501516 exposure. Mol Cell Biochem 2020; 471:113-127. [PMID: 32519230 PMCID: PMC7370938 DOI: 10.1007/s11010-020-03771-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023]
Abstract
N-cadherin is a transmembrane glycoprotein expressed by mesenchymal origin cells and is located at the adherens junctions. It regulates also cell motility and contributes to cell signaling. In previous studies, we identified that its anomalous expression in bladder carcinoma was a tumor progression marker. A pharmacological approach to inhibit N-cadherin expression or to block its function could be relevant to prevent disease progression and metastasis development. The morphological exploration of T24 invasive bladder cancer cells by atomic force microscopy (AFM) revealed a spindle-like shape with fibrous structures. By engaging force spectroscopy with AFM tip functionalized with anti-E or anti-N-cadherin antibodies, results showed that T24 cells expressed only N-cadherin as also demonstrated by Western blotting and confocal microscopy. For the first time, we demonstrated by RTqPCR and Western blotting analyses that the peroxisome proliferator-activated receptor β/δ (PPARβ/δ) agonist GW501516 significantly decreased N-cadherin expression in T24 cells. Moreover, high non-cytotoxic doses of GW501516 inhibited confluent T24 cell wound healing closure. By using AFM, a more sensitive nanoanalytical method, we showed that the treatment modified the cellular morphology and diminished N-cadherin cell surface coverage through the decreasing of these adhesion molecule-mediated interaction forces. We observed a greater decrease of N-cadherin upon GW501516 exposure with AFM than that detected with molecular biology techniques. AFM was a complementary tool to biochemical techniques to perform measurements on living cells at the nanometer resolution level. Taken together, our data suggest that GW501516 could be an interesting therapeutic strategy to avoid bladder cancer cell spreading through N-cadherin decrease.
Collapse
Affiliation(s)
- Céline Elie-Caille
- FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS, ENSMM, UTBM, Besançon, France.
| | - Isabelle Lascombe
- Univ. Bourgogne Franche-Comté, EA3181, LabEx LipSTIC ANR-11-LABX-0021, 25030, Besançon, France
| | - Adeline Péchery
- Univ. Bourgogne Franche-Comté, EA3181, LabEx LipSTIC ANR-11-LABX-0021, 25030, Besançon, France
| | - Hugues Bittard
- Service Urologie et Andrologie, CHU Besançon, 25000, Besançon, France
| | - Sylvie Fauconnet
- Univ. Bourgogne Franche-Comté, EA3181, LabEx LipSTIC ANR-11-LABX-0021, 25030, Besançon, France.
- Service Urologie et Andrologie, CHU Besançon, 25000, Besançon, France.
| |
Collapse
|
34
|
Wang L, Peng Q, Sai B, Zheng L, Xu J, Yin N, Feng X, Xiang J. Ligand-independent EphB1 signaling mediates TGF-β-activated CDH2 and promotes lung cancer cell invasion and migration. J Cancer 2020; 11:4123-4131. [PMID: 32368295 PMCID: PMC7196256 DOI: 10.7150/jca.44576] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose: The initial step of cancer metastasis is that cancer cells acquire the capability to migrate and invade. Eph receptors comprise the largest family of receptor tyrosine and display dual role in tumor progression due to unique ephrin cis- or trans- signaling. The roles of EphB1 and its phosphorylation signaling in lung cancer remain to be elucidated. Patients and Methods: We analyzed the expression of EphB1 in both publicly available database and 60 cases of NSCLC patients with or without metastasis. The migration and invasion of lung cancer cells were assessed by a transwell assay. The activation of EphB1 signaling was assessed by western blot and real-time PCR. The EphB1 mutant was used to evaluate the effect of phosphorylation of EphB1. Results: Here, we showed that increased expression of EphB1 was detected in Non-Small-Cell Lung Cancer (NSCLC) biopies compared to non-cancer controls. Significant higher expression of EphB1 in lung biopsies were found in patients with metastasis compared to non-metastatic NSCLC patients. Higher EphB1 expression was correlated with poor patient survival in lung cancer. Overexpression of EphB1 promoted the migration and invasion of lung cancer cells. On the contrast, Ephrin-B2, a transmembrane ligand for EphB1 forward signaling, inhibited migration and invasion of lung cancer cells. TGF-β-activated Smad2 transcriptionally upregulated the endogenous expression of EphB1. Ligand-independent EphB1 promoted Epithelial-mesenchymal transition (EMT) through upregulating CDH2. Conclusion: Our results showed that the effect of EphB1 on the migration and invasion was context-specific and was dependent on EphB1 phosphorylation.
Collapse
Affiliation(s)
- Lujuan Wang
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Qiu Peng
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Buqing Sai
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Leliang Zheng
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Jiaqi Xu
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Na Yin
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Xiang Feng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Juanjuan Xiang
- Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| |
Collapse
|
35
|
MYOCD and SMAD3/SMAD4 form a positive feedback loop and drive TGF-β-induced epithelial-mesenchymal transition in non-small cell lung cancer. Oncogene 2020; 39:2890-2904. [PMID: 32029901 DOI: 10.1038/s41388-020-1189-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 11/08/2022]
Abstract
Myocardin (MYOCD) promotes Smad3-mediated transforming growth factor-β (TGF-β) signaling in mouse fibroblast cells. Our previous studies show that TGF-β/SMADs signaling activation enhances epithelial-mesenchymal transition (EMT) in human non-small cell lung cancer (NSCLC) cells. However, whether and how MYOCD contributes to TGF-β-induced EMT of NSCLC cells are poorly elucidated. Here, we found that TGF-β-induced EMT was accompanied by increased MYOCD expression. Interestingly, MYOCD overexpression augmented EMT and invasion of NSCLC cells induced by TGF-β, whereas knockdown of MYOCD expression attenuated these effects. Overexpression and knockdown of MYOCD resulted in the upregulation and downregulation of TGF-β-induced Snail mRNA, respectively. Moreover, MYOCD overexpression promoted TGF-β-stimulated NSCLC cell metastasis in vivo. MYOCD was highly expressed and positively correlated with Snail in metastatic NSCLC tissues. Mechanistically, MYOCD directly interacted with SMAD3 and sustained the formation of TGF-β-induced nuclear SMAD3/SMAD4 complex, facilitating TGF-β/SMAD3-induced transactivation of Snail. Importantly, MYOCD was transcriptionally activated by TGF-β-induced SMAD3/SMAD4 complex and CRISPR/Cas9-mediated silencing of SMAD3/SMAD4 led to a reduction in MYOCD mRNA expression. Taken together, our findings indicate that MYOCD promotes TGF-β-induced EMT and metastasis of NSCLC and identify a positive feedback loop between MYOCD and SMAD3/SMAD4 driving TGF-β-induced EMT.
Collapse
|
36
|
Ren H, Wu C, Shao Y, Liu S, Zhou Y, Wang Q. Correlation between serum miR-154-5p and urinary albumin excretion rates in patients with type 2 diabetes mellitus: a cross-sectional cohort study. Front Med 2020; 14:642-650. [DOI: 10.1007/s11684-019-0719-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/05/2019] [Indexed: 01/28/2023]
|
37
|
Application of pharmacogenomics and bioinformatics to exemplify the utility of human ex vivo organoculture models in the field of precision medicine. PLoS One 2019; 14:e0226564. [PMID: 31860681 PMCID: PMC6924641 DOI: 10.1371/journal.pone.0226564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/28/2019] [Indexed: 01/01/2023] Open
Abstract
Here we describe a collaboration between industry, the National Health Service (NHS) and academia that sought to demonstrate how early understanding of both pharmacology and genomics can improve strategies for the development of precision medicines. Diseased tissue ethically acquired from patients suffering from chronic obstructive pulmonary disease (COPD), was used to investigate inter-patient variability in drug efficacy using ex vivo organocultures of fresh lung tissue as the test system. The reduction in inflammatory cytokines in the presence of various test drugs was used as the measure of drug efficacy and the individual patient responses were then matched against genotype and microRNA profiles in an attempt to identify unique predictors of drug responsiveness. Our findings suggest that genetic variation in CYP2E1 and SMAD3 genes may partly explain the observed variation in drug response.
Collapse
|
38
|
Huang W, Wu Y, Cheng D, He Z. Mechanism of epithelial‑mesenchymal transition inhibited by miR‑203 in non‑small cell lung cancer. Oncol Rep 2019; 43:437-446. [PMID: 31894278 PMCID: PMC6967097 DOI: 10.3892/or.2019.7433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 10/25/2019] [Indexed: 01/05/2023] Open
Abstract
The aim of the present study was to investigate whether miR-203 can inhibit transforming growth factor-β (TGF-β)-induced epithelial-mesenchymal transition (EMT), and the migration and invasion ability of non-small cell lung cancer (NSCLC) cells by targeting SMAD3. In the present study, the expression levels of miR-203, SMAD3 mRNA and protein in NSCLC tissues were examined, as well as their corresponding paracancerous samples. The miR-203 mimics and miR-203 inhibitor were transfected into the H226 cell line. RT-qPCR was used to assess the expression levels of E-cadherin, Snail, N-cadherin and vimentin mRNA, and western blotting was performed to detect the expression levels of p-SMAD2, SMAD2, p-SMAD3, SMAD3 and SMAD4. The cell migration and invasion abilities were detected by Transwell assays. The target site of SMAD3 was predicted by the combined action between miR-203 and dual luciferase. The results revealed that the RNA levels of miR-203, compared with paracancerous tissues, were decreased in NSCLC tissues, while SMAD3 mRNA and protein levels were upregulated, and miR-203 inhibited SMAD3 expression. Induction of TGF-β led to decreased E-cadherin mRNA levels, upregulation of Snail, N-cadherin and vimentin mRNA levels (P<0.05), and significant increase in cell migration and invasion, whereas transfection of miR-203 mimics reversed the aforementioned results (P<0.05). Conversely, miR-203 inhibitor could further aggravate the aforementioned results (P<0.05). Western blot results revealed that transfection of miR-203 mimics significantly reduced the protein expression of SMAD3 and p-SMAD3 (P<0.05). Furthermore, the results of the Dual-Luciferase assay revealed that miR-203 inhibited SMAD3 expression by interacting with specific regions of its 3′-UTR. Overall, a novel mechanism is revealed, in which, miR-203 can inhibit SMAD3 by interacting with specific regions of the 3′-UTR of SMAD3, thereby restraining TGF-β-induced EMT progression and migration and invasion of NSCLC cells.
Collapse
Affiliation(s)
- Weicong Huang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yuanbo Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Dezhi Cheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhifeng He
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
39
|
Bai Y, Li LD, Li J, Chen RF, Yu HL, Sun HF, Wang JY, Lu X. A FXYD5/TGF‑β/SMAD positive feedback loop drives epithelial‑to‑mesenchymal transition and promotes tumor growth and metastasis in ovarian cancer. Int J Oncol 2019; 56:301-314. [PMID: 31746425 DOI: 10.3892/ijo.2019.4911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/02/2019] [Indexed: 11/06/2022] Open
Abstract
Epithelial ovarian cancer is aggressive and lacks effective prognostic indicators or therapeutic targets. In the present study, using immunohistochemistry and bioinformatics analysis on ovarian cancer tissue data from The Obstetrics and Gynecology Hospital of Fudan University and The Cancer Genome Atlas database, it was identified that FXYD domain‑containing ion transport regulator 5 (FXYD5) expression was upregulated in the SKOV3‑IP cell line compared with its parental cell line, SKOV3, and in ovarian cancer tissues compared with in normal tissues. In addition, FXYD5 upregulation was predictive of poor patient survival. Furthermore, through various in vitro (Transwell assay, clonogenic assay and western blot analysis) and in vivo (nude mouse model) experiments, it was demonstrated that FXYD5 promoted the metastasis of ovarian cancer cells. Mechanistically, RNA sequencing, western blot analysis, a luciferase reporter assay and chromatin immunoprecipitation were performed to reveal that FXYD5 dispersed the SMAD7‑SMAD specific E3 ubiquitin protein ligase 2‑TGF‑β receptor 1 (TβR1) complex, deubiquitinated and stabilized TβR1, and subsequently enhanced transforming growth factor‑β (TGF‑β) signaling and sustained TGF‑β‑driven epithelial‑mesenchymal transition (EMT). The TGF‑β‑activated SMAD3/SMAD4 complex was in turn directly recruited to the FXYD5 promoter region, interacted with specific SMAD‑binding elements, and then promoted FXYD5 transcription. In brief, FXYD5 positively regulated TGF‑β/SMADs signaling activities, which in turn induced FXYD5 expression, creating a positive feedback loop to drive EMT in the process of ovarian cancer progression. Collectively, the findings of the present study suggested a mechanism through which FXYD5 serves a critical role in the constitutive activation of the TGF‑β/SMADs signaling pathways in ovarian cancer, and provided a promising therapeutic target for human ovarian cancer.
Collapse
Affiliation(s)
- Yang Bai
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| | - Liang-Dong Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Jun Li
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| | - Rui-Fang Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| | - Hai-Lin Yu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| | - He-Fen Sun
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200030, P.R. China
| | - Jie-Yu Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| | - Xin Lu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| |
Collapse
|
40
|
Cao ZQ, Wang Z, Leng P. Aberrant N-cadherin expression in cancer. Biomed Pharmacother 2019; 118:109320. [DOI: 10.1016/j.biopha.2019.109320] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
|
41
|
Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, Chong PP, Looi CY. The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells 2019; 8:E1118. [PMID: 31547193 PMCID: PMC6830116 DOI: 10.3390/cells8101118] [Citation(s) in RCA: 793] [Impact Index Per Article: 132.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022] Open
Abstract
Epithelial-to-Mesenchymal Transition (EMT) has been shown to be crucial in tumorigenesis where the EMT program enhances metastasis, chemoresistance and tumor stemness. Due to its emerging role as a pivotal driver of tumorigenesis, targeting EMT is of great therapeutic interest in counteracting metastasis and chemoresistance in cancer patients. The hallmark of EMT is the upregulation of N-cadherin followed by the downregulation of E-cadherin, and this process is regulated by a complex network of signaling pathways and transcription factors. In this review, we summarized the recent understanding of the roles of E- and N-cadherins in cancer invasion and metastasis as well as the crosstalk with other signaling pathways involved in EMT. We also highlighted a few natural compounds with potential anti-EMT property and outlined the future directions in the development of novel intervention in human cancer treatments. We have reviewed 287 published papers related to this topic and identified some of the challenges faced in translating the discovery work from bench to bedside.
Collapse
Affiliation(s)
- Chin-Yap Loh
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Jian Yi Chai
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Muthu Kumaraswamy Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| |
Collapse
|
42
|
MicroRNA-330-3p promotes brain metastasis and epithelial-mesenchymal transition via GRIA3 in non-small cell lung cancer. Aging (Albany NY) 2019; 11:6734-6761. [PMID: 31498117 PMCID: PMC6756898 DOI: 10.18632/aging.102201] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022]
Abstract
Brain metastasis (BM) is associated with poor prognosis in patients with non-small cell lung cancer (NSCLC). We sought to identify microRNAs (miRNAs) that could serve as biomarkers to differentiate NSCLC patients with and without BM. Logistic regression was conducted with 122 NSCLC patients (60 without BM, 62 with BM) to assess the association between miRNAs and BM. We confirmed several risk factors for BM and revealed that serum miR-330-3p levels are higher in NSCLC patients with BM than that without BM. Overexpression of miR-330-3p promoted proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) of NSCLC cells in vitro and NSCLC tumorigenesis in vivo. Knocking down miR-330-3p suppressed this metastatic phenotype. We identified putative miR-330-3p target genes by comparing mRNA microarray analysis data from A549 cells after miR-330-3p knockdown with candidate miR-330-3p target genes predicted by public bioinformatic tools and luciferase reporter assays. We found that GRIA3 is a target of miR-330-3p and that miR-330-3p stimulates EMT progress by mediating GRIA3-TGF-β1 interaction. Our results provide novel insight into the role of miR-330-3p in NSCLC metastasis, and suggest miR-330-3p may be a useful biomarker for identifying NSCLC with metastatic potential.
Collapse
|
43
|
Iacona JR, Monteleone NJ, Lemenze AD, Cornett AL, Lutz CS. Transcriptomic studies provide insights into the tumor suppressive role of miR-146a-5p in non-small cell lung cancer (NSCLC) cells. RNA Biol 2019; 16:1721-1732. [PMID: 31425002 DOI: 10.1080/15476286.2019.1657351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a complex disease in need of new methods of therapeutic intervention. Recent interest has focused on using microRNAs (miRNAs) as a novel treatment method for various cancers. miRNAs negatively regulate gene expression post-transcriptionally, and have become attractive candidates for cancer treatment because they often simultaneously target multiple genes of similar biological function. One such miRNA is miR-146a-5p, which has been described as a tumor suppressive miRNA in NSCLC cell lines and tissues. In this study, we performed RNA-Sequencing (RNA-Seq) analysis following transfection of synthetic miR-146a-5p in an NSCLC cell line, A549, and validated our data with Gene Ontology and qRT-PCR analysis of known miR-146a-5p target genes. Our transcriptomic data revealed that miR-146a-5p exerts its tumor suppressive function beyond previously reported targeting of EGFR and NF-κB signaling. miR-146a-5p mimic transfection downregulated arachidonic acid metabolism genes, the RNA-binding protein HuR, and many HuR-stabilized pro-cancer mRNAs, including TGF-β, HIF-1α, and various cyclins. miR-146a-5p transfection also reduced expression and cellular release of the chemokine CCL2, and this effect was mediated through the 3' untranslated region of its mRNA. Taken together, our work reveals that miR-146a-5p functions as a tumor suppressor in NSCLC by controlling various metabolic and signaling pathways through direct and indirect mechanisms.
Collapse
Affiliation(s)
- Joseph R Iacona
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA.,Newark Health Sciences Campus, Rutgers University School of Graduate Studies, Newark, NJ, USA
| | - Nicholas J Monteleone
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA.,Newark Health Sciences Campus, Rutgers University School of Graduate Studies, Newark, NJ, USA
| | - Alexander D Lemenze
- Newark Health Sciences Campus, Rutgers University School of Graduate Studies, Newark, NJ, USA.,Molecular Resource Facility, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA
| | - Ashley L Cornett
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA.,Newark Health Sciences Campus, Rutgers University School of Graduate Studies, Newark, NJ, USA
| | - Carol S Lutz
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA.,Newark Health Sciences Campus, Rutgers University School of Graduate Studies, Newark, NJ, USA
| |
Collapse
|
44
|
Li WQ, Zhang JP, Wang YY, Li XZ, Sun L. MicroRNA-422a functions as a tumor suppressor in non-small cell lung cancer through SULF2-mediated TGF-β/SMAD signaling pathway. Cell Cycle 2019; 18:1727-1744. [PMID: 31204561 PMCID: PMC6649599 DOI: 10.1080/15384101.2019.1632135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) have been demonstrated to participate in a variety of human cancers by functioning as post-transcriptional regulators of oncogenes or antioncogenes including non-small cell lung cancer (NSCLC). The aim of the current study was to identify the role of miR-422a in NSCLC via sulfatase 2 (SULF2) to further elucidate the mechanism of NSCLC. Initially, the expression of miR-422a and SULF2 was determined in NSCLC tissues and cells. The role of miR-422a in NSCLC was identified in relation with a miR-422a mimic or inhibitor, siRNA against SULF2 and TGF-β1. The regulatory effects of miR-422a were examined following detection of the related epithelial mesenchymal transition (EMT)-related genes, and the apoptosis-related genes and evaluation of their cellular biological functions. The expression pattern of miR-422a, SULF2, and the TGF-β/SMAD pathway-related genes was detected to elucidate the mechanism by which miR-422a influences the progression of NSCLC. Finally, xenograft tumors in nude mice were observed for tumorigenicity evaluation purposes. Our results showed that miR-422a was poorly expressed while SULF2 was highly expressed in NSCLC. Dual luciferase reporter gene assay further verified that miR-422a targeted SULF2. Altogether, this study demonstrated that miR-422a downregulated SULF2 to inhibit the TGF-β/SMAD pathway. NSCLC cell proliferation, migration, invasion, colony formation, EMT and tumorigenesis were all inhibited while apoptosis was promoted upon restoration of miR-422a or silencing of SULF2. However, the activation of the TGF-β/SMAD pathway was determined to reverse the tumor-suppressive effects of si-SULF2. miR-422a restoration, which ultimately inhibited the progression of NSCLC by suppressing the TGF-β/SMAD pathway via SULF2.
Collapse
Affiliation(s)
- Wei-Qiang Li
- a Department of Thoracic Surgery , Beijing Luhe Hospital, Capital Medical University , Beijing , P. R. China
| | - Jian-Peng Zhang
- a Department of Thoracic Surgery , Beijing Luhe Hospital, Capital Medical University , Beijing , P. R. China
| | - Yan-Yu Wang
- a Department of Thoracic Surgery , Beijing Luhe Hospital, Capital Medical University , Beijing , P. R. China
| | - Xin-Zhen Li
- a Department of Thoracic Surgery , Beijing Luhe Hospital, Capital Medical University , Beijing , P. R. China
| | - Lin Sun
- a Department of Thoracic Surgery , Beijing Luhe Hospital, Capital Medical University , Beijing , P. R. China
| |
Collapse
|
45
|
Wu L, Wang P. Long non-coding RNA-neighboring enhancer of FOXA2 inhibits the migration and invasion of small cell lung carcinoma cells by downregulating transforming growth factor-β1. Oncol Lett 2019; 17:4969-4975. [PMID: 31186707 PMCID: PMC6507357 DOI: 10.3892/ol.2019.10152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 02/06/2019] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNA-neighboring enhancer of FOXA2 (lncRNA-NEF) is a recently identified tumor suppressor in hepatocellular carcinoma. The present study aimed to investigate the role of lncRNA-NEF in small cell lung carcinoma (SCLC). Expression levels of lncRNA-NEF in the lung biopsy tissues and plasma samples from patients with SCLC and from healthy controls were detected using reverse transcription-quantitative polymerase chain reaction. Receiver operating characteristic curve analysis was performed to evaluate the diagnostic value of lncRNA-NEF as a marker of SCLC. The association between plasma levels of lncRNA-NEF and the clinical data of patients was analyzed using the χ2 test. An lncRNA-NEF expression vector was prepared and transfected into SCLC cells, and cellular migration and invasion were detected using Transwell migration and invasion assays, respectively. The expression of transforming growth factor β1 (TGF-β1) was detected using western blotting. The results demonstrated that the expression level of lncRNA-NEF was lower in patients with SCLC compared with that in healthy controls. The expression level of lncRNA-NEF in the plasma was associated with distant tumor metastasis. lncRNA-NEF overexpression inhibited SCLC cell migration and invasion, resulting in TGF-β1 downregulation, while treatment with exogenous TGF-β1 reduced the inhibitory effects of lncRNA-NEF overexpression on migration and invasion. Therefore, it was concluded that lncRNA-NEF inhibited the migration and invasion of SCLC cells, which was potentially associated with the downregulation of TGF-β1.
Collapse
Affiliation(s)
- Lei Wu
- Department of Respiratory Medicine, The First People's Hospital of Tianmen City, Tianmen, Hubei 431700, P.R. China
| | - Pan Wang
- Clinical Laboratory, The First People's Hospital of Tianmen City, Tianmen, Hubei 431700, P.R. China
| |
Collapse
|
46
|
Simultaneous Detection of Autophagy and Epithelial to Mesenchymal Transition in the Non-small Cell Lung Cancer Cells. Methods Mol Biol 2019; 1854:87-103. [PMID: 29101677 DOI: 10.1007/7651_2017_84] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autophagy is increasingly identified as a central player in many cellular activities from cell proliferation to cell division, migration, and differentiation. However, it is also considered as a double-edged sword in cancer biology which either promotes oncogenesis/invasion or sensitizes the tumor cells to chemotherapy induced apoptosis. Recent investigations have provided direct evidence for regulation of cellular phenotype via autophagy pathway. One of the most important types of phenotype conversion is Epithelial-Mesenchymal-Transition (EMT), resulting in alteration of epithelial cell properties to a more mesenchymal form. In the current chapter, we provide a method which is established and being used in our laboratory for detection of autophagy and EMT in lung epithelial cells and show the involvement of autophagy in modulation of cellular phenotype.
Collapse
|
47
|
Jiang Z, Guo Y, Miao L, Han L, Zhang W, Jiang Y. SMAD3 silencing enhances DNA damage in radiation therapy by interacting with MRE11-RAD50-NBS1 complex in glioma. J Biochem 2019; 165:317-322. [PMID: 30535026 DOI: 10.1093/jb/mvy110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/05/2018] [Indexed: 01/13/2023] Open
Abstract
Radiotherapy is the major treatment modality for malignant glioma. However, the treatment response of radiotherapy is suboptimal due to resistance. Here we aimed to explore the effect and mechanism of Mothers against decapentaplegic homologue (SMAD3) silencing in sensitizing malignant glioma to radiotherapy. Clonogenic assay was used to evaluate the sensitivity of glioma cells to increasing doses of radiation. Glioma cells were transfected with small-interfering RNAs (siRNAs) specific to SMAD3. Overexpression of SMAD3 was achieved by transfecting expression plasmid encoding SMAD3 cDNA. Changes in MRE11-RAD50-NBS1 mRNA and protein levels were assessed through qPCR analysis and western blot analysis, respectively. Chromatin immunoprecipitation (ChIP) was used to confirm the interaction between SMAD3 and MRE11-RAD50-NBS1 (MRN) complex. Silencing of SMAD3 increased sensitivity of glioma cells to radiotherapy. MRE11, RAD50 and NBS1 were overexpressed in response to radiotherapy, which was attenuated by SMAD3 silencing while boosted by SMAD3 overexpression. ChIP analysis confirmed the interaction of SMAD3 with MRE11, RAD50 and NBS1 under radiotherapy, which was inhibited by SMAD3 silencing. SMAD3 silencing is an effective strategy for sensitizing glioma to radiotherapy, which is mediated by the interaction of SMAD3 with the MRN complex.
Collapse
Affiliation(s)
- Zheng Jiang
- Department of Neurosurgery, Qilu Hospital of Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, Shandong Province, P. R. China
| | - Yan Guo
- Department of Internal Medicine, People's Hospital of Qingzhou, No. 1726 Linglongshan Road, Qingzhou, Shandong Province, P. R. China
| | - Lifeng Miao
- Department of Neurosurgery, Dezhou People Hospital, No. 1751 Xinhu Street, Dezhou, Shandong Province, P. R. China
| | - Lizhang Han
- Department of Neurosurgery, Qilu Hospital of Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, Shandong Province, P. R. China
| | - Wei Zhang
- Department of Neurosurgery, Weifang Yidu Central Hospital, No. 4138 Linglongshan Road, Qingzhou, Shandong Province, P. R. China
| | - Yuquan Jiang
- Department of Neurosurgery, Qilu Hospital of Shandong University, No. 107 Wenhua West Road, Lixia District, Jinan, Shandong Province, P. R. China
| |
Collapse
|
48
|
Lingling J, Xiangao J, Guiqing H, Jichan S, Feifei S, Haiyan Z. SNHG20 knockdown suppresses proliferation, migration and invasion, and promotes apoptosis in non-small cell lung cancer through acting as a miR-154 sponge. Biomed Pharmacother 2019; 112:108648. [PMID: 30780105 DOI: 10.1016/j.biopha.2019.108648] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 12/27/2022] Open
Abstract
Long noncoding RNAs (LncRNAs) play critical roles in the development and progression of cancers. However, little is known about the function and mechanism of lncRNAs in non-small cell lung cancer (NSCLC). In this study, we investigated the expression and functional role of lncRNA small nucleolar RNA host gene 20 (SNHG20) as well as its underlying mechanism in NSCLC. Our results showed that SNHG20 was significantly up-regulated in NSCLC tissues and cells. High SNHG20 expression was implicated with poor prognosis in NSCLC patients. Moreover, SNHG20 knockdown suppressed proliferation, migration and invasion, and induced apoptosis in NSCLC cells. Furthermore, SNHG20 could function as a competing endogenous RNA (ceRNA) to elevate ZEB2 and RUNX2 expression by sponging miR-154. Rescue assays revealed that miR-154 inhibition could reverse the inhibitory effect of SNHG20 silence on proliferation, migration and invasion in NSCLC cells. More importantly, SNHG20 knockdown suppressed tumor growth in NSCLC in vivo through suppressing miR-154 and elevating ZEB2 and RUNX2 expression. In summary, knockdown of lncRNA SNHG20 suppressed proliferation, migration and invasion, and promotes apoptosis through up-regulating ZEB2 and RUNX2 expression by sponging miR-154 in NSCLC, providing a promising therapeutic target for NSCLC patients.
Collapse
Affiliation(s)
- Jin Lingling
- Infections Department, Wenzhou Central Hospital, Wenzhou, 325000, China
| | - Jiang Xiangao
- Infections Department, Wenzhou Central Hospital, Wenzhou, 325000, China.
| | - He Guiqing
- Infections Department, Wenzhou Central Hospital, Wenzhou, 325000, China
| | - Shi Jichan
- Infections Department, Wenzhou Central Hospital, Wenzhou, 325000, China
| | - Su Feifei
- Infections Department, Wenzhou Central Hospital, Wenzhou, 325000, China
| | - Zhu Haiyan
- Infections Department, Wenzhou Central Hospital, Wenzhou, 325000, China
| |
Collapse
|
49
|
LncRNA HAND2-AS1 inhibits non-small cell lung cancer migration, invasion and maintains cell stemness through the interactions with TGF-β1. Biosci Rep 2019; 39:BSR20181525. [PMID: 30509963 PMCID: PMC6328884 DOI: 10.1042/bsr20181525] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/02/2018] [Accepted: 11/11/2018] [Indexed: 11/17/2022] Open
Abstract
LncRNA HAND2-AS1 is characterized as a tumor suppressor involved in several types of malignancies, but its role in non-small cell lung cancer (NSCLC) is unknown. Our study was carried out to investigate the involvement of lncRNA HAND2-AS1 in NSCLC. In our study, we observed that levels of HAND2-AS1 were lower in tumor tissues than that in adjacent healthy tissues. Compared with healthy controls, plasma levels of HAND2-AS1 were lower, while levels of transforming growth factor β (TGF-β) were higher in NSCLC patients. A significant negative correlation between plasma levels of HAND2-AS1 and TGF-β1 was found in NSCLC patients but not in healthy controls. LncRNA HAND2-AS1 overexpression inhibits, while exogenous TGF-β1 treatment promotes cell migration and invasion ability and cancer cell stemness. Cancer cells with lncRNA HAND2-AS1 overexpression showed down-regulated TGF-β1, while TGF-β1 treatment showed no significant effects on lncRNA HAND2-AS1 expression. TGF-β1 attenuated the inhibitory effects of lncRNA HAND2-AS1 overexpression on cell migration, invasion and stemness. We concluded that lncRNA HAND2-AS1 may regulate the migration, invasion and stemness of NSCLC cells through interactions with TGF-β1.
Collapse
|
50
|
Jiang K, Zhao T, Shen M, Zhang F, Duan S, Lei Z, Chen Y. MiR-940 inhibits TGF-β-induced epithelial-mesenchymal transition and cell invasion by targeting Snail in non-small cell lung cancer. J Cancer 2019; 10:2735-2744. [PMID: 31258781 PMCID: PMC6584929 DOI: 10.7150/jca.31800] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
Increased evidence reveals that miR-940 inhibits the migration and invasion of cancer cells. Considering transforming growth factor β (TGF-β) signaling is crucial to cellular epithelial-mesenchymal transition (EMT) process and metastasis of cancer, it is in urgent to explore whether and how miR-940 plays an essential role in regulating TGF-β-induced EMT in lung cancer progression. In the present study, we observed a reciprocal expression with down-regulated miR-940 and up-regulated Snail mRNA in non-small-cell lung cancer (NSCLC) tissues. we further found that the expression of miR-940 was decreased in NSCLC tissues with lymph node metastasis, advanced TNM stages and poor cell differentiation, in which, on the contrary, the expression of Snail was increased. Overexpression of miR-940 significantly inhibited Snail mRNA and protein expression in A549 and H226 cells. Mechanistically, Snail mRNA was identified as target of miR-940. In addition, miR-940 repressed TGF-β-induced EMT and further hampered the cell migration and invasion. Finally, siRNA-mediated knockdown of Snail copied the phenotype of miR-940 overexpression in A549 and H226 cells. Taken together, our study reveals that miR-940 can suppress TGF-β-induced EMT and cell invasion by targeting Snail 3'-UTR mRNA in NSCLC.
Collapse
Affiliation(s)
- Kanqiu Jiang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215004, China
| | - Ting Zhao
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215004, China
| | - Mingjing Shen
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215004, China
| | - Fuquan Zhang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215004, China
| | - Shanzhou Duan
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215004, China
| | - Zhe Lei
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou 215123, China
- Department of Genetics, School of Biology and Basic Medical Science, Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
- ✉ Corresponding authors: Zhe Lei, Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, 199 Ren'ai Road, Sino-Singapore Industrial Park, Suzhou 215123, China. E-mail: , and Yongbing Chen, Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Soochow University, Medical College of Soochow University, 1055 Sanxiang Street, Suzhou 215004, China. E-mail:
| | - Yongbing Chen
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215004, China
- ✉ Corresponding authors: Zhe Lei, Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, 199 Ren'ai Road, Sino-Singapore Industrial Park, Suzhou 215123, China. E-mail: , and Yongbing Chen, Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Soochow University, Medical College of Soochow University, 1055 Sanxiang Street, Suzhou 215004, China. E-mail:
| |
Collapse
|