1
|
Park S, Park S, Kim TM, Kim S, Koh J, Lim J, Yi K, Yi B, Ju YS, Kim M, Keam B, Kim JS, Jeon YK, Kim DW, Kim YT, Heo DS. Resistance mechanisms of EGFR tyrosine kinase inhibitors, in EGFR exon 20 insertion-mutant lung cancer. Eur J Cancer 2024; 208:114206. [PMID: 38981315 DOI: 10.1016/j.ejca.2024.114206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Mobocertinib, an EGFR exon 20 insertion (Ex20ins)-specific tyrosine kinase inhibitor has been used for treatment of advanced/metastatic EGFR Ex20ins-mutant non-small cell lung cancer (NSCLC). However, resistance mechanisms to EGFR Ex20ins-specific inhibitors and the efficacy of subsequent amivantamab treatment is unknown. METHODS To investigate resistance mechanisms, tissue and cfDNA samples were collected before treatment initiation and upon development of resistance from NSCLC patients with EGFR Ex20ins mutations received mobocertinib, poziotinib, and amivantamab treatments. Genetic alterations were analyzed using whole-genome and targeted sequencing, and in vitro resistant cell lines were generated for validation. RESULTS EGFR amplification (n = 6, including 2 broad copy number gain) and EGFR secondary mutation (n = 3) were observed at the resistance of mobocertinib. One patient had both EGFR secondary mutation and high EGFR focal amplification. In vitro models harboring EGFR alterations were constructed to validate resistance mechanisms and identify overcoming strategies to resistance. Acquired EGFR-dependent alterations were found to mediate resistance to mobocertinib in patients and in vitro models. Furthermore, two of six patients who received sequential amivantamab followed by an EGFR tyrosine kinase inhibitor had MET amplification and showed partial response. CONCLUSIONS Our study revealed EGFR-dependent and -independent mechanisms of mobocertinib resistance in patients with advanced EGFR Ex20ins-mutant NSCLC.
Collapse
Affiliation(s)
- Siyeon Park
- Seoul National University Cancer Research Institute, Seoul, South Korea
| | - Seongyeol Park
- Inocras Inc., San Diego, CA, USA; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Tae Min Kim
- Seoul National University Cancer Research Institute, Seoul, South Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea.
| | - Soyeon Kim
- Seoul National University Cancer Research Institute, Seoul, South Korea; Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, South Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Joonoh Lim
- Inocras Inc., San Diego, CA, USA; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kijong Yi
- Inocras Inc., San Diego, CA, USA; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Boram Yi
- Inocras Inc., San Diego, CA, USA
| | - Young Seok Ju
- Inocras Inc., San Diego, CA, USA; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Miso Kim
- Seoul National University Cancer Research Institute, Seoul, South Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Bhumsuk Keam
- Seoul National University Cancer Research Institute, Seoul, South Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jung Sun Kim
- Seoul National University Cancer Research Institute, Seoul, South Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Yoon Kyung Jeon
- Seoul National University Cancer Research Institute, Seoul, South Korea; Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong-Wan Kim
- Seoul National University Cancer Research Institute, Seoul, South Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Young Tae Kim
- Seoul National University Cancer Research Institute, Seoul, South Korea; Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Dae Seog Heo
- Seoul National University Cancer Research Institute, Seoul, South Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
2
|
Ntzifa A, Marras T, Georgoulias V, Lianidou E. Liquid biopsy for the management of NSCLC patients under osimertinib treatment. Crit Rev Clin Lab Sci 2024; 61:347-369. [PMID: 38305080 DOI: 10.1080/10408363.2024.2302116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Therapeutic management of NSCLC patients is quite challenging as they are mainly diagnosed at a late stage of disease, and they present a high heterogeneous molecular profile. Osimertinib changed the paradigm shift in treatment of EGFR mutant NSCLC patients achieving significantly better clinical outcomes. To date, osimertinib is successfully administered not only as first- or second-line treatment, but also as adjuvant treatment while its efficacy is currently investigated during neoadjuvant treatment or in stage III, unresectable EGFR mutant NSCLC patients. However, resistance to osimertinib may occur due to clonal evolution, under the pressure of the targeted therapy. The utilization of liquid biopsy as a minimally invasive tool provides insight into molecular heterogeneity of tumor clonal evolution and potent resistance mechanisms which may help to develop more suitable therapeutic approaches. Longitudinal monitoring of NSCLC patients through ctDNA or CTC analysis could reveal valuable information about clinical outcomes during osimertinib treatment. Therefore, several guidelines suggest that liquid biopsy in addition to tissue biopsy should be considered as a standard of care in the advanced NSCLC setting. This practice could significantly increase the number of NSCLC patients that will eventually benefit from targeted therapies, such as EGFR TKIs.
Collapse
Affiliation(s)
- Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Marras
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasilis Georgoulias
- First Department of Medical Oncology, Metropolitan General Hospital of Athens, Cholargos, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Bai K, Chen X, Qi X, Zhang Y, Zou Y, Li J, Yu L, Li Y, Jiang J, Yang Y, Liu Y, Feng S, Bu H. Cerebrospinal fluid circulating tumour DNA genotyping and survival analysis in lung adenocarcinoma with leptomeningeal metastases. J Neurooncol 2023; 165:149-160. [PMID: 37897649 PMCID: PMC10638181 DOI: 10.1007/s11060-023-04471-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 10/30/2023]
Abstract
PURPOSE The prognosis of patients with leptomeningeal metastasis (LM) remains poor. Circulating tumour DNA (ctDNA) has been proven to be abundantly present in cerebrospinal fluid (CSF); hence, its clinical implication as a biomarker needs to be further verified. METHODS We conducted a retrospective study of 35 lung adenocarcinoma (LUAD) patients with LM, and matched CSF and plasma samples were collected from all patients. All paired samples underwent next-generation sequencing (NGS) of 139 lung cancer-associated genes. The clinical characteristics and genetic profiling of LM were analysed in association with survival prognosis. RESULTS LM showed genetic heterogeneity, in which CSF had a higher detection rate of ctDNA (P = 0.003), a higher median mutation count (P < 0.0001), a higher frequency of driver mutations (P < 0.01), and more copy number variation (CNV) alterations (P < 0.001) than plasma. The mutation frequencies of the EGFR, TP53, CDKN2A, MYC and CDKN2B genes were easier to detect in CSF than in LUAD tissue (P < 0.05), possibly reflecting the underlying mechanism of LM metastasis. CSF ctDNA is helpful for analysing the mechanism of EGFR-TKI resistance. In cohort 1, which comprised patients who received 1/2 EGFR-TKIs before the diagnosis of LM, TP53 and CDKN2A were the most common EGFR-independent resistant mutations. In cohort 2, comprising those who progressed after osimertinib and developed LM, 7 patients (43.75%) had EGFR CNV detected in CSF but not plasma. Furthermore, patient characteristics and various genes were included for interactive survival analysis. Patients with EGFR-mutated LUAD (P = 0.042) had a higher median OS, and CSF ctDNA mutation with TERT (P = 0.013) indicated a lower median OS. Last, we reported an LM case in which CSF ctDNA dynamic changes were well correlated with clinical treatment. CONCLUSIONS CSF ctDNA could provide a more comprehensive genetic landscape of LM, indicating the potential metastasis-related and EGFR-TKI resistance mechanisms of LM patients. In addition, genotyping of CSF combined with clinical outcomes can predict the prognosis of LUAD patients with LM.
Collapse
Affiliation(s)
- Kaixuan Bai
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Xin Chen
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- Department of Neurology, Xingtai People's Hospital, Xingtai, China
| | - Xuejiao Qi
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yu Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yueli Zou
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Jian Li
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- Department of General Practice, Hengshui People's Hospital, Hengshui, China
| | - Lili Yu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yuanyuan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Jiajia Jiang
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yi Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Yajing Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Shuanghao Feng
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Hui Bu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, China.
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China.
- Neurological Laboratory of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
4
|
Li Y, Mao T, Wang J, Zheng H, Hu Z, Cao P, Yang S, Zhu L, Guo S, Zhao X, Tian Y, Shen H, Lin F. Toward the next generation EGFR inhibitors: an overview of osimertinib resistance mediated by EGFR mutations in non-small cell lung cancer. Cell Commun Signal 2023; 21:71. [PMID: 37041601 PMCID: PMC10088170 DOI: 10.1186/s12964-023-01082-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 04/13/2023] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) is currently the standard first-line therapy for EGFR-mutated advanced non-small cell lung cancer (NSCLC). The life quality and survival of this subgroup of patients were constantly improving owing to the continuous iteration and optimization of EGFR-TKI. Osimertinib, an oral, third-generation, irreversible EGFR-TKI, was initially approved for the treatment of NSCLC patients carrying EGFR T790M mutations, and has currently become the dominant first-line targeted therapy for most EGFR mutant lung cancer. Unfortunately, resistance to osimertinib inevitably develops during the treatment and therefore limits its long-term effectiveness. For both fundamental and clinical researchers, it stands for a major challenge to reveal the mechanism, and a dire need to develop novel therapeutics to overcome the resistance. In this article, we focus on the acquired resistance to osimertinib caused by EGFR mutations which account for approximately 1/3 of all reported resistance mechanisms. We also review the proposed therapeutic strategies for each type of mutation conferring resistance to osimertinib and give an outlook to the development of the next generation EGFR inhibitors. Video Abstract.
Collapse
Affiliation(s)
- Yufeng Li
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
| | - Tianyu Mao
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Wang
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Hongrui Zheng
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Ziyi Hu
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Pingping Cao
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Suisui Yang
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Lingyun Zhu
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Shunyao Guo
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Xinfei Zhao
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Yue Tian
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China
| | - Hua Shen
- Department of Medical Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, XueHai Building A111, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China.
| | - Fan Lin
- Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Gastroenterology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan, China.
| |
Collapse
|
5
|
Ruffilli C, Roth S, Rodrigo M, Boyd H, Zelcer N, Moreau K. Proteolysis Targeting Chimeras (PROTACs): A Perspective on Integral Membrane Protein Degradation. ACS Pharmacol Transl Sci 2022; 5:849-858. [PMID: 36268122 PMCID: PMC9578132 DOI: 10.1021/acsptsci.2c00142] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 11/28/2022]
Abstract
Targeted protein degradation (TPD) is a promising therapeutic modality to modulate protein levels and its application promises to reduce the "undruggable" proteome. Among TPD strategies, Proteolysis TArgeting Chimera (PROTAC) technology has shown a tremendous potential with attractive advantages when compared to the inhibition of the same target. While PROTAC technology has had a significant impact in scientific research, its application to degrade integral membrane proteins (IMPs) is still in its beginnings. Among the 15 compounds having entered clinical trials by the end of 2021, only two targets are membrane-associated proteins. In this review we are discussing the potential reasons which may underlie this, and we are presenting new tools that have been recently developed to solve these limitations and to empower the use of PROTACs to target IMPs.
Collapse
Affiliation(s)
- Camilla Ruffilli
- Safety
Innovation and PROTAC Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge CB2 0SL, United Kingdom
- Department
of Medical Biochemistry, Amsterdam UMC,
University of Amsterdam, Amsterdam 1000 GG, The Netherlands
| | - Sascha Roth
- Safety
Innovation and PROTAC Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge CB2 0SL, United Kingdom
| | - Monica Rodrigo
- Safety
Innovation and PROTAC Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge CB2 0SL, United Kingdom
| | - Helen Boyd
- Precision
Medicine & Biosamples, R&D, AstraZeneca, Cambridge CB2 0SL, United Kingdom
| | - Noam Zelcer
- Department
of Medical Biochemistry, Amsterdam UMC,
University of Amsterdam, Amsterdam 1000 GG, The Netherlands
| | - Kevin Moreau
- Safety
Innovation and PROTAC Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge CB2 0SL, United Kingdom
| |
Collapse
|
6
|
Lee J, Han YB, Kwon HJ, Lee SK, Kim H, Chung JH. Landscape of EGFR mutations in lung adenocarcinoma: a single institute experience with comparison of PANAMutyper testing and targeted next-generation sequencing. J Pathol Transl Med 2022; 56:249-259. [PMID: 36128861 PMCID: PMC9510045 DOI: 10.4132/jptm.2022.06.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/11/2022] [Indexed: 11/24/2022] Open
Abstract
Background Activating mutations in the tyrosine kinase domain of epidermal growth factor receptor (EGFR) are predictive biomarkers for response to EGFR–tyrosine kinase inhibitor (TKI) therapy in lung adenocarcinoma (LUAD). Here, we characterized the clinicopathologic features associated with EGFR mutations via peptide nucleic acid clamping-assisted fluorescence melting curve analysis (PANAMutyper) and evaluated the feasibility of targeted deep sequencing for detecting the mutations. Methods We examined EGFR mutations in exons 18 through 21 for 2,088 LUADs from July 2017 to April 2020 using PANAMutyper. Of these, we performed targeted deep sequencing in 73 patients and evaluated EGFR-mutation status and TKI clinical response. Results EGFR mutation was identified in 55.7% of LUADs by PANAMutyper, with mutation rates higher in females (69.3%) and never smokers (67.1%) and highest in the age range of 50 to 59 years (64.9%). For the 73 patients evaluated using both methods, next-generation sequencing (NGS) identified EGFR mutation–positive results in 14 of 61 patients (23.0%) who were EGFR-negative according to PANAMutyper testing. Of the 10 patients reportedly harboring a sensitizing mutation according to NGS, seven received TKI treatment, with all showing partial response or stable disease. In the 12 PANAMutyper-positive cases, NGS identified two additional mutations in exon 18, whereas a discordant negative result was observed in two cases. Conclusions Although PANAMutyper identified high frequencies of EGFR mutations, targeted deep sequencing revealed additional uncommon EGFR mutations. These findings suggested that appropriate use of NGS may benefit LUAD patients with otherwise negative screening test results.
Collapse
Affiliation(s)
- Jeonghyo Lee
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Yeon Bi Han
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Jung Kwon
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Song Kook Lee
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hyojin Kim
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Jin-Haeng Chung
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Artificial Intelligence Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
7
|
Li Y, Xu Z, Xie T, Xing P, Ying J, Li J. Heterogeneity of resistant mechanisms in an EGFR-TKI relapsed patient with EGFR amplification and response to nimotuzumab: A case report. Front Oncol 2022; 12:937282. [PMID: 36033496 PMCID: PMC9403890 DOI: 10.3389/fonc.2022.937282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
EGFR mutations are the most important drivers of gene alterations in lung adenocarcinomas and are sensitive to EGFR-TKIs. However, resistance to EGFR-TKIs is inevitable in the majority of EGFR-mutated lung cancer patients. Numerous resistant mechanisms have been revealed to date, and more are still under investigation. Owing to the selective pressure, intratumoral heterogeneity may exist after resistance, especially in patients after multiple lines of treatment. For those patients, it is important to choose therapies focused on the trunk/major clone of the tumor in order to achieve optimal clinical benefit. Here, we will report an EGFR-mutated lung adenocarcinoma patient with heterogeneity of resistant mechanisms including EGFR amplification, large fragment deletion of RB1, and histological transformations after targeted treatments. In our case, EGFR amplification seemed to be the major clone of the resistant mechanism according to the next-generation sequencing (NGS) results of both liquid biopsy monitoring and tissue biopsies. In consideration of the high EGFR amplification level, the patient was administered by combination treatment with EGFR-TKI plus nimotuzumab, an anti-EGFR monoclonal antibody (mAb), and achieved a certain degree of clinical benefit. Our case sheds light on the treatment of EGFR-mutant patients with EGFR amplification and indicates that a combination of EGFR-TKI with anti-EGFR mAb might be one of the possible treatment options based on genetic tests. Moreover, the decision on therapeutic approaches should focus on the major clone of the tumor and should make timely adjustments according to the dynamic changes of genetic characteristics during treatment.
Collapse
Affiliation(s)
- Yan Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziyi Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junling Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Junling Li,
| |
Collapse
|
8
|
Cooper AJ, Sequist LV, Lin JJ. Third-generation EGFR and ALK inhibitors: mechanisms of resistance and management. Nat Rev Clin Oncol 2022; 19:499-514. [PMID: 35534623 PMCID: PMC9621058 DOI: 10.1038/s41571-022-00639-9] [Citation(s) in RCA: 187] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 02/07/2023]
Abstract
The discoveries of EGFR mutations and ALK rearrangements as actionable oncogenic drivers in non-small-cell lung cancer (NSCLC) has propelled a biomarker-directed treatment paradigm for patients with advanced-stage disease. Numerous EGFR and ALK tyrosine kinase inhibitors (TKIs) with demonstrated efficacy in patients with EGFR-mutant and ALK-rearranged NSCLCs have been developed, culminating in the availability of the highly effective third-generation TKIs osimertinib and lorlatinib, respectively. Despite their marked efficacy, resistance to these agents remains an unsolved fundamental challenge. Both 'on-target' mechanisms (largely mediated by acquired resistance mutations in the kinase domains of EGFR or ALK) and 'off-target' mechanisms of resistance (mediated by non-target kinase alterations such as bypass signalling activation or phenotypic transformation) have been identified in patients with disease progression on osimertinib or lorlatinib. A growing understanding of the biology and spectrum of these mechanisms of resistance has already begun to inform the development of more effective therapeutic strategies. In this Review, we discuss the development of third-generation EGFR and ALK inhibitors, predominant mechanisms of resistance, and approaches to tackling resistance in the clinic, ranging from novel fourth-generation TKIs to combination regimens and other investigational therapies.
Collapse
Affiliation(s)
- Alissa J Cooper
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Lecia V Sequist
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Jessica J Lin
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA.
| |
Collapse
|
9
|
Nie N, Zhou H, Zhang K, Liu L, Luo N, Wang R, Li X, Zhu M, Hu C, Wang Y, Liu Z, Li L, He Y. Genotyping of cerebrospinal fluid in lung cancer patients with leptomeningeal metastasis. Thorac Cancer 2022; 13:2574-2583. [PMID: 35896160 PMCID: PMC9475227 DOI: 10.1111/1759-7714.14592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
Background The prognosis of non–small‐cell lung cancer (NSCLC) with leptomeningeal metastasis (LM) is poor. Detection of cell‐free DNA (cfDNA) by next generation sequencing (NGS) in cerebrospinal fluid (CSF) may facilitate diagnosis of LM and identification of drug resistance mechanisms, yet its clinical use needs to be further verified. Methods We performed a retrospective cohort study to assess the genetic profiles of paired CSF and plasma samples in lung cancer patients with LM. Of 17 patients screened, a total of 14 patients with LM and paired NGS tests were enrolled. Results All patients harbor driver gene mutations, including 12 epidermal growth factor receptor (EGFR) activating mutations, 1 anaplastic lymphoma kinase (ALK) rearrangement, and 1 ROS‐1 fusion. Genetic mutations were detected in CSF cfDNA from 92.9% patients (13/14), which was significantly higher than that from the plasma (9/14, 64.2%). The mutations were highly divergent between CSF and plasma cfDNA, with a concordance rate of 24.38% and 10 mutations shared by the two media. CSF cfDNA could also benefit the analysis of resistance mechanisms to targeted therapies. In five patients who experienced progression on 1st or 2nd generation EGFR‐tyrosine kinase inhibitors (TKIs), RB1 mutation, and amplification of MET and EGFR were detected in CSF cfDNA only. In eight patients with LM progression on osimertinib resistance, EGFR amplification was detected in CSF cfDNA from four patients, whereas no CNVs were detected in the matched plasma samples. Conclusions In conclusion, CSF could be superior to plasma in providing a more comprehensive genetic landscape of LM to find out drug resistance mechanisms and guide subsequent treatments.
Collapse
Affiliation(s)
- Naifu Nie
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Haodong Zhou
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kejun Zhang
- Department of Outpatients, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lan Liu
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Nuo Luo
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Renyuan Wang
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xin Li
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mengxiao Zhu
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chen Hu
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yubo Wang
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhulin Liu
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Li Li
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
10
|
EGFR signaling pathway as therapeutic target in human cancers. Semin Cancer Biol 2022; 85:253-275. [PMID: 35427766 DOI: 10.1016/j.semcancer.2022.04.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/12/2022] [Accepted: 04/04/2022] [Indexed: 02/08/2023]
Abstract
Epidermal Growth Factor Receptor (EGFR) enacts major roles in the maintenance of epithelial tissues. However, when EGFR signaling is altered, it becomes the grand orchestrator of epithelial transformation, and hence one of the most world-wide studied tyrosine kinase receptors involved in neoplasia, in several tissues. In the last decades, EGFR-targeted therapies shaped the new era of precision-oncology. Despite major advances, the dream of converting solid tumors into a chronic disease is still unfulfilled, and long-term remission eludes us. Studies investigating the function of this protein in solid malignancies have revealed numerous ways how tumor cells dysregulate EGFR function. Starting from preclinical models (cell lines, organoids, murine models) and validating in clinical specimens, EGFR-related oncogenic pathways, mechanisms of resistance, and novel avenues to inhibit tumor growth and metastatic spread enriching the therapeutic portfolios, were identified. Focusing on non-small cell lung cancer (NSCLC), where EGFR mutations are major players in the adenocarcinoma subtype, we will go over the most relevant discoveries that led us to understand EGFR and beyond, and highlight how they revolutionized cancer treatment by expanding the therapeutic arsenal at our disposal.
Collapse
|
11
|
Cho BC, Felip E, Hayashi H, Thomas M, Lu S, Besse B, Sun T, Martinez M, Sethi SN, Shreeve SM, Spira AI. MARIPOSA: phase 3 study of first-line amivantamab + lazertinib versus osimertinib in EGFR-mutant non-small-cell lung cancer. Future Oncol 2022; 18:639-647. [PMID: 34911336 DOI: 10.2217/fon-2021-0923] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Third-generation EGFR tyrosine kinase inhibitors (TKIs), such as osimertinib, have demonstrated efficacy in patients with EGFR-mutant non-small-cell lung cancer; however, almost all patients will eventually relapse. Amivantamab is an EGFR-MET bispecific antibody with immune cell-directing activity that targets activating and resistance EGFR mutations and MET mutations and amplifications. In the ongoing CHRYSALIS study (NCT02609776), amivantamab in combination with lazertinib, a potent, brain-penetrant third-generation EGFR TKI, demonstrated antitumor activity in the treatment-naive and osimertinib-relapsed setting. Here the authors present the methodology for the MARIPOSA study (NCT04487080), a phase 3, multicenter, randomized study designed to compare the efficacy and safety of amivantamab and lazertinib combination therapy versus single-agent osimertinib as first-line treatment for EGFR-mutant non-small-cell lung cancer.
Collapse
Affiliation(s)
- Byoung Chul Cho
- Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Enriqueta Felip
- Vall d'Hebron University, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Michael Thomas
- Thoraxklinik & National Center for Tumor Diseases at Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), member of the German Center for Lung Research (DZL)
| | - Shun Lu
- Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai
| | - Benjamin Besse
- Cancer Medicine Department, Gustave Roussy, Villejuif, France & Paris-Saclay University, Orsay, France
| | - Tao Sun
- Janssen Research & Development, USA
| | | | | | | | - Alexander I Spira
- Virginia Cancer Specialists, Fairfax, VA, USA
- US Oncology Research, The Woodlands, TX, USA
| |
Collapse
|
12
|
Qu F, Zhou Y, Yu W. A review of research progress on mechanisms and overcoming strategies of acquired osimertinib resistance. Anticancer Drugs 2022; 33:e76-e83. [PMID: 34520433 PMCID: PMC8670331 DOI: 10.1097/cad.0000000000001242] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/04/2021] [Indexed: 11/25/2022]
Abstract
Targeted therapy with epidermal growth factor receptor tyrosine kinase inhibitors(EGFR-TKIs) is the standard first-line treatment for advanced EGFR-mutated non-small cell lung cancer (NSCLC). Third-generation EGFR-TKIs, represented by osimertinib, have been approved to overcome the EGFR T790M mutation in patients who are resistant to first- or second-generation TKIs, which brings more survival benefits for patients with advanced NSCLC. However, resistance to the third generation of EGFR-TKIs is still inevitable. Acquired drug resistance is the main reason for limiting the long-term effectiveness of targeted therapy in EGFR-mutated NSCLC patients. The mechanism of EGFR-TKI resistance of the third generation has become a focus of research in the field of targeted therapy. In this review, we summarize the research progress in resistance mechanisms of advanced NSCLC to osimertinib and the potential overcoming strategies and hope to provide a clinical basis and ideas for precision treatment of NSCLC.
Collapse
Affiliation(s)
- Fanjie Qu
- Department of Oncology, Dalian Third People’s Hospital, Dalian, China
| | - Yi Zhou
- Department of Oncology, Dalian Third People’s Hospital, Dalian, China
| | - Weiwei Yu
- Department of Oncology, Dalian Third People’s Hospital, Dalian, China
| |
Collapse
|
13
|
Zeng Y, Yu D, Tian W, Wu F. Resistance mechanisms to osimertinib and emerging therapeutic strategies in nonsmall cell lung cancer. Curr Opin Oncol 2022; 34:54-65. [PMID: 34669648 DOI: 10.1097/cco.0000000000000805] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review aims to introduce the resistance mechanisms to osimertinib, discuss the therapeutic strategies, and make clinical updates in overcoming resistance to osimertinib. RECENT FINDINGS Osimertinib has shown favorable efficacy on second-line and first-line treatments in EGFR-mutant advanced nonsmall cell lung cancer (NSCLC). However, the presence of primary and acquired resistance to osimertinib restricts its clinical benefits. The primary resistance mainly consists of BIM deletion polymorphism and EGFR exon 20 insertions. Meanwhile, the heterogeneous mechanisms of acquired resistance include EGFR-dependent (on-target) and EGFR-independent (off-target) mechanisms. EGFR C797S mutation, MET amplification, HER2 amplification, and small cell lung cancer transformation were identified as frequent resistance mechanisms. Recently, more novel mechanisms, including rare EGFR point mutations and oncogenic fusions, were reported. With the results of completed and on-going clinical trials, the emerging therapeutic strategies of postosimertinib progression are summarized. SUMMARY The resistance mechanisms to osimertinib are heterogeneous and gradually perfected. The combination of osimertinib with bypass targeted therapy and other therapeutic approaches emerge as promising strategies.
Collapse
Affiliation(s)
- Yue Zeng
- Department of Oncology, The Second Xiangya Hospital, Central South University
| | - Danlei Yu
- Department of Oncology, The Second Xiangya Hospital, Central South University
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu
| | - Wentao Tian
- Department of Oncology, The Second Xiangya Hospital, Central South University
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre
- Hunan Key Laboratory of Tumor Models and Individualized Medicine
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan
| |
Collapse
|
14
|
Sun M, Wang X, Xu Y, Sun C, Guo Y, Qiu S, Zhao R, Zhu W, Ma K. Combined targeting of EGFR and BRAF triggers regression of osimertinib resistance by using osimertinib and vemurafenib concurrently in a patient with heterogeneity between different lesions. Thorac Cancer 2021; 13:514-516. [PMID: 34962076 PMCID: PMC8807254 DOI: 10.1111/1759-7714.14295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 11/30/2022] Open
Abstract
Acquired BRAF V600E mutation can occur in tumors with EGFR mutation and is suspected as a resistance mechanism to third‐generation EGFR‐tyrosine kinase inhibitors (TKIs). However, the treatment strategy for the coexistence of EGFR and acquired BRAF mutation with heterogeneity in lung cancer has not been systematically established. Here, we report a patient in whom BRAF V600E and EGFR 19del mutation in a metastatic lesion followed by disease progression on osimertinib was detected. Treatment with single‐agent vemurafenib was effective for treatment of the metastatic lesion in this patient but the primary lesion progressed. A concurrent combination of vemurafenib and osimertinib was therefore administered and a partial response of both primary and metastatic lesions was achieved with progression‐free survival (PFS) of 7 months. The concurrent combination treatment was well tolerated by the patient through dosing modification and supportive medical care. This case highlights the consideration of heterogeneity between different lesions and provides a successful example of the concurrent therapy with vemurafenib and osimertinib for triggering regression of osimertinb resistance induced by BRAF mutation.
Collapse
Affiliation(s)
- Mengyao Sun
- Department of Ultrasound, The First Hospital of Jilin University, Jilin, China
| | - Xu Wang
- Cancer Center, The First Hospital of Jilin University, Jilin, China
| | - Yinghui Xu
- Cancer Center, The First Hospital of Jilin University, Jilin, China
| | - Chao Sun
- Cancer Center, The First Hospital of Jilin University, Jilin, China
| | - Ye Guo
- Cancer Center, The First Hospital of Jilin University, Jilin, China
| | - Shi Qiu
- Cancer Center, The First Hospital of Jilin University, Jilin, China
| | - Renshan Zhao
- Cancer Center, The First Hospital of Jilin University, Jilin, China
| | - Wenhao Zhu
- Cancer Center, The First Hospital of Jilin University, Jilin, China
| | - Kewei Ma
- Cancer Center, The First Hospital of Jilin University, Jilin, China
| |
Collapse
|
15
|
Olmedillas-López S, Olivera-Salazar R, García-Arranz M, García-Olmo D. Current and Emerging Applications of Droplet Digital PCR in Oncology: An Updated Review. Mol Diagn Ther 2021; 26:61-87. [PMID: 34773243 DOI: 10.1007/s40291-021-00562-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 12/14/2022]
Abstract
In the era of personalized medicine and targeted therapies for the management of patients with cancer, ultrasensitive detection methods for tumor genotyping, such as next-generation sequencing or droplet digital polymerase chain reaction (ddPCR), play a significant role. In the search for less invasive strategies for diagnosis, prognosis and disease monitoring, the number of publications regarding liquid biopsy approaches using ddPCR has increased substantially in recent years. There is a long list of malignancies in which ddPCR provides a reliable and accurate tool for detection of nucleic acid-based markers derived from cell-free DNA, cell-free RNA, circulating tumor cells, extracellular vesicles or exosomes when isolated from whole blood, plasma and serum, helping to anticipate tumor relapse or unveil intratumor heterogeneity and clonal evolution in response to treatment. This updated review describes recent developments in ddPCR platforms and provides a general overview about the major applications of liquid biopsy in blood, including its utility for molecular response and minimal residual disease monitoring in hematological malignancies or the therapeutic management of patients with colorectal or lung cancer, particularly for the selection and monitoring of treatment with tyrosine kinase inhibitors. Although plasma is the main source of genetic material for tumor genomic profiling, liquid biopsy by ddPCR is being investigated in a wide variety of biologic fluids, such as cerebrospinal fluid, urine, stool, ocular fluids, sputum, saliva, bronchoalveolar lavage, pleural effusion, mucin, peritoneal fluid, fine needle aspirate, bile or pancreatic juice. The present review focuses on these "alternative" sources of genetic material and their analysis by ddPCR in different kinds of cancers.
Collapse
Affiliation(s)
- Susana Olmedillas-López
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.
| | - Rocío Olivera-Salazar
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| | - Mariano García-Arranz
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.,Department of Surgery, School of Medicine, Universidad Autónoma de Madrid (UAM), 28029, Madrid, Spain
| | - Damián García-Olmo
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.,Department of Surgery, School of Medicine, Universidad Autónoma de Madrid (UAM), 28029, Madrid, Spain.,Department of Surgery, Fundación Jiménez Díaz University Hospital (FJD), 28040, Madrid, Spain
| |
Collapse
|
16
|
Reita D, Pabst L, Pencreach E, Guérin E, Dano L, Rimelen V, Voegeli AC, Vallat L, Mascaux C, Beau-Faller M. Molecular Mechanism of EGFR-TKI Resistance in EGFR-Mutated Non-Small Cell Lung Cancer: Application to Biological Diagnostic and Monitoring. Cancers (Basel) 2021; 13:4926. [PMID: 34638411 PMCID: PMC8507869 DOI: 10.3390/cancers13194926] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/21/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common cancer in the world. Activating epidermal growth factor receptor (EGFR) gene mutations are a positive predictive factor for EGFR tyrosine kinase inhibitors (TKIs). For common EGFR mutations (Del19, L858R), the standard first-line treatment is actually third-generation TKI, osimertinib. In the case of first-line treatment by first (erlotinib, gefitinib)- or second-generation (afatinib) TKIs, osimertinib is approved in second-line treatment for patients with T790M EGFR mutation. Despite the excellent disease control results with EGFR TKIs, acquired resistance inevitably occurs and remains a biological challenge. This leads to the discovery of novel biomarkers and possible drug targets, which vary among the generation/line of EGFR TKIs. Besides EGFR second/third mutations, alternative mechanisms could be involved, such as gene amplification or gene fusion, which could be detected by different molecular techniques on different types of biological samples. Histological transformation is another mechanism of resistance with some biological predictive factors that needs tumor biopsy. The place of liquid biopsy also depends on the generation/line of EGFR TKIs and should be a good candidate for molecular monitoring. This article is based on the literature and proposes actual and future directions in clinical and translational research.
Collapse
Affiliation(s)
- Damien Reita
- Department of Biochemistry and Molecular Biology, Strasbourg University Hospital, CEDEX, 67098 Strasbourg, France; (D.R.); (E.P.); (E.G.); (L.D.); (V.R.); (A.-C.V.); (L.V.)
- Bio-imagery and Pathology (LBP), UMR CNRS 7021, Strasbourg University, 67400 Illkirch-Graffenstaden, France
| | - Lucile Pabst
- Department of Pneumology, Strasbourg University Hospital, CEDEX, 67091 Strasbourg, France; (L.P.); (C.M.)
| | - Erwan Pencreach
- Department of Biochemistry and Molecular Biology, Strasbourg University Hospital, CEDEX, 67098 Strasbourg, France; (D.R.); (E.P.); (E.G.); (L.D.); (V.R.); (A.-C.V.); (L.V.)
- INSERM U1113, IRFAC, Strasbourg University, 67000 Strasbourg, France
| | - Eric Guérin
- Department of Biochemistry and Molecular Biology, Strasbourg University Hospital, CEDEX, 67098 Strasbourg, France; (D.R.); (E.P.); (E.G.); (L.D.); (V.R.); (A.-C.V.); (L.V.)
- INSERM U1113, IRFAC, Strasbourg University, 67000 Strasbourg, France
| | - Laurent Dano
- Department of Biochemistry and Molecular Biology, Strasbourg University Hospital, CEDEX, 67098 Strasbourg, France; (D.R.); (E.P.); (E.G.); (L.D.); (V.R.); (A.-C.V.); (L.V.)
| | - Valérie Rimelen
- Department of Biochemistry and Molecular Biology, Strasbourg University Hospital, CEDEX, 67098 Strasbourg, France; (D.R.); (E.P.); (E.G.); (L.D.); (V.R.); (A.-C.V.); (L.V.)
| | - Anne-Claire Voegeli
- Department of Biochemistry and Molecular Biology, Strasbourg University Hospital, CEDEX, 67098 Strasbourg, France; (D.R.); (E.P.); (E.G.); (L.D.); (V.R.); (A.-C.V.); (L.V.)
| | - Laurent Vallat
- Department of Biochemistry and Molecular Biology, Strasbourg University Hospital, CEDEX, 67098 Strasbourg, France; (D.R.); (E.P.); (E.G.); (L.D.); (V.R.); (A.-C.V.); (L.V.)
| | - Céline Mascaux
- Department of Pneumology, Strasbourg University Hospital, CEDEX, 67091 Strasbourg, France; (L.P.); (C.M.)
- INSERM U1113, IRFAC, Strasbourg University, 67000 Strasbourg, France
| | - Michèle Beau-Faller
- Department of Biochemistry and Molecular Biology, Strasbourg University Hospital, CEDEX, 67098 Strasbourg, France; (D.R.); (E.P.); (E.G.); (L.D.); (V.R.); (A.-C.V.); (L.V.)
- INSERM U1113, IRFAC, Strasbourg University, 67000 Strasbourg, France
| |
Collapse
|
17
|
He J, Huang Z, Han L, Gong Y, Xie C. Mechanisms and management of 3rd‑generation EGFR‑TKI resistance in advanced non‑small cell lung cancer (Review). Int J Oncol 2021; 59:90. [PMID: 34558640 PMCID: PMC8562388 DOI: 10.3892/ijo.2021.5270] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/09/2021] [Indexed: 12/17/2022] Open
Abstract
Targeted therapy with epidermal growth factor receptor (EGFR)‑tyrosine kinase inhibitors (TKIs) is a standard modality of the 1st‑line treatments for patients with advanced EGFR‑mutated non‑small cell lung cancer (NSCLC), and substantially improves their prognosis. However, EGFR T790M mutation is the primary mechanism of 1st‑ and 2nd‑generation EGFR‑TKI resistance. Osimertinib is a representative of the 3rd‑generation EGFR‑TKIs that target T790M mutation, and has satisfactory efficacy in the treatment of T790M‑positive NSCLC with disease progression following use of 1st‑ or 2nd‑generation EGFR‑TKIs. Other 3rd‑generation EGFR‑TKIs, such as abivertinib, rociletinib, nazartinib, olmutinib and alflutinib, are also at various stages of development. However, the occurrence of acquired resistance is inevitable, and the mechanisms of 3rd‑generation EGFR‑TKI resistance are complex and incompletely understood. Genomic studies in tissue and liquid biopsies of resistant patients reveal multiple candidate pathways. The present review summarizes the recent findings in mechanisms of resistance to 3rd‑generation EGFR‑TKIs in advanced NSCLC, and provides possible strategies to overcome this resistance. The mechanisms of acquired resistance mainly include an altered EGFR signaling pathway (EGFR tertiary mutations and amplification), activation of aberrant bypassing pathways (hepatocyte growth factor receptor amplification, human epidermal growth factor receptor 2 amplification and aberrant insulin‑like growth factor 1 receptor activation), downstream pathway activation (RAS/RAF/MEK/ERK and PI3K/AKT/mTOR) and histological/phenotypic transformations (SCLC transformation and epithelial‑mesenchymal transition). The combination of targeted therapies is a promising strategy to treat osimertinib‑resistant patients, and multiple clinical studies on novel combined therapies are ongoing.
Collapse
Affiliation(s)
- Jingyi He
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhengrong Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Linzhi Han
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
18
|
Zhu J, Yang Q, Xu W. Iterative Upgrading of Small Molecular Tyrosine Kinase Inhibitors for EGFR Mutation in NSCLC: Necessity and Perspective. Pharmaceutics 2021; 13:1500. [PMID: 34575576 PMCID: PMC8468657 DOI: 10.3390/pharmaceutics13091500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/25/2022] Open
Abstract
Molecular targeted therapy has been reported to have fewer adverse effects, and offer a more convenient route of administration, compared with conventional chemotherapy. With the development of sequencing technology, and research on the molecular biology of lung cancer, especially whole-genome information on non-small cell lung cancer (NSCLC), various therapeutic targets have been unveiled. Among the NSCLC-driving gene mutations, epidermal growth factor receptor (EGFR) mutations are the most common, and approximately 10% of Caucasian, and more than 50% of Asian, NSCLC patients have been found to have sensitive EGFR mutations. A variety of targeted therapeutic agents for EGFR mutations have been approved for clinical applications, or are undergoing clinical trials around the world. This review focuses on: the indications of approved small molecular kinase inhibitors for EGFR mutation-positive NSCLC; the mechanisms of drug resistance and the corresponding therapeutic strategies; the principles of reasonable and precision molecular structure; and the drug development discoveries of next-generation inhibitors for EGFR.
Collapse
Affiliation(s)
- Jing Zhu
- Respiratory and Critical Care Medicine, Mianyang Central Hospital, Mianyang 621000, China;
- School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China
| | - Qian Yang
- Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, School of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, China
| | - Weiguo Xu
- Respiratory and Critical Care Medicine, Mianyang Central Hospital, Mianyang 621000, China;
- School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China
| |
Collapse
|
19
|
Li D, Yang D, Cui S, Pan E, Yang P, Dai Z. NGS-Based ctDNA Profiling After the Resistance of Second-Line Osimertinib for Patient with EGFR-Mutated Pulmonary Adenocarcinoma. Onco Targets Ther 2021; 14:4261-4265. [PMID: 34321891 PMCID: PMC8312323 DOI: 10.2147/ott.s318250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/30/2021] [Indexed: 01/22/2023] Open
Abstract
Osimertinib, a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), is effective in EGFR T790M positive non-small-cell lung cancer (NSCLC). Despite the efficacy of osimertinib, patients inevitably develop resistance and the mechanisms of osimertinib resistance are heterogeneous. Here, we report that a lung adenocarcinoma patient with EGFR L858R mutation who was treated with second-line osimertinib therapy acquired multiple resistance to osimertinib by the non-invasive circulating tumor DNA (ctDNA) genotyping. This case provides the possible mechanisms of osimertinib resistance that occur during the disease progression and supports the longitudinal monitoring of ctDNA for the detection of novel acquired resistance and tumor heterogeneity.
Collapse
Affiliation(s)
- Dan Li
- The Second Department of Thoracic Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - DaFu Yang
- The Second Department of Thoracic Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - SaiQiong Cui
- The Second Department of Thoracic Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Evenki Pan
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People’s Republic of China
| | - Peng Yang
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People’s Republic of China
| | - ZhaoXia Dai
- The Second Department of Thoracic Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| |
Collapse
|
20
|
You KS, Yi YW, Cho J, Park JS, Seong YS. Potentiating Therapeutic Effects of Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:589. [PMID: 34207383 PMCID: PMC8233743 DOI: 10.3390/ph14060589] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subset of breast cancer with aggressive characteristics and few therapeutic options. The lack of an appropriate therapeutic target is a challenging issue in treating TNBC. Although a high level expression of epidermal growth factor receptor (EGFR) has been associated with a poor prognosis among patients with TNBC, targeted anti-EGFR therapies have demonstrated limited efficacy for TNBC treatment in both clinical and preclinical settings. However, with the advantage of a number of clinically approved EGFR inhibitors (EGFRis), combination strategies have been explored as a promising approach to overcome the intrinsic resistance of TNBC to EGFRis. In this review, we analyzed the literature on the combination of EGFRis with other molecularly targeted therapeutics or conventional chemotherapeutics to understand the current knowledge and to provide potential therapeutic options for TNBC treatment.
Collapse
Affiliation(s)
- Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
| | - Yong Weon Yi
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| |
Collapse
|
21
|
Buder A, Heitzer E, Waldispühl-Geigl J, Weber S, Moser T, Hochmair MJ, Hackner K, Errhalt P, Setinek U, Filipits M. Somatic Copy-Number Alterations in Plasma Circulating Tumor DNA from Advanced EGFR-Mutated Lung Adenocarcinoma Patients. Biomolecules 2021; 11:biom11050618. [PMID: 33919291 PMCID: PMC8143372 DOI: 10.3390/biom11050618] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 11/29/2022] Open
Abstract
Background: To assess the clinical relevance of genome-wide somatic copy-number alterations (SCNAs) in plasma circulating tumor DNA (ctDNA) from advanced epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma patients. Methods: We included 43 patients with advanced EGFR T790M-positive lung adenocarcinoma who were treated with osimertinib after progression under previous EGFR-TKI therapy. We performed genomic profiling of ctDNA in plasma samples from each patient obtained pre-osimertinib and after patients developed resistance to osimertinib. SCNAs were detected by shallow whole-genome plasma sequencing and EGFR mutations were assessed by droplet digital PCR. Results: SCNAs in resistance-related genes (rrSCNAs) were detected in 10 out of 31 (32%) evaluable patients before start of osimertinib. The presence of rrSCNAs in plasma before the initiation of osimertinib therapy was associated with a lower response rate to osimertinib (50% versus 81%, p = 0.08) and was an independent predictor for shorter progression-free survival (adjusted HR 3.33, 95% CI 1.37–8.10, p = 0.008) and overall survival (adjusted HR 2.54, 95% CI 1.09–5.92, p = 0.03). Conclusions: Genomic profiling of plasma ctDNA is clinically relevant and affects the efficacy and clinical outcome of osimertinib. Our approach enables the comprehensive assessment of SCNAs in plasma samples of lung adenocarcinoma patients and may help to guide genotype-specific therapeutic strategies in the future.
Collapse
Affiliation(s)
- Anna Buder
- Comprehensive Cancer Center, Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
| | - Ellen Heitzer
- Diagnostic and Research Center for Molecular BioMedicine, Institute of Human Genetics, Medical University of Graz, 8036 Graz, Austria; (E.H.); (J.W.-G.); (S.W.); (T.M.)
- Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, 8036 Graz, Austria
| | - Julie Waldispühl-Geigl
- Diagnostic and Research Center for Molecular BioMedicine, Institute of Human Genetics, Medical University of Graz, 8036 Graz, Austria; (E.H.); (J.W.-G.); (S.W.); (T.M.)
| | - Sabrina Weber
- Diagnostic and Research Center for Molecular BioMedicine, Institute of Human Genetics, Medical University of Graz, 8036 Graz, Austria; (E.H.); (J.W.-G.); (S.W.); (T.M.)
- Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, 8036 Graz, Austria
| | - Tina Moser
- Diagnostic and Research Center for Molecular BioMedicine, Institute of Human Genetics, Medical University of Graz, 8036 Graz, Austria; (E.H.); (J.W.-G.); (S.W.); (T.M.)
- Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, 8036 Graz, Austria
| | - Maximilian J. Hochmair
- Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Department of Respiratory and Critical Care Medicine, Hospital North, 1210 Vienna, Austria;
| | - Klaus Hackner
- Department of Pneumology, University Hospital Krems, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria; (K.H.); (P.E.)
| | - Peter Errhalt
- Department of Pneumology, University Hospital Krems, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria; (K.H.); (P.E.)
| | - Ulrike Setinek
- Department of Pathology and Bacteriology, Otto Wagner Hospital, 1140 Vienna, Austria;
| | - Martin Filipits
- Comprehensive Cancer Center, Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
- Correspondence: ; Tel.: +43-1-40160-57528
| |
Collapse
|
22
|
Lee K, Kim D, Yoon S, Lee DH, Kim SW. Exploring the resistance mechanisms of second-line osimertinib and their prognostic implications using next-generation sequencing in patients with non-small-cell lung cancer. Eur J Cancer 2021; 148:202-210. [PMID: 33744716 DOI: 10.1016/j.ejca.2021.01.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/11/2021] [Accepted: 01/31/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Although osimertinib overcomes the T790M mutation acquired after traditional epidermal growth factor receptor (EGFR) gene tyrosine kinase inhibitor (TKI) treatment, resistance to osimertinib eventually occurs. We explored resistance mechanisms of second-line osimertinib and their clinical implications by comparing next-generation sequencing (NGS) results before and after resistance acquisition. METHODS We enrolled 34 patients with advanced EGFR-mutant adenocarcinoma whose biopsied tumour tissues were subjected to targeted NGS at the time of progression on osimertinib. For comparison, NGS was also performed on archived tumour tissues from each patient excised before osimertinib initiation. RESULTS The tumours of three patients' were observed to have transformed to small-cell carcinoma and those of two patients to squamous cell carcinoma. Among the remaining 29 patients, T790M mutations were maintained in seven patients (24.1%), including four patients (13.8%) acquiring C797S mutations and one with MET amplification. Among the 22 patients (75.9%) with T790M loss, a variety of novel mutations were identified, including KRAS mutations, PIK3CA mutations, and RET fusion, but MET amplifications (n = 4, 18.2%) were most frequently identified variations. Progression-free survival (PFS) on osimertinib was shorter among patients with T790M loss than among those who maintained T790M (5.36 versus 13.81 months, p = 0.009), and MET-amplified patients were found to have much worse PFS among patients with T790M loss (2.10 versus 6.35 months, p = 0.01). CONCLUSIONS Loss of the T790M mutation was associated with early resistance to osimertinib, and this was exacerbated by MET amplification. Further work is needed to fully understand the implications of each resistance mechanism.
Collapse
Affiliation(s)
- Kyoungmin Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Deokhoon Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Shinkyo Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dae Ho Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-We Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Wei J, Meng P, Terpstra MM, van Rijk A, Tamminga M, Scherpen F, Ter Elst A, Alimohamed MZ, Johansson LF, Stigt J, Gijtenbeek RPG, van Putten J, Hiltermann TJN, Groen HJM, Kok K, van der Wekken AJ, van den Berg A. Clinical Value of EGFR Copy Number Gain Determined by Amplicon-Based Targeted Next Generation Sequencing in Patients with EGFR-Mutated NSCLC. Target Oncol 2021; 16:215-226. [PMID: 33606136 PMCID: PMC7935828 DOI: 10.1007/s11523-021-00798-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND The clinical relevance of epidermal growth factor receptor (EGFR) copy number gain in patients with EGFR mutated advanced non-small cell lung cancer on first-line tyrosine kinase inhibitor treatment has not been fully elucidated. OBJECTIVE We aimed to estimate EGFR copy number gain using amplicon-based next generation sequencing data and explored its prognostic value. PATIENTS AND METHODS Next generation sequencing data were obtained for 1566 patients with non-small cell lung cancer. EGFR copy number gain was defined based on an increase in EGFR read counts relative to internal reference amplicons and normal controls in combination with a modified z-score ≥ 3.5. Clinical follow-up data were available for 60 patients treated with first-line EGFR-tyrosine kinase inhibitors. RESULTS Specificity and sensitivity of next generation sequencing-based EGFR copy number estimations were above 90%. EGFR copy number gain was observed in 27.9% of EGFR mutant cases and in 7.4% of EGFR wild-type cases. EGFR gain was not associated with progression-free survival but showed a significant effect on overall survival with an adjusted hazard ratio of 3.14 (95% confidence interval 1.46-6.78, p = 0.003). Besides EGFR copy number gain, osimertinib in second or subsequent lines of treatment and the presence of T790M at relapse revealed significant effects in a multivariate analysis with adjusted hazard ratio of 0.43 (95% confidence interval 0.20-0.91, p = 0.028) and 0.24 (95% confidence interval 0.1-0.59, p = 0.001), respectively. CONCLUSIONS Pre-treatment EGFR copy number gain determined by amplicon-based next generation sequencing data predicts worse overall survival in EGFR-mutated patients treated with first-line EGFR-tyrosine kinase inhibitors. T790M at relapse and subsequent treatment with osimertinib predict longer overall survival.
Collapse
Affiliation(s)
- Jiacong Wei
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pathology, Cancer Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Pei Meng
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, HPC: EA10, Room F0-15, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Pathology, Collaborative and Creative Centre, Shantou University Medical College, Shantou, Guangdong, China
| | - Miente Martijn Terpstra
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke van Rijk
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, HPC: EA10, Room F0-15, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Menno Tamminga
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frank Scherpen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, HPC: EA10, Room F0-15, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Arja Ter Elst
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, HPC: EA10, Room F0-15, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Mohamed Z Alimohamed
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania
| | - Lennart F Johansson
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jos Stigt
- Department of Pulmonary Diseases, Isala Clinic, Zwolle, The Netherlands
| | - Rolof P G Gijtenbeek
- Department of Pulmonary Diseases, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - John van Putten
- Department of Pulmonary Diseases, Martini Hospital, Groningen, The Netherlands
| | - T Jeroen N Hiltermann
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Harry J M Groen
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas Kok
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anthonie J van der Wekken
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, HPC: EA10, Room F0-15, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
24
|
Watanabe S, Goto Y, Yasuda H, Kohno T, Motoi N, Ohe Y, Nishikawa H, Kobayashi SS, Kuwano K, Togashi Y. HSP90 inhibition overcomes EGFR amplification-induced resistance to third-generation EGFR-TKIs. Thorac Cancer 2021; 12:631-642. [PMID: 33471376 PMCID: PMC7919131 DOI: 10.1111/1759-7714.13839] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Patients with non-small cell lung cancer (NSCLC) harboring activating EGFR mutations are sensitive to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) but inevitably develop resistance to the inhibitors mostly through acquisition of the secondary T790M mutation. Although third-generation EGFR-TKIs overcome this resistance by selectively inhibiting EGFR with EGFR-TKI-sensitizing and T790M mutations, acquired resistance to third-generation EGFR-TKIs invariably develops. METHODS Next-generation sequencing (NGS) and fluorescence in situ hybridization (FISH) analysis were performed in an EGFR T790M-mutated NSCLC patient who had progressed after a third-generation EGFR-TKI, TAS-121. EGFR-mutated cell lines were subjected to a cell proliferation assay and western blotting analysis with EGFR-TKIs and a heat shock protein 90 (HSP90) inhibitor. RESULTS NGS and FISH analysis revealed EGFR amplification in the resistant cancer cells. While EGFR L858R/T90M-mutated cell line was sensitive to osimertinib or TAS-121 in vitro, EGFR-overexpressing cell lines displayed resistance to these EGFR-TKIs. Western blot analysis showed that EGFR phosphorylation and overexpression of EGFR in cell lines was not suppressed by third-generation EGFR-TKIs. In contrast, an HSP90 inhibitor reduced total and phosphorylated EGFR and inhibited the proliferation of resistant cell lines. CONCLUSIONS EGFR amplification confers resistance to third-generation EGFR-TKIs which can be overcome by HSP90 inhibition. The results provide a preclinical rationale for the use of HSP90 inhibitors to overcome EGFR amplification-mediated resistance.
Collapse
Affiliation(s)
- Sho Watanabe
- Division of Cancer ImmunologyExploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer CenterChibaJapan
- Department of Thoracic OncologyNational Cancer Center HospitalTokyoJapan
- Department of Respiratory MedicineJikei University of MedicineTokyoJapan
| | - Yasushi Goto
- Department of Thoracic OncologyNational Cancer Center HospitalTokyoJapan
| | - Hiroyuki Yasuda
- Division of Pulmonary Medicine, Department of MedicineKeio University, School of MedicineTokyoJapan
| | - Takashi Kohno
- Genome BiologyExploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer CenterChibaJapan
| | - Noriko Motoi
- Pathology and Clinical LaboratoriesNational Cancer Center HospitalTokyoJapan
| | - Yuichiro Ohe
- Department of Thoracic OncologyNational Cancer Center HospitalTokyoJapan
| | - Hiroyoshi Nishikawa
- Division of Cancer ImmunologyExploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer CenterChibaJapan
| | - Susumu S. Kobayashi
- Translational Genomics, Research InstituteExploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer CenterChibaJapan
- Department of MedicineBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Kazuyoshi Kuwano
- Department of Respiratory MedicineJikei University of MedicineTokyoJapan
| | - Yosuke Togashi
- Division of Cancer ImmunologyExploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer CenterChibaJapan
| |
Collapse
|
25
|
Impressive response to dabrafenib, trametinib, and osimertinib in a metastatic EGFR-mutant/BRAF V600E lung adenocarcinoma patient. NPJ Precis Oncol 2021; 5:5. [PMID: 33580193 PMCID: PMC7880994 DOI: 10.1038/s41698-021-00149-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/12/2021] [Indexed: 12/22/2022] Open
Abstract
The survival outcomes of the FLAURA trial support osimertinib as the new standard of care for untreated patients harboring activating mutations in the epidermal growth factor receptor (EGFR). Despite the initial response, disease progression invariably occurs. Although uncommon, BRAF V600E mutation arises as a unique mechanism of resistance, and thus far, no prospective studies are available to support concurrent EGFR/BRAF blockade. We report a case of impressive radiological and ctDNA response under dabrafenib, trametinib, and osimertinib in an advanced EGFR-mutant lung adenocarcinoma patient who developed BRAF V600E as one of the acquired resistance mechanisms to second-line osimertinib. Moreover, the patient experienced remarkable clinical improvement and good tolerance to combination therapy. The present case suggests the importance of prospective studies evaluating both efficacy and safety of the combination in later line settings and points towards the potential of ctDNA to monitor resistance mechanisms and treatment benefit in clinical practice.
Collapse
|
26
|
Abstract
Response evaluation for cancer treatment consists primarily of clinical and radiological assessments. In addition, a limited number of serum biomarkers that assess treatment response are available for a small subset of malignancies. Through recent technological innovations, new methods for measuring tumor burden and treatment response are becoming available. By utilization of highly sensitive techniques, tumor-specific mutations in circulating DNA can be detected and circulating tumor DNA (ctDNA) can be quantified. These so-called liquid biopsies provide both molecular information about the genomic composition of the tumor and opportunities to evaluate tumor response during therapy. Quantification of tumor-specific mutations in plasma correlates well with tumor burden. Moreover, with liquid biopsies, it is also possible to detect mutations causing secondary resistance during treatment. This review focuses on the clinical utility of ctDNA as a response and follow-up marker in patients with non-small cell lung cancer, melanoma, colorectal cancer, and breast cancer. Relevant studies were retrieved from a literature search using PubMed database. An overview of the available literature is provided and the relevance of ctDNA as a response marker in anti-cancer therapy for clinical practice is discussed. We conclude that the use of plasma-derived ctDNA is a promising tool for treatment decision-making based on predictive testing, detection of resistance mechanisms, and monitoring tumor response. Necessary steps for translation to daily practice and future perspectives are discussed.
Collapse
|
27
|
Talsania A, Zhang J, Wilson FH. Osimertinib in EGFR-Mutant Non-Small Cell Lung Carcinoma: Clinical Activity and Mechanisms of Resistance. Lung Cancer 2021. [DOI: 10.1007/978-3-030-74028-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Wu L, Ke L, Zhang Z, Yu J, Meng X. Development of EGFR TKIs and Options to Manage Resistance of Third-Generation EGFR TKI Osimertinib: Conventional Ways and Immune Checkpoint Inhibitors. Front Oncol 2020; 10:602762. [PMID: 33392095 PMCID: PMC7775519 DOI: 10.3389/fonc.2020.602762] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) have been first-line therapy in the treatment of non-small cell lung cancer (NSCLC) harboring EGFR sensitive mutations. Progression inevitably happens after 10–14 months of first- or second-generation EGFR TKIs treatment for acquired resistance. Owing to the successful identification of EGFR T790M, third-generation EGFR TKIs such as osimertinib were developed to target such resistance mutation. Nowadays, osimertinib has shown its efficacy both in first-line and second-line after resistance to previous generations of TKI treatment of EGFR-mutant NSCLC. However, drug resistance also emerges on third-generation EGFR TKIs. Multiple mechanisms of acquired resistance have been identified, and some novel strategies were reported to overcome third-generation TKI resistance. Immune checkpoint inhibitors (ICIs) have dramatically changed the prognosis of selected patients. For patients with EGFR-addicted metastatic NSCLC, ICIs have also revealed a potential role. In this review, we will take stock of mechanisms of acquired resistance to third-generation TKIs and discuss current challenges and future perspectives in clinical practice.
Collapse
Affiliation(s)
- Leilei Wu
- Department of Radiation Oncology, School of Medicine, Shandong University, Jinan, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Linping Ke
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenshan Zhang
- Department of Radiation Oncology, School of Medicine, Shandong University, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xue Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
29
|
The Allele Frequency of EGFR Mutations Predicts Survival in Advanced EGFR T790M-Positive Non-small Cell Lung Cancer Patients Treated with Osimertinib. Target Oncol 2020; 16:77-84. [PMID: 33270169 PMCID: PMC7810636 DOI: 10.1007/s11523-020-00781-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2020] [Indexed: 01/08/2023]
Abstract
Background The allele frequency of epidermal growth factor receptor (EGFR) mutations could be a potential molecular biomarker for the outcome of osimertinib therapy. Objective The purpose of our study was to assess the clinical relevance of the allele frequency of EGFR mutations in plasma-based circulating tumor DNA (ctDNA) before starting osimertinib therapy in patients with advanced EGFR-mutated non-small cell lung cancer (NSCLC) who had progressed under treatment with EGFR tyrosine kinase inhibitors (TKIs). Patients and Methods We enrolled 141 patients with advanced EGFR T790M-positive NSCLC who underwent second-line osimertinib treatment. Plasma ctDNA was tested for EGFR-activating mutations (EGFR deletions in exon 19, L858R, L861Q, S768I) and T790M by means of droplet digital polymerase chain reaction (ddPCR). Results The allele frequency of EGFR-activating mutations in plasma ctDNA before osimertinib initiation ranged from 0 to 81,543 copies/ml and was independently associated with progression-free survival (PFS) and overall survival (OS) after adjusting for known clinicopathological risk factors (PFS: adjusted hazard ratio [HR] 1.26, 95% confidence interval [CI] 1.15–1.39, P < 0.0001; OS: adjusted HR 1.32, 95% CI 1.18–1.47, P < 0.0001). The allele frequency of T790M in plasma ctDNA before starting osimertinib therapy ranged from 0 to 38,092 copies/ml. Multivariate analyses showed that a higher T790M allele frequency was associated with a trend towards a shorter PFS (adjusted HR 1.19, 95% CI 0.99–1.42, P = 0.05) and a significantly shorter OS (adjusted HR 1.25, 95% CI 1.02–1.53, P = 0.03) of the patients. Conclusion A higher allele frequency of EGFR mutations, particularly EGFR-activating mutations, in plasma ctDNA is a poor prognostic marker. Further studies on the clinical utility of liquid biopsy are needed.
Collapse
|
30
|
Singh SS, Dahal A, Shrestha L, Jois SD. Genotype Driven Therapy for Non-Small Cell Lung Cancer: Resistance, Pan Inhibitors and Immunotherapy. Curr Med Chem 2020; 27:5274-5316. [PMID: 30854949 DOI: 10.2174/0929867326666190222183219] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
Abstract
Eighty-five percent of patients with lung cancer present with Non-small Cell Lung Cancer (NSCLC). Targeted therapy approaches are promising treatments for lung cancer. However, despite the development of targeted therapies using Tyrosine Kinase Inhibitors (TKI) as well as monoclonal antibodies, the five-year relative survival rate for lung cancer patients is still only 18%, and patients inevitably become resistant to therapy. Mutations in Kirsten Ras Sarcoma viral homolog (KRAS) and epidermal growth factor receptor (EGFR) are the two most common genetic events in lung adenocarcinoma; they account for 25% and 20% of cases, respectively. Anaplastic Lymphoma Kinase (ALK) is a transmembrane receptor tyrosine kinase, and ALK rearrangements are responsible for 3-7% of NSCLC, predominantly of the adenocarcinoma subtype, and occur in a mutually exclusive manner with KRAS and EGFR mutations. Among drug-resistant NSCLC patients, nearly half exhibit the T790M mutation in exon 20 of EGFR. This review focuses on some basic aspects of molecules involved in NSCLC, the development of resistance to treatments in NSCLC, and advances in lung cancer therapy in the past ten years. Some recent developments such as PD-1-PD-L1 checkpoint-based immunotherapy for NSCLC are also covered.
Collapse
Affiliation(s)
- Sitanshu S Singh
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201, United States
| | - Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201, United States
| | - Leeza Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201, United States
| | - Seetharama D Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201, United States
| |
Collapse
|
31
|
Nishiyama A, Takeuchi S, Adachi Y, Otani S, Tanimoto A, Sasaki M, Matsumoto S, Goto K, Yano S. MET amplification results in heterogeneous responses to osimertinib in EGFR-mutant lung cancer treated with erlotinib. Cancer Sci 2020; 111:3813-3823. [PMID: 32735723 PMCID: PMC7540985 DOI: 10.1111/cas.14593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
The third‐generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR‐TKI) osimertinib is approved for untreated, or previously EGFR‐TKI–treated T790M‐positive EGFR‐mutated non‐small cell lung carcinoma (NSCLC). We investigated the heterogeneity of responses to osimertinib and its underlying mechanisms. A patient with EGFR‐L858R–mutated NSCLC was treated with erlotinib. Following treatment, he developed brain and multiple bone metastases and was eventually diagnosed with NSCLC with EGFR‐T790M mutation. The responses of various tumor specimens to osimertinib were heterogeneous. We investigated EGFR‐T790M and MET amplification using PCR and FISH in autopsy specimens of the cervical spine, lumbar spine, and brain. We established the KNZ osimertinib‐resistant (KNZ_OR) tumor cell line with MET amplification using a cervical spine lesion that was intrinsically resistant to osimertinib. We evaluated the effects of MET knockdown and MET inhibitor on KNZ_OR cell sensitivity to osimertinib in vitro and in vivo. Osimertinib‐resistant lesions (cervical spine and brain) showed EGFR‐L858R and MET amplification, but not EGFR‐T790M, whereas osimertinib‐sensitive lesions (lumbar spine) showed EGFR‐L858R and ‐T790, but not MET amplification. Osimertinib decreased the association of amplified MET with L858R‐mutated EGFR but increased that with human epidermal growth factor receptor 3 in KNZ_OR cells. MET knockdown or MET inhibitor sensitized KNZ_OR cells to osimertinib in vitro, indicating that MET amplification induced osimertinib resistance. Combination with osimertinib plus crizotinib induced tumor shrinkage in the KNZ_OR xenograft model. Hence, MET amplification might induce heterogeneous responses to osimertinib in EGFR‐mutated NSCLC. Further investigations on mutated EGFR and amplified MET might lead to the development of effective therapies.
Collapse
Affiliation(s)
- Akihiro Nishiyama
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shinji Takeuchi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Yuta Adachi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Sakiko Otani
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Azusa Tanimoto
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Motoko Sasaki
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Shingo Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
32
|
Chang N, Duan J, Wang L, Dong Z, Liu Z. Patients with advanced non-small cell lung cancer with EGFR mutations in addition to complex mutations treated with osimertinib have a poor clinical outcome: A real-world data analysis. Oncol Lett 2020; 20:2266-2272. [PMID: 32782544 PMCID: PMC7399948 DOI: 10.3892/ol.2020.11801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to investigate the clinical characteristics and outcomes of patients with advanced non-small cell lung cancer (NSCLC) treated with osimertinib, and focused on the resistance mechanism to osimertinib in a real-world setting. Data from 128 patients with advanced NSCLC who were treated with osimertinib between March 2015 and November 2018 at the Chinese People's Liberation Army General Hospital (Beijing, China) were retrospectively collected, and the associations between mutation types and survival were analysed. In patients treated with osimertinib, the objective response rate reached 60.9% (78/128) and the disease control rate reached 81.3% (104/128), with a median progression-free survival (PFS) time of 12.2 months. A number of complex mutations were identified in the re-analysis after the development of osimertinib resistance, including TP53, KRAS and PIK3CA mutations, epidermal growth factor receptor (EGFR) and MYC amplifications, and mutations associated with SCLC transformation, demonstrating that these mutations may account for osimertinib resistance. The median PFS time for patients with the EGFR T790M mutation (n=41) was significantly longer than that for patients with the T790M mutation and the aforementioned complex mutations (n=13) (16.7 vs. 10.8 months; P=0.001). Patients with a single EGFR mutation (n=87) had a longer median PFS time than those with an EGFR mutation and complex mutations (n=24) (14.63 vs. 6.63 months; P<0.0001). In conclusion, the present study analysed the effects of osimertinib in patients with advanced NSCLC with EGFR mutations, particularly T790M mutations. The results indicated that the efficacy of osimertinib was weakened when patients had complex mutations, suggesting that complex mutations may be responsible for resistance to osimertinib.
Collapse
Affiliation(s)
- Nijia Chang
- Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Jingjing Duan
- Chinese People's Liberation Army Medical School, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Lingxiong Wang
- Department of Oncology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Zhouhuan Dong
- Department of Pathology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Zhefeng Liu
- Department of Oncology, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
33
|
Emerging EML4-ALK Variant 5 as a Concurrent Resistance Mechanism to Osimertinib in a Patient With EGFR E19del/T790M NSCLC. Clin Lung Cancer 2020; 21:562-567. [PMID: 32622727 DOI: 10.1016/j.cllc.2020.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/18/2022]
|
34
|
Song Y, Jia Z, Wang Y, Wang Y, Liu P, Zhang S, Bing Z, Cao L, Cao Z, Rossi E, Zamarchi R, Denis MG, Camps C, Fernandez-Diaz AB, Liang N, Li S. Potential treatment strategy for the rare osimertinib resistant mutation EGFR L718Q. J Thorac Dis 2020; 12:2771-2780. [PMID: 32642185 PMCID: PMC7330377 DOI: 10.21037/jtd.2020.03.29] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/25/2020] [Indexed: 01/07/2023]
Abstract
Epidermal growth factor receptor (EGFR) L718Q is a rare resistant mutation which independently leads to third-generation tyrosine kinase inhibitor (TKI) resistance. Although a few studies have examined its resistance mechanisms, no effective treatment strategy has yet been proposed for patients with this mutation. Here, we report an effective treatment strategy for the rare EGFR L718Q mutation for the first time. A 44-year-old Chinese male patient initially presented with the sensitizing EGFR L858R mutation, and the progression-free survival (PFS) time after initial icotinib treatment was 9 months. When the progression of the disease (PD) and the EGFR T790M mutation were identified, he did not respond to the osimertinib treatment. Through comprehensive next-generation sequencing (NGS) of the surgical specimen, the rare EGFR L718Q mutation was eventually identified as having a frequency of 68.84%, together with an EGFR amplification with a copy number of 11.54. The previous treatment response was retrospectively explained, and the patient faced the challenge of not being able to benefit from any targeted therapy. Following chemotherapy with a personalized regimen which effectively modified the proportion of sensitive and resistant cells, significant response to osimertinib re-challenge was observed, and another PFS of 4.7 months was achieved. Unfortunately, four EGFR mutations, EGFR L858, T790M, L718Q, and C797S, were simultaneously detected in his late stage, and led to further progression of disease.
Collapse
Affiliation(s)
- Yang Song
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ziqi Jia
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
- Peking Union Medical College, Eight-Year MD Program, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yadong Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yanyu Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Peng Liu
- Medical Research Center, Central Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shuyang Zhang
- Medical Research Center, Central Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhongxing Bing
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lei Cao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhili Cao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Elisabetta Rossi
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Rita Zamarchi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Marc G. Denis
- Department of Biochemistry and INSERM U1232, Nantes University Hospital, 9 quai Moncousu, F-44093 Nantes Cedex, France
| | - Carlos Camps
- Molecular Oncology Laboratory, General University Hospital Research Foundation, ValenciaSpain
- CIBERONC, Madrid, Spain
- Unidad Mixta TRIAL CIPF-FIHGUV, Valencia, Spain
- Medical Oncology Department, Hospital General Universitario de Valencia, Medicine Department, Universidad de Valencia, Spain
| | - Amaya B. Fernandez-Diaz
- Medical Oncology Department, Hospital General Universitario de Valencia, Medicine Department, Universidad de Valencia, Spain
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
35
|
Zhang H, Zhao HY, Xi XX, Liu YJ, Xin M, Mao S, Zhang JJ, Lu AX, Zhang SQ. Discovery of potent epidermal growth factor receptor (EGFR) degraders by proteolysis targeting chimera (PROTAC). Eur J Med Chem 2020; 189:112061. [DOI: 10.1016/j.ejmech.2020.112061] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 01/09/2023]
|
36
|
Zhou F, Zhao W, Chen X, Zhang J, Zhou C. Response to the combination of dabrafenib, trametinib and osimertinib in a patient with EGFR-mutant NSCLC harboring an acquired BRAFV600E mutation. Lung Cancer 2020; 139:219-220. [DOI: 10.1016/j.lungcan.2019.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/13/2019] [Indexed: 10/25/2022]
|
37
|
Lei H, Fan S, Zhang H, Liu YJ, Hei YY, Zhang JJ, Zheng AQ, Xin M, Zhang SQ. Discovery of novel 9-heterocyclyl substituted 9H-purines as L858R/T790M/C797S mutant EGFR tyrosine kinase inhibitors. Eur J Med Chem 2019; 186:111888. [PMID: 31787359 DOI: 10.1016/j.ejmech.2019.111888] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022]
Abstract
Targeting L858R/T790M/C797S mutant EGFR is a major challenge in the new-generation EGFR tyrosine kinase inhibitors development for conquering drug resistant NSCLC. In this study, a series of novel 9-heterocyclyl substituted 9H-purine derivatives were designed as EGFRL858 R/T790 M/C797S tyrosine kinase inhibitors. Among these compounds, D4, D9, D11 and D12 showed significantly potent anti-proliferation and EGFRL858 R/T790 M/C797S inhibition activity. In particular, the most potent compound D9 showed anti-proliferation against HCC827 and H1975 cell lines with the IC50 values of 0.00088 and 0.20 μM, respectively. And D9 inhibited the EGFRL858R/T790M/C797S with an IC50 value of 18 nM. Furtherly, D9 could significantly suppress the EGFR phosphorylation, induce the apoptosis, arrest cell cycle at G0/G1, and inhibit colony formation in HCC827 cell line by a concentration-dependent manner. Molecular docking indicated that the introduction of a cyclopropylsulfonamide group in D9 led to the formation of additional two hydrogen bonds with mutant Ser797 which played key roles in generating efficient EGFRL858 R/T790 M/C797S inhibitory activity. These findings strongly indicated that 9-heterocyclyl substituted 9H-purine derivatives were promising L858R/T790M/C797S mutant EGFR-TKIs. The introduction of extra hydrogen bond interaction with mutant Ser797 is efficient method for the design of the fourth-generation EGFR-TKIs.
Collapse
Affiliation(s)
- Hao Lei
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Shu Fan
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Hao Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yan-Jie Liu
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yuan-Yuan Hei
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Jun-Jie Zhang
- School of Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - A-Qun Zheng
- School of Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
38
|
Leonetti A, Sharma S, Minari R, Perego P, Giovannetti E, Tiseo M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer 2019; 121:725-737. [PMID: 31564718 PMCID: PMC6889286 DOI: 10.1038/s41416-019-0573-8] [Citation(s) in RCA: 729] [Impact Index Per Article: 145.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/09/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Osimertinib is an irreversible, third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that is highly selective for EGFR-activating mutations as well as the EGFR T790M mutation in patients with advanced non-small cell lung cancer (NSCLC) with EGFR oncogene addiction. Despite the documented efficacy of osimertinib in first- and second-line settings, patients inevitably develop resistance, with no further clear-cut therapeutic options to date other than chemotherapy and locally ablative therapy for selected individuals. On account of the high degree of tumour heterogeneity and adaptive cellular signalling pathways in NSCLC, the acquired osimertinib resistance is highly heterogeneous, encompassing EGFR-dependent as well as EGFR-independent mechanisms. Furthermore, data from repeat plasma genotyping analyses have highlighted differences in the frequency and preponderance of resistance mechanisms when osimertinib is administered in a front-line versus second-line setting, underlying the discrepancies in selection pressure and clonal evolution. This review summarises the molecular mechanisms of resistance to osimertinib in patients with advanced EGFR-mutated NSCLC, including MET/HER2 amplification, activation of the RAS-mitogen-activated protein kinase (MAPK) or RAS-phosphatidylinositol 3-kinase (PI3K) pathways, novel fusion events and histological/phenotypic transformation, as well as discussing the current evidence regarding potential new approaches to counteract osimertinib resistance.
Collapse
Affiliation(s)
- Alessandro Leonetti
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV, Amsterdam, Netherlands
| | - Sugandhi Sharma
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV, Amsterdam, Netherlands
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy
| | - Paola Perego
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, 1081 HV, Amsterdam, Netherlands.
- Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per la Scienza, 56017, Pisa, Italy.
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
39
|
Oscorbin IP, Shadrina AS, Kozlov VV, Voitsitsky VE, Filipenko ML. Absence of EGFR C797S Mutation in Tyrosine Kinase Inhibitor-Naïve Non-Small Cell Lung Cancer Tissues. Pathol Oncol Res 2019; 26:1229-1234. [PMID: 31243697 DOI: 10.1007/s12253-019-00683-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/05/2019] [Indexed: 01/03/2023]
Abstract
EGFR tyrosine-kinase inhibitors (TKIs) are used as targeted therapeutics for the treatment of advanced non-small cell lung cancer (NSCLC) with EGFR-activating mutations. EGFR C797S is common causes of acquired resistance to third-generation TKIs. There is wide-spread opinion that resistance-conferring mutation present even in a small proportion of cancer cells before the start of therapy could potentially predict poor response to a targeted drug. In our study, we tested whether C797S can be found in previously untreated NSCLCs. We analyzed DNA samples extracted from formalin-fixed paraffin-embedded (FFPE) tumor tissue sections of 470 lung adenocarcinoma patients, including 235 samples with activating EGFR mutations. Screening was performed using highly sensitive droplet digital PCR assay. No tumor samples with baseline C797S were identified. C797S does not occur in TKI-naïve NSCLCs and provide evidence that screening for this mutation before TKIs administration may not be necessary.
Collapse
Affiliation(s)
- Igor P Oscorbin
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Avenue, Novosibirsk, 630090, Russia. .,Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russia.
| | - Alexandra S Shadrina
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russia.,Institute of Cytology and Genetics, 10 Lavrentiev Avenue, Novosibirsk, 630090, Russia
| | - Vadim V Kozlov
- Institute of Cytology and Genetics, 10 Lavrentiev Avenue, Novosibirsk, 630090, Russia.,Novosibirsk Regional Clinical Oncological Center, 2 Plakhotnogo Street, Novosibirsk, 630108, Russia
| | - Vladimir E Voitsitsky
- Institute of Cytology and Genetics, 10 Lavrentiev Avenue, Novosibirsk, 630090, Russia.,Novosibirsk Regional Clinical Oncological Center, 2 Plakhotnogo Street, Novosibirsk, 630108, Russia
| | - Maxim L Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Avenue, Novosibirsk, 630090, Russia.,Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russia
| |
Collapse
|
40
|
Del Re M, Rofi E, Cappelli C, Puppo G, Crucitta S, Valeggi S, Chella A, Danesi R, Petrini I. The increase in activating EGFR mutation in plasma is an early biomarker to monitor response to osimertinib: a case report. BMC Cancer 2019; 19:410. [PMID: 31039766 PMCID: PMC6492432 DOI: 10.1186/s12885-019-5604-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/12/2019] [Indexed: 12/23/2022] Open
Abstract
Background Systemic treatment of advanced non-small cell lung cancer (NSCLC) has changed dramatically since the introduction of targeted therapies. The analysis of circulating tumor DNA (ctDNA) is a valuable approach to monitor the clonal evolution of tumors during treatment with EGFR-tyrosine kinase inhibitors (TKIs) and to detect resistance mutations. Case presentation A NSCLC patient with exon 19 deletion (ex19del) of EGFR was treated with osimertinib after multiple lines of treatment and obtained a partial response that lasted over 26 months. Blood was collected at each visit and ctDNA was extracted to monitor ex19del by digital droplet PCR. Within a few weeks from the beginning of osimertinib, ex19del disappeared from plasma but appeared again and steadily increased a few months later anticipating tumor progression. Interestingly, the change in ex19del was much more pronounced than other mutations, since T790M appeared 3 months after the increase of ex19del, and C797S was detectable a few weeks before clinical disease progression. Then the patient received cytotoxic chemotherapy, which was associated with a decrease in ex19del and disappearance of T790M and C797S; however, at disease progression, all EGFR mutations increased again in plasma together with MET amplification which was detected by NGS. Conclusions The measurement of ex19del changes in ctDNA is a simple and sensitive approach to monitor clinical outcome to osimertinib and, potentially, to other therapeutic interventions.
Collapse
Affiliation(s)
- Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126, Pisa, Italy
| | - Eleonora Rofi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126, Pisa, Italy
| | - Carla Cappelli
- Unit of Diagnostic and Interventional Radiology, Department of Translational Research and New Technologies in Medicine and Surgery, University Hospital of Pisa, Pisa, Italy
| | - Gianfranco Puppo
- Unit of Respiratory Medicine, Department of Critical Area and Surgical, Medical and Molecular Pathology, University Hospital of Pisa, Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126, Pisa, Italy
| | - Simona Valeggi
- Unit of Respiratory Medicine, Department of Critical Area and Surgical, Medical and Molecular Pathology, University Hospital of Pisa, Pisa, Italy
| | - Antonio Chella
- Unit of Respiratory Medicine, Department of Critical Area and Surgical, Medical and Molecular Pathology, University Hospital of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126, Pisa, Italy.
| | - Iacopo Petrini
- Unit of Respiratory Medicine, Department of Critical Area and Surgical, Medical and Molecular Pathology, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
41
|
Zhang YC, Chen ZH, Zhang XC, Xu CR, Yan HH, Xie Z, Chuai SK, Ye JY, Han-Zhang H, Zhang Z, Bai XY, Su J, Gan B, Yang JJ, Li WF, Tang W, Luo FR, Xu X, Wu YL, Zhou Q. Analysis of resistance mechanisms to abivertinib, a third-generation EGFR tyrosine kinase inhibitor, in patients with EGFR T790M-positive non-small cell lung cancer from a phase I trial. EBioMedicine 2019; 43:180-187. [PMID: 31027916 PMCID: PMC6558024 DOI: 10.1016/j.ebiom.2019.04.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Resistance to third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) presents a major clinical challenge in advanced non-small cell lung cancer (NSCLC). Here, we report resistance mechanisms to abivertinib, a novel third-generation EGFR TKI, from a phase I dose-escalation/expansion study (NCT02330367). METHODS Patients with EGFR T790M-positive advanced NSCLC and progression on prior EGFR TKIs received abivertinib in dose escalation (50-350 mg twice daily [BID]) or expansion (300 mg BID) cohorts. Patients enrolled at Guangdong Lung Cancer Institute who underwent next-generation sequencing (NGS)-based genomic profiling upon abivertinib progression (prior to October 30, 2018) were enrolled in this exploratory analysis. FINDINGS Thirty of 73 patients enrolled were eligible for resistance analysis. Upon abivertinib progression, 27 patients provided plasma samples (six patients also provided paired samples from the progression sites) and three patients only provided tissue samples from the progression sites for NGS. A heterogeneous landscape of resistance to abivertinib was observed: 15% (4/27) experienced EGFR T790M loss and 13% (4/30) developing EGFR tertiary mutations including C797S. EGFR amplification was observed in 11 patients (37%), and considered a putative resistance mechanism in seven (23%) patients. Other EGFR-independent resistance mechanisms involved CDKN2A, MET, PIK3CA, HER2, TP53, Rb1 and small-cell lung cancer transformation. INTERPRETATION Our findings reveal a heterogenous pattern of resistance mechanisms to abivertinib which is distinct from that previously reported with osimertinib. EGFR amplification was the most common resistance mechanism in this cohort. FUND: The National Key R&D Program of China (Grant No. 2016YFC1303800), Key Lab System Project of Guangdong Science and Technology Department - Guangdong Provincial Key Lab of Translational Medicine in Lung Cancer (Grant No. 2012A061400006/2017B030314120).
Collapse
Affiliation(s)
- Yi-Chen Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhi-Hong Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xu-Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chong-Rui Xu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hong-Hong Yan
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhi Xie
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | | | - Jun-Yi Ye
- Burning Rock Biotech, Guangzhou, China
| | | | | | - Xiao-Yan Bai
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jian Su
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bin Gan
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jin-Ji Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wen-Feng Li
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wei Tang
- ACEA Therapeutics Inc., San Diego, CA, USA
| | | | - Xiao Xu
- ACEA Therapeutics Inc., San Diego, CA, USA
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
42
|
Pharmacodynamic Therapeutic Drug Monitoring for Cancer: Challenges, Advances, and Future Opportunities. Ther Drug Monit 2019; 41:142-159. [DOI: 10.1097/ftd.0000000000000606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Knebel FH, Bettoni F, da Fonseca LG, Camargo AA, Sabbaga J, Jardim DL. Circulating Tumor DNA Detection in the Management of Anti-EGFR Therapy for Advanced Colorectal Cancer. Front Oncol 2019; 9:170. [PMID: 30967998 PMCID: PMC6439419 DOI: 10.3389/fonc.2019.00170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Anti-EGFR antibodies are a standard care for advanced KRAS-wild type colorectal cancers. Circulating tumor DNA (ctDNA) monitoring during therapy can detect emergence of KRAS mutant clones and early resistance to therapy. Case Presentation: We describe a 61-years-old man presenting a metastatic and recurrent rectal cancer treated with different chemotherapy regimens. His tumor was KRAS wild-type based on tissue analysis and he was treated sequentially with cetuximab-based chemotherapy, chemotherapy alone and panitumumab-based chemotherapy. We performed sequential analysis of ctDNA using droplet digital PCR (ddPCR) and a commercial assay designed for the detection of frequent KRAS mutations during his clinical follow-up. Prior to the first cetuximab-based chemotherapy ctDNA analysis demonstrated an absence of KRAS mutations. Emergence of KRAS mutations in ctDNA occurred ~3 months after treatment initiation and preceded clinical and imaging progression in about 2 months. Fractional abundance of KRAS mutation rapidly increased to 70.7% immediately before a chemotherapy alone regimen was initiated. Interestingly, KRAS mutation abundance decreased significantly during the first two months of chemotherapy, reaching a fractional abundance of 3.0%, despite minimal clinical benefit with this therapy. Re-challenge with a different anti-EGFR antibody was attempted as later line, but high levels of KRAS mutations in ctDNA before therapy correlated with an absence of clinical benefit. Conclusions: The monitoring of resistance mutations in KRAS using ctDNA during the treatment of KRAS wild-type advanced colorectal cancers can detect the emergence of resistant clones prior to clinical progression. Dynamics of resistant clones may alter during periods on and off anti-EGFR antibodies, detecting window of opportunities for a re-challenge with these therapies.
Collapse
Affiliation(s)
- Franciele H Knebel
- Sociedade Beneficente de Senhoras-Hospital Sírio Libanês, São Paulo, Brazil
| | - Fabiana Bettoni
- Sociedade Beneficente de Senhoras-Hospital Sírio Libanês, São Paulo, Brazil
| | | | - Anamaria A Camargo
- Sociedade Beneficente de Senhoras-Hospital Sírio Libanês, São Paulo, Brazil.,Ludwig Institute for Cancer Research, São Paulo, Brazil
| | - Jorge Sabbaga
- Sociedade Beneficente de Senhoras-Hospital Sírio Libanês, São Paulo, Brazil.,Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Denis L Jardim
- Sociedade Beneficente de Senhoras-Hospital Sírio Libanês, São Paulo, Brazil
| |
Collapse
|
44
|
Le T, Gerber DE. Newer-Generation EGFR Inhibitors in Lung Cancer: How Are They Best Used? Cancers (Basel) 2019; 11:cancers11030366. [PMID: 30875928 PMCID: PMC6468595 DOI: 10.3390/cancers11030366] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 12/23/2022] Open
Abstract
The FLAURA trial established osimertinib, a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), as a viable first-line therapy in non-small cell lung cancer (NSCLC) with sensitizing EGFR mutations, namely exon 19 deletion and L858R. In this phase 3 randomized, controlled, double-blind trial of treatment-naïve patients with EGFR mutant NSCLC, osimertinib was compared to standard-of-care EGFR TKIs (i.e., erlotinib or gefinitib) in the first-line setting. Osimertinib demonstrated improvement in median progression-free survival (18.9 months vs. 10.2 months; hazard ratio 0.46; 95% CI, 0.37 to 0.57; p < 0.001) and a more favorable toxicity profile due to its lower affinity for wild-type EGFR. Furthermore, similar to later-generation anaplastic lymphoma kinase (ALK) inhibitors, osimertinib has improved efficacy against brain metastases. Despite this impressive effect, the optimal sequencing of osimertinib, whether in the first line or as subsequent therapy after the failure of earlier-generation EGFR TKIs, is not clear. Because up-front use of later-generation TKIs may result in the inability to use earlier-generation TKIs, this treatment paradigm must be evaluated carefully. For EGFR mutant NSCLC, considerations include the incidence of T790M resistance mutations, quality of life, whether there is a potential role for earlier-generation TKIs after osimertinib failure, and overall survival. This review explores these issues for EGFR inhibitors and other molecularly targeted therapies.
Collapse
Affiliation(s)
- Tri Le
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8852, USA.
| | - David E Gerber
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8852, USA.
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390-8852, USA.
- Division of Hematology-Oncology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8852, USA.
| |
Collapse
|
45
|
Fernandes Marques J, Pereira Reis J, Fernandes G, Hespanhol V, Machado JC, Costa JL. Circulating Tumor DNA: A Step into the Future of Cancer Management. Acta Cytol 2019; 63:456-465. [PMID: 30852572 DOI: 10.1159/000492917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022]
Abstract
Liquid biopsy was introduced to the oncology field with the promise of revolutionizing the management of cancer patients, minimizing the exposure to invasive procedures such as tissue biopsy, and providing reliable information regarding therapy response and detection of disease relapse. Despite the significant increase in the number of published studies on circulating tumor DNA (ctDNA) in the past years, the emphasis of most studies is on the development of new technologies or on the clinical utility of ctDNA. This leaves a clear gap of knowledge concerning the biology of ctDNA, such as the fundamental mechanisms through which DNA from tumor cells is released into the circulation. Moreover, considering that ctDNA analysis is now currently being applied in clinical practice, the need for rigorous quality control is arising, and with it the necessity to standardize procedures, from sample collection to data analysis. This review focuses on the main aspects of ctDNA, including approaches currently available to evaluate tumor genetics, as well as the points that still require improvement in order to make liquid biopsy a key player in precision medicine.
Collapse
Affiliation(s)
- Joana Fernandes Marques
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Joana Pereira Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Gabriela Fernandes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Pulmonology, Hospital de São João, Porto, Portugal
| | - Venceslau Hespanhol
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Pulmonology, Hospital de São João, Porto, Portugal
| | - José Carlos Machado
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - José Luís Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal,
- Faculty of Medicine, University of Porto, Porto, Portugal,
| |
Collapse
|
46
|
Pisapia P, Rocco D, Pepe F, De Luca C, Battiloro C, Smeraglio R, Cieri M, Bellevicine C, Troncone G, Malapelle U. EGFR exon 19 deletion switch and development of p.L792Q mutation as a new resistance mechanism to osimertinib: a case report and literature review. Transl Cancer Res 2019; 8:S64-S69. [PMID: 35117065 PMCID: PMC8798167 DOI: 10.21037/tcr.2018.09.13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/20/2018] [Indexed: 11/06/2022]
Abstract
Epidermal growth factor receptor (EGFR) gene mutations play an important role in the treatment management of non-small cell lung cancer (NSCLC) patients. After a first- or second-generation EGFR tyrosine kinase inhibitor (TKI) therapy, the most common resistance mechanism involves the selection of a resistant clone carrying the exon 20 p.T790M point mutation. However, also for these patients, treated with a third-generation TKI (osimertinib) several mechanisms of acquired resistance are described. Here we report the case of a 68-year-old man with an EGFR exon 19 deletion treated with gefitinib in first line and osimertinib in second line besides on the presence of a p.T790M mutation, who developed an uncommon EGFR exon 20 p.L792Q point mutation at the progression to osimertinib, with the concomitant modification of the original sensitizing EGFR exon 19 deletion and the loss of p.T790M mutation.
Collapse
Affiliation(s)
- Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Danilo Rocco
- Department of Oncology, A.O.R.N. Ospedale dei Colli, Naples, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Caterina De Luca
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Ciro Battiloro
- Department of Oncology, A.O.R.N. Ospedale dei Colli, Naples, Italy
| | - Riccardo Smeraglio
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Miriam Cieri
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
47
|
Abstract
Osimertinib (AZD9291), a third-generation epidermal growth factor receptor (EGFR)-tyrosine-kinase inhibitor (TKI), is useful in the treatment of non-small cell lung cancer who show resistance to first-generation EGFR-TKIs and harbor T790M mutation. Acquisition of resistance to osimertinib due to several mechanisms has been reported. We report the first case of an Indian patient with osimertinib resistance, due to C797S mutation. A 52-year-old nonsmoker man was detected to have metastatic lung adenocarcinoma (Stage IV) with EGFR exon 19 deletion and treated with erlotinib. After 12 months of response with erlotinib, he developed resistance because of the development of T790M mutation. He was started on osimertinib, with which he responded for 20 months. A follow-up positron emission tomography scan showed progressive disease. Subsequent liquid biopsy did not detect any mutation. However, rebiopsy of the lung lesion showed additional C797S mutation (in cis association with T790M). Hence, the patient was diagnosed to have “triple whammy,” i.e., triple mutation of exon 19 deletion, T790M, and C797S mutations.
Collapse
Affiliation(s)
- Mahismita Patro
- Department of Pulmonary Medicine, ESI PGIMSR, New Delhi, India
| | - Dipti Gothi
- Department of Pulmonary Medicine, ESI PGIMSR, New Delhi, India
| | - Sameer Vaidya
- Department of Pulmonary Medicine, ESI PGIMSR, New Delhi, India
| | - Ram Babu Sah
- Department of Pulmonary Medicine, ESI PGIMSR, New Delhi, India
| |
Collapse
|
48
|
The lonely driver or the orchestra of mutations? How next generation sequencing datasets contradict the concept of single driver checkpoint mutations in solid tumours - NSCLC as a scholarly example. Semin Cancer Biol 2018; 58:22-28. [PMID: 30458202 DOI: 10.1016/j.semcancer.2018.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023]
Abstract
Driver mutations are considered to be responsible for the majority of cancers and several of those mutations provide targets in order to set up personalized therapies. So far the generally accepted opinion had been that driver mutations occur as stand-alone factors, but novel sequencing technologies induced an essential rethink. Next generation sequencing approaches have shown that double, triple or multiple concurrent mutations could occur within the same tumour and may by interaction influence sensitivity to anticancer drugs and therapy success. This review focusses on this novel concept and discusses the challenges for molecular pathology and laboratory diagnostics while providing putative solutions to overcome the present pitfalls, thereby taking NSCLC as an example.
Collapse
|
49
|
Long-Mira E, Ilie M, Chamorey E, Leduff-Blanc F, Montaudié H, Tanga V, Allégra M, Lespinet-Fabre V, Bordone O, Bonnetaud C, Schiappa R, Butori C, Bence C, Lacour JP, Hofman V, Hofman P. Monitoring BRAF and NRAS mutations with cell-free circulating tumor DNA from metastatic melanoma patients. Oncotarget 2018; 9:36238-36249. [PMID: 30546839 PMCID: PMC6281416 DOI: 10.18632/oncotarget.26343] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/01/2018] [Indexed: 01/05/2023] Open
Abstract
The mutation status of the BRAF and NRAS genes in tumor tissue is used to select patients with metastatic melanoma for targeted therapy. Cell-free circulating DNA (cfDNA) represents an accessible, non-invasive surrogate sample that could provide a snapshot of the BRAF and NRAS genotype in these patients. We investigated the feasibility of the Idylla™ assay for detection of BRAF and NRAS mutations in cfDNA of 19 patients with metastatic melanoma at baseline and during the course of treatment. The cfDNA genotype obtained with Idylla was compared to the results obtained with matched-tumor tissue and to clinical outcome. At baseline, 47% of patients harbored a BRAFV600 mutation in their cfDNA. Two months after targeted treatment the BRAFV600 mutant cfDNA was undetectable in all patients and 3 were disease-free. Moreover, 15% of patients harbored a NRAS mutation that was detected with plasma before treatment. The sensitivity and specificity were 80% and 89% for the BRAF status, and 79% and 100% for the NRAS status in pretreatment cfDNA compared to results obtained with a tissue test. Due to the small size of the population, no significant correlation was observed between the presence of BRAF or NRAS mutations in cfDNA and the metastatic tumor load or overall survival. In conclusion, this study demonstrated that evaluation with the Idylla system of the BRAF and NRAS mutation status in cfDNA may be a surrogate for determination of the BRAF and NRAS status in tumor tissue.
Collapse
Affiliation(s)
- Elodie Long-Mira
- Université Côte d'Azur, CHU Nice, FHU OncoAge, Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice, France
- Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU OncoAge, Team 4, Nice, France
- Université Côte d'Azur, CHU Nice, FHU OncoAge, Hospital-Integrated Biobank, Nice, France
| | - Marius Ilie
- Université Côte d'Azur, CHU Nice, FHU OncoAge, Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice, France
- Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU OncoAge, Team 4, Nice, France
- Université Côte d'Azur, CHU Nice, FHU OncoAge, Hospital-Integrated Biobank, Nice, France
| | - Emmanuel Chamorey
- Antoine Lacassagne Comprehensive Cancer Center, FHU OncoAge, Biostatistics Unit, Nice, France
| | - Florence Leduff-Blanc
- Université Côte d'Azur, CHU Nice, Department of Dermatology, Archet Hospital, Nice, France
| | - Henri Montaudié
- Université Côte d'Azur, CHU Nice, Department of Dermatology, Archet Hospital, Nice, France
| | - Virginie Tanga
- Université Côte d'Azur, CHU Nice, FHU OncoAge, Hospital-Integrated Biobank, Nice, France
| | - Maryline Allégra
- Université Côte d'Azur, CHU Nice, FHU OncoAge, Hospital-Integrated Biobank, Nice, France
| | | | - Olivier Bordone
- Université Côte d'Azur, CHU Nice, FHU OncoAge, Hospital-Integrated Biobank, Nice, France
| | - Christelle Bonnetaud
- Université Côte d'Azur, CHU Nice, FHU OncoAge, Hospital-Integrated Biobank, Nice, France
| | - Renaud Schiappa
- Antoine Lacassagne Comprehensive Cancer Center, FHU OncoAge, Biostatistics Unit, Nice, France
| | - Catherine Butori
- Université Côte d'Azur, CHU Nice, FHU OncoAge, Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice, France
| | - Coraline Bence
- Université Côte d'Azur, CHU Nice, FHU OncoAge, Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice, France
| | - Jean-Philippe Lacour
- Université Côte d'Azur, CHU Nice, Department of Dermatology, Archet Hospital, Nice, France
| | - Véronique Hofman
- Université Côte d'Azur, CHU Nice, FHU OncoAge, Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice, France
- Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU OncoAge, Team 4, Nice, France
- Université Côte d'Azur, CHU Nice, FHU OncoAge, Hospital-Integrated Biobank, Nice, France
| | - Paul Hofman
- Université Côte d'Azur, CHU Nice, FHU OncoAge, Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Nice, France
- Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU OncoAge, Team 4, Nice, France
- Université Côte d'Azur, CHU Nice, FHU OncoAge, Hospital-Integrated Biobank, Nice, France
| |
Collapse
|
50
|
Del Re M, Bordi P, Rofi E, Restante G, Valleggi S, Minari R, Crucitta S, Arrigoni E, Chella A, Morganti R, Tiseo M, Petrini I, Danesi R. The amount of activating EGFR mutations in circulating cell-free DNA is a marker to monitor osimertinib response. Br J Cancer 2018; 119:1252-1258. [PMID: 30397287 PMCID: PMC6251035 DOI: 10.1038/s41416-018-0238-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/16/2018] [Accepted: 07/31/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Circulating cell-free DNA (cfDNA) may help understand the molecular response to pharmacologic treatment and provide information on dynamics of clonal heterogeneity. Therefore, this study evaluated the correlation between treatment outcome and activating EGFR mutations (act-EGFR) and T790M in cfDNA in patients with advanced NSCLC given osimertinib. METHODS Thirty-four NSCLC patients resistant to first/second-generation EGFR-TKIs, positive for both act-EGFR and T790M in cfDNA at the time of progression were enrolled in this study. Plasma samples were obtained at osimertinib baseline and after 3 months of therapy; cfDNA was analyzed by droplet digital PCR and results were expressed as mutant allele frequency (MAF). RESULTS At baseline, act-EGFR MAF was significantly higher than T790M (p < 0.0001). act-EGFR MAF and T790M/act-EGFR MAF ratio were significantly correlated with disease response (p = 0.02). Cut-off values of act-EGFR MAF and T790M/act-EGFR ratio of 2.6% and 0.22 were found, respectively. The PFS of patients with act-EGFR MAF of > 2.6% and < 2.6%, were 10 months vs. not reached, respectively (p = 0.03), whereas patients with T790M/act-EGFR ≤ 0.22 had poorer PFS than patients with a value of > 0.22 (6 months vs. not reached, respectively, p = 0.01). CONCLUSION act-EGFR MAF and T790M/act-EGFR MAF ratio are potential markers of outcome in patients treated with osimertinib.
Collapse
Affiliation(s)
- Marzia Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Bordi
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Eleonora Rofi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giuliana Restante
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Simona Valleggi
- Pneumology Unit, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Stefania Crucitta
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elena Arrigoni
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonio Chella
- Pneumology Unit, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Riccardo Morganti
- Section of Statistics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Iacopo Petrini
- Pneumology Unit, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy.
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|