1
|
Moore JL, Patterson NH, Norris JL, Caprioli RM. Prospective on Imaging Mass Spectrometry in Clinical Diagnostics. Mol Cell Proteomics 2023; 22:100576. [PMID: 37209813 PMCID: PMC10545939 DOI: 10.1016/j.mcpro.2023.100576] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023] Open
Abstract
Imaging mass spectrometry (IMS) is a molecular technology utilized for spatially driven research, providing molecular maps from tissue sections. This article reviews matrix-assisted laser desorption ionization (MALDI) IMS and its progress as a primary tool in the clinical laboratory. MALDI mass spectrometry has been used to classify bacteria and perform other bulk analyses for plate-based assays for many years. However, the clinical application of spatial data within a tissue biopsy for diagnoses and prognoses is still an emerging opportunity in molecular diagnostics. This work considers spatially driven mass spectrometry approaches for clinical diagnostics and addresses aspects of new imaging-based assays that include analyte selection, quality control/assurance metrics, data reproducibility, data classification, and data scoring. It is necessary to implement these tasks for the rigorous translation of IMS to the clinical laboratory; however, this requires detailed standardized protocols for introducing IMS into the clinical laboratory to deliver reliable and reproducible results that inform and guide patient care.
Collapse
Affiliation(s)
| | - Nathan Heath Patterson
- Frontier Diagnostics, Nashville, Tennessee, USA; Vanderbilt University Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeremy L Norris
- Frontier Diagnostics, Nashville, Tennessee, USA; Vanderbilt University Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Richard M Caprioli
- Frontier Diagnostics, Nashville, Tennessee, USA; Vanderbilt University Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA; Departments of Biochemistry, Pharmacology, Chemistry, and Medicine, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
2
|
Abbasian MH, Ardekani AM, Sobhani N, Roudi R. The Role of Genomics and Proteomics in Lung Cancer Early Detection and Treatment. Cancers (Basel) 2022; 14:5144. [PMID: 36291929 PMCID: PMC9600051 DOI: 10.3390/cancers14205144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 08/17/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide, with non-small-cell lung cancer (NSCLC) being the primary type. Unfortunately, it is often diagnosed at advanced stages, when therapy leaves patients with a dismal prognosis. Despite the advances in genomics and proteomics in the past decade, leading to progress in developing tools for early diagnosis, targeted therapies have shown promising results; however, the 5-year survival of NSCLC patients is only about 15%. Low-dose computed tomography or chest X-ray are the main types of screening tools. Lung cancer patients without specific, actionable mutations are currently treated with conventional therapies, such as platinum-based chemotherapy; however, resistances and relapses often occur in these patients. More noninvasive, inexpensive, and safer diagnostic methods based on novel biomarkers for NSCLC are of paramount importance. In the current review, we summarize genomic and proteomic biomarkers utilized for the early detection and treatment of NSCLC. We further discuss future opportunities to improve biomarkers for early detection and the effective treatment of NSCLC.
Collapse
Affiliation(s)
- Mohammad Hadi Abbasian
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 1497716316, Iran
| | - Ali M. Ardekani
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 1497716316, Iran
| | - Navid Sobhani
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Raheleh Roudi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Semi-Quantitative MALDI Measurements of Blood-Based Samples for Molecular Diagnostics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030997. [PMID: 35164262 PMCID: PMC8840133 DOI: 10.3390/molecules27030997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022]
Abstract
Accurate and precise measurement of the relative protein content of blood-based samples using mass spectrometry is challenging due to the large number of circulating proteins and the dynamic range of their abundances. Traditional spectral processing methods often struggle with accurately detecting overlapping peaks that are observed in these samples. In this work, we develop a novel spectral processing algorithm that effectively detects over 1650 peaks with over 3.5 orders of magnitude in intensity in the 3 to 30 kD m/z range. The algorithm utilizes a convolution of the peak shape to enhance peak detection, and accurate peak fitting to provide highly reproducible relative abundance estimates for both isolated peaks and overlapping peaks. We demonstrate a substantial increase in the reproducibility of the measurements of relative protein abundance when comparing this processing method to a traditional processing method for sample sets run on multiple matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) instruments. By utilizing protein set enrichment analysis, we find a sizable increase in the number of features associated with biological processes compared to previously reported results. The new processing method could be very beneficial when developing high-performance molecular diagnostic tests in disease indications.
Collapse
|
4
|
Israr MZ, Bernieh D, Salzano A, Cassambai S, Yazaki Y, Suzuki T. Matrix-assisted laser desorption ionisation (MALDI) mass spectrometry (MS): basics and clinical applications. Clin Chem Lab Med 2021; 58:883-896. [PMID: 32229653 DOI: 10.1515/cclm-2019-0868] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/21/2020] [Indexed: 01/23/2023]
Abstract
Background Matrix-assisted laser desorption ionisation (MALDI) mass spectrometry (MS) has been used for more than 30 years. Compared with other analytical techniques, it offers ease of use, high throughput, robustness, cost-effectiveness, rapid analysis and sensitivity. As advantages, current clinical techniques (e.g. immunoassays) are unable to directly measure the biomarker; rather, they measure secondary signals. MALDI-MS has been extensively researched for clinical applications, and it is set for a breakthrough as a routine tool for clinical diagnostics. Content This review reports on the principles of MALDI-MS and discusses current clinical applications and the future clinical prospects for MALDI-MS. Furthermore, the review assesses the limitations currently experienced in clinical assays, the advantages and the impact of MALDI-MS to transform clinical laboratories. Summary MALDI-MS is widely used in clinical microbiology for the screening of microbial isolates; however, there is scope to apply MALDI-MS in the diagnosis, prognosis, therapeutic drug monitoring and biopsy imaging in many diseases. Outlook There is considerable potential for MALDI-MS in clinic as a tool for screening, profiling and imaging because of its high sensitivity and specificity over alternative techniques.
Collapse
Affiliation(s)
- Muhammad Zubair Israr
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Dennis Bernieh
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Andrea Salzano
- IRCCS SDN, Diagnostic and Nuclear Research Institute, Naples, Italy
| | - Shabana Cassambai
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Yoshiyuki Yazaki
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Toru Suzuki
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
5
|
Jia B, Dong Z, Wu D, Zhao J, Wu M, An T, Wang Y, Zhuo M, Li J, Wang Y, Zhang J, Zhao X, Li S, Li J, Ma M, Chen C, Yang X, Zhong J, Chen H, Wang J, Chi Y, Zhai X, Cui S, Zhang R, Ma Q, Fang J, Wang Z. Prediction of the VeriStrat test in first-line therapy of pemetrexed-based regimens for advanced lung adenocarcinoma patients. Cancer Cell Int 2020; 20:590. [PMID: 33298069 PMCID: PMC7724790 DOI: 10.1186/s12935-020-01662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although advanced non-squamous non-small cell lung cancer (NSCLC) patients have significantly better survival outcomes after pemetrexed based treatment, a subset of patients still show intrinsic resistance and progress rapidly. Therefore we aimed to use a blood-based protein signature (VeriStrat, VS) to analyze whether VS could identify the subset of patients who had poor efficacy on pemetrexed therapy. METHODS This study retrospectively analysed 72 advanced lung adenocarcinoma patients who received first-line pemetrexed/platinum or combined with bevacizumab treatment. RESULTS Plasma samples from these patients were analysed using VS and classified into the Good (VS-G) or Poor (VS-P) group. The relationship between efficacy and VS status was further investigated. Of the 72 patients included in this study, 35 (48.6%) were treated with pemetrexed plus platinum and 37 (51.4%) were treated with pemetrexed/platinum combined with bevacizumab. Among all patients, 60 (83.3%) and 12 (16.7%) patients were classified as VS-G and VS-P, respectively. VS-G patients had significantly better median progression-free survival (PFS) (Unreached vs. 4.2 months; P < 0.001) than VS-P patients. In addition, the partial response (PR) rate was higher in the VS-G group than that in the VS-P group (46.7% vs. 25.0%, P = 0.212). Subgroup analysis showed that PFS was also significantly longer in the VS-G group than that in the VS-P group regardless of whether patients received chemotherapy alone or chemotherapy plus bevacizumab. CONCLUSIONS Our study indicated that VS might be considered as a novel and valid method to predict the efficacy of pemetrexed-based therapy and identify a subset of advanced lung adenocarcinoma patients who had intrinsic resistance to pemetrexed based regimens. However, larger sample studies are still needed to further confirm this result.
Collapse
Affiliation(s)
- Bo Jia
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Zhi Dong
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of GI Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Di Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, 100142, Beijing, China
| | - Jun Zhao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Meina Wu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Tongtong An
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Yuyan Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Minglei Zhuo
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Jianjie Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Yang Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, 100142, Beijing, China
| | - Jie Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, 100142, Beijing, China
| | - Xinghui Zhao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Sheng Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Junfeng Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Menglei Ma
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Chen Chen
- Center for Clinical Laboratory Medicine, Chinese PLA General Hospital, The First Medical Center), Beijing, China
| | - Xue Yang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Jia Zhong
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Hanxiao Chen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Jingjing Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Yujia Chi
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xiaoyu Zhai
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Song Cui
- Bioyong Technologies Inc, Beijing, China
| | - Rong Zhang
- Bioyong Technologies Inc, Beijing, China
| | - Qingwei Ma
- Bioyong Technologies Inc, Beijing, China
| | - Jian Fang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, 100142, Beijing, China.
| | - Ziping Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/ Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
6
|
Chae YK, Kim WB, Davis AA, Park LC, Anker JF, Simon NI, Rhee K, Song J, Cho A, Chang S, Ko T, Oh M, Bhave M, Viveiros P. Mass spectrometry-based serum proteomic signature as a potential biomarker for survival in patients with non-small cell lung cancer receiving immunotherapy. Transl Lung Cancer Res 2020; 9:1015-1028. [PMID: 32953481 PMCID: PMC7481587 DOI: 10.21037/tlcr-20-148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background VeriStrat test is a serum assay which uses a mass spectrometry (MS)-based proteomic signature derived from machine learning. It is currently used as a prognostic marker for patients with non-small cell lung cancer (NSCLC) receiving chemotherapy. However, little is known about its role for NSCLC patients receiving immune checkpoint inhibitors (ICIs). Methods This is a retrospective study that includes 47 patients with advanced stage NSCLC without an activating EGFR mutation, who underwent the VeriStrat test from 2016 to 2018. Spectra from blood samples were evaluated to assign patients into the VeriStrat ‘Good’ (VS-G) or VeriStrat ‘Poor’ (VS-P) risk group. The clinical outcomes of 32 patients who received programmed cell death 1 (PD-1) inhibitors nivolumab or pembrolizumab were analyzed by VeriStrat status. Results The VS-G group demonstrated significantly higher progression-free survival (PFS) and overall survival (OS) compared to the VS-P group among overall NSCLC patients regardless of treatment (median PFS of 7.1 vs. 4.2 months, P=0.013, and median OS, not reached vs. 17.2 months, P=0.012). Among NSCLC patients treated with ICIs, VS-G classification was associated with significantly increased PFS in comparison to VS-P classification (median PFS of 6.2 vs. 3.0 months, P=0.012), while the differences in OS trended towards significance (median OS, not reached vs. 16.5 months P=0.076). Multivariate analysis showed that the VeriStrat status was significantly correlated with PFS and OS in NSCLC patients treated with ICIs (P=0.017, P=0.034, respectively). Conclusions MS-based serum proteomic signature has potential as a biomarker for survival outcome in NSCLC patients receiving immunotherapy.
Collapse
Affiliation(s)
- Young Kwang Chae
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Won Bin Kim
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrew A Davis
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lee Chun Park
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Division of Hematology/Oncology, Internal Medicine, Kosin University, Busan, Republic of Korea
| | - Jonathan F Anker
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nicholas I Simon
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kyunghoon Rhee
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Junho Song
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Anderson Cho
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sangmin Chang
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Taeyeong Ko
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael Oh
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Manali Bhave
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pedro Viveiros
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
7
|
Leal TA, Argento AC, Bhadra K, Hogarth DK, Grigorieva J, Hartfield RM, McDonald RC, Bonomi PD. Prognostic performance of proteomic testing in advanced non-small cell lung cancer: a systematic literature review and meta-analysis. Curr Med Res Opin 2020; 36:1497-1505. [PMID: 32615813 DOI: 10.1080/03007995.2020.1790346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Timely assessment of patient-specific prognosis is critical to oncology care involving a shared decision-making approach, but clinical prognostic factors traditionally used in NSCLC have limitations. We examine a proteomic test to address these limitations. METHODS This study examines the prognostic performance of the VeriStrat blood-based proteomic test that measures the inflammatory disease state of patients with advanced NSCLC. A systematic literature review (SLR) was performed, yielding cohorts in which the hazard ratio (HR) was reported for overall survival (OS) of patients with VeriStrat Poor (VSPoor) test results versus VeriStrat Good (VSGood). A study-level meta-analysis of OS HRs was performed in subgroups defined by lines of therapy and treatment regimens. RESULTS Twenty-four cohorts met SLR criteria. Meta-analyses in five subgroups (first-line platinum-based chemotherapy, second-line single-agent chemotherapy, first-line EGFR-tyrosine kinase inhibitor (TKI) therapy, and second- and higher-line TKI therapy, and best supportive care) resulted in statistically significant (p ≤ .001) summary effect sizes for OS HRs of 0.42, 0.54, 0.41, 0.52, and 0.50, respectively, indicating increased OS by about two-fold for patients who test VSGood. No significant heterogeneity was seen in any subgroup (p > .05). CONCLUSIONS Advanced NSCLC patients classified VSGood have significantly longer OS than those classified VSPoor. The summary effect size for OS HRs around 0.4-0.5 indicates that the expected median survival of those with a VSGood classification is approximately 2-2.5 times as long as those with VSPoor. The robust prognostic performance of the VeriStrat test across various lines of therapy and treatment regimens has clinical implications for treatment shared decision-making and potential for novel treatment strategies.
Collapse
Affiliation(s)
- Ticiana A Leal
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Angela C Argento
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Krish Bhadra
- Rees Skillern Cancer Institute, CHI Memorial, Chattanooga, TN, USA
| | - D Kyle Hogarth
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
8
|
Ding D, Chen M, Xiao X, Cao P, Li S. Novel serum peptide model revealed by MALDI-TOF-MS and its diagnostic value in early bladder cancer. Int J Biol Markers 2020; 35:59-66. [PMID: 32701013 DOI: 10.1177/1724600820935473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Bladder cancer is the ninth most common cancer worldwide and has high morbidity and mortality. We aimed to search for potential serum peptide biomarkers and establish a diagnostic model for early bladder cancer. METHODS A total of 67 bladder cancer patients and 64 healthy volunteers were randomly divided into a training set and testing set 1. There were 30 hematuria patients used as testing set 2. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry based on weak cation exchange magnetic beads was used to obtain and analyze the serum peptide profiles between bladder cancer patients and healthy volunteers in the training set. Serum peptide diagnostic model through a k-nearest neighbor algorithm, was established and validated, and significantly differentially expressed protein biomarkers were ultimately identified. RESULTS We constructed a diagnostic model containing five peptides (m/z 1954.9, m/z 2081.0, m/z 3938.3, m/z 3946.5, and m/z 4268.8). In the training set, the area under the curve (AUC) value of the five-peptide model was 0.923, and the sensitivity and specificity was 93.75% and 96.77%, respectively. In testing set 1, the sensitivity and specificity was 91.43% and 90.91%, respectively, and the specificity of testing set 2 was 73.33%. For early-stage bladder cancer, the sensitivity and specificity was 92.31% and 93.75%, respectively; the sensitivity of early low-grade bladder cancer was 90.00%; and the AUC value was 0.944. CONCLUSION The five-peptide diagnostic model established in this study had high sensitivity and specificity, especially in the diagnosis of early bladder cancer, and could differentiate between healthy volunteers and hematuria patients.
Collapse
Affiliation(s)
- Dapeng Ding
- Department of Clinical Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Mingying Chen
- Department of Clinical Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xiaoguang Xiao
- Department of Clinical Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Penglong Cao
- Department of Clinical Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Shijun Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
9
|
Deng H, Wang L, Chen X, Zhang S, Yi F, Wei Y, Zhang W. Erlotinib plus tivantinib versus erlotinib alone in patients with previously treated stage IIIb/IV non-small-cell lung cancer: A meta-analysis based on randomized controlled trials. Medicine (Baltimore) 2020; 99:e20596. [PMID: 32569187 PMCID: PMC7313549 DOI: 10.1097/md.0000000000020596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Whether erlotinib plus tivantinib (ET) can achieve better clinical benefits than erlotinib plus placebo (EP) among participants with previously treated advanced non-small-cell lung cancer (NSCLC) is still disputed. We conducted a meta-analysis to evaluate the anticancer efficacy and safety of both regimens. MATERIALS AND METHODS We searched for pertinent trials at PubMed, ScienceDirect, The Cochrane Library, Scopus, Ovid MEDLINE, Embase, Web of Science, and Google Scholar. Endpoints mainly included progression-free survival (PFS), overall survival (OS), objective response rate (ORR), disease control rate (DCR), and adverse events (AEs). RESULTS We included 1522 patients who previously received ≥1 systemic anti-cancer regimen that included platinum-based chemotherapy. Although ET failed to improve OS (hazard ratio [HR] = 0.91, 95% confidence interval [CI]: 0.75-1.10, P = .35), the ET group had better PFS (HR = 0.73, 95% CI: 0.67-0.80, P < .00001), higher ORR (HR = 1.50, 95% CI: 1.06-2.12, P = .02), and better DCR (HR = 1.38, 95% CI: 1.20-1.59, P < .00001). Our subanalysis suggested that the ET group may have had better OS among patients with high Mesenchymal to epithelial transition factor (MET) expression (HR = 0.76, 95% CI: 0.58-0.99, P = .04) and good VeriStrat (HR = 0.88, 95% CI: 0.83-0.93, P < .0001). AEs were roughly similar except for specific hematological toxicities: more neutropenia and febrile neutropenia were observed in the ET group, both of which should not be overlooked. CONCLUSIONS ET appears to be superior to EP due to better PFS and higher response rates, especially for patients with high MET expression and good VeriStrat. The greater hematological toxicity in the ET regimen is non-negligible.
Collapse
Affiliation(s)
- Huan Deng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University
- Jiangxi Medical College, Nanchang University
| | - Li Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University
- Jiangxi Medical College, Nanchang University
| | - Xinling Chen
- Jiangxi Medical College, Nanchang University
- Department of Oncology, The second affiliated hospital of Nanchang University, Nanchang, China
| | - Shujuan Zhang
- Jiangxi Medical College, Nanchang University
- Department of Oncology, The second affiliated hospital of Nanchang University, Nanchang, China
| | - Fengming Yi
- Department of Oncology, The second affiliated hospital of Nanchang University, Nanchang, China
| | - Yiping Wei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University
| |
Collapse
|
10
|
Mass Spectrometry-Based Multivariate Proteomic Tests for Prediction of Outcomes on Immune Checkpoint Blockade Therapy: The Modern Analytical Approach. Int J Mol Sci 2020; 21:ijms21030838. [PMID: 32012941 PMCID: PMC7036840 DOI: 10.3390/ijms21030838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
The remarkable success of immune checkpoint inhibitors (ICIs) has given hope of cure for some patients with advanced cancer; however, the fraction of responding patients is 15-35%, depending on tumor type, and the proportion of durable responses is even smaller. Identification of biomarkers with strong predictive potential remains a priority. Until now most of the efforts were focused on biomarkers associated with the assumed mechanism of action of ICIs, such as levels of expression of programmed death-ligand 1 (PD-L1) and mutation load in tumor tissue, as a proxy of immunogenicity; however, their performance is unsatisfactory. Several assays designed to capture the complexity of the disease by measuring the immune response in tumor microenvironment show promise but still need validation in independent studies. The circulating proteome contains an additional layer of information characterizing tumor-host interactions that can be integrated into multivariate tests using modern machine learning techniques. Here we describe several validated serum-based proteomic tests and their utility in the context of ICIs. We discuss test performances, demonstrate their independence from currently used biomarkers, and discuss various aspects of associated biological mechanisms. We propose that serum-based multivariate proteomic tests add a missing piece to the puzzle of predicting benefit from ICIs.
Collapse
|
11
|
Grigorieva J, Asmellash S, Oliveira C, Roder H, Net L, Roder J. Application of protein set enrichment analysis to correlation of protein functional sets with mass spectral features and multivariate proteomic tests. CLINICAL MASS SPECTROMETRY 2020. [DOI: 10.1016/j.clinms.2019.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Nagamine A, Araki T, Nagano D, Miyazaki M, Yamamoto K. L-Lactate dehydrogenase B may be a predictive marker for sensitivity to anti-EGFR monoclonal antibodies in colorectal cancer cell lines. Oncol Lett 2019; 17:4710-4716. [PMID: 30944657 DOI: 10.3892/ol.2019.10075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/31/2019] [Indexed: 01/19/2023] Open
Abstract
Recently, proteins derived from cancer cells have been widely investigated as biomarkers for predicting the efficacy of chemotherapy. In this study, to identify a sensitive biomarker for the efficacy of anti-epidermal growth factor receptor monoclonal antibodies (anti-EGFR mAbs), proteins derived from 6 colorectal cancer (CRC) cell lines with different sensitivities to cetuximab, an anti-EGFR mAb, were analyzed. Cytoplasmic and membrane proteins extracted from each CRC cell line were digested using trypsin and analyzed comprehensively using mass spectrometry. As a result, 148 and 146 peaks from cytoplasmic proteins and 363 and 267 peaks from membrane proteins were extracted as specific peaks for cetuximab-resistant and -sensitive CRC cell lines, respectively. By analyzing the proteins identified from the peptide peaks, cytoplasmic L-lactate dehydrogenase B (LDHB) was detected as a marker of cetuximab sensitivity, and it was confirmed that LDHB expression was increased in cetuximab-resistant CRC cell lines. Furthermore, LDHB expression levels were significantly upregulated with the acquisition of resistance to cetuximab in cetuximab-sensitive CRC cell lines. In conclusion, LDHB was identified as an important factor affecting cetuximab sensitivity using comprehensive proteome analysis for the first time.
Collapse
Affiliation(s)
- Ayumu Nagamine
- Department of Clinical Pharmacology and Therapeutics, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.,Department of Pharmacy, Gunma University Hospital, Maebashi, Gunma 371-8511, Japan
| | - Takuya Araki
- Department of Clinical Pharmacology and Therapeutics, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.,Department of Pharmacy, Gunma University Hospital, Maebashi, Gunma 371-8511, Japan
| | - Daisuke Nagano
- Department of Clinical Pharmacology and Therapeutics, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Mitsue Miyazaki
- Division of Endocrinology Metabolism and Signal Research, Gunma University Initiative for Advanced Research and Institute for Molecular and Cellular Regulation, Maebashi, Gunma 371-8511, Japan
| | - Koujirou Yamamoto
- Department of Clinical Pharmacology and Therapeutics, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.,Department of Pharmacy, Gunma University Hospital, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
13
|
Buttigliero C, Shepherd FA, Barlesi F, Schwartz B, Orlov S, Favaretto AG, Santoro A, Hirsh V, Ramlau R, Blackler AR, Roder J, Spigel D, Novello S, Akerley W, Scagliotti GV. Retrospective Assessment of a Serum Proteomic Test in a Phase III Study Comparing Erlotinib plus Placebo with Erlotinib plus Tivantinib (MARQUEE) in Previously Treated Patients with Advanced Non-Small Cell Lung Cancer. Oncologist 2018; 24:e251-e259. [PMID: 30139835 DOI: 10.1634/theoncologist.2018-0089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/05/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The VeriStrat test provides accurate predictions of outcomes in all lines of therapy for patients with non-small cell lung cancer (NSCLC). We investigated the predictive and prognostic role of VeriStrat in patients enrolled on the MARQUEE phase III trial of tivantinib plus erlotinib (T+E) versus placebo plus erlotinib (P+E) in previously treated patients with advanced NSCLC. METHODS Pretreatment plasma samples were available for 996 patients and were analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry to generate VeriStrat labels (good, VS-G, or poor, VS-P). RESULTS Overall, no significant benefit in overall survival (OS) and progression-free survival (PFS) were observed for the addition of tivantinib to erlotinib. Regardless of treatment arm, patients who were classified as VS-G had significantly longer PFS (3.8 mo for T+E arm, 2.0 mo for P+E arm) and OS (11.6 mo for T+E, 10.2 mo for P+E arm) than patients classified as VS-P (PFS: 1.9 mo for both arms, hazard ratio [HR], 0.584; 95% confidence interval [CI], 0.468-0.733; p < .0001 for T+E, HR, 0.686; 95% CI, 0.546-0.870; p = .0015 for P+E; OS: 4.0 mo for both arms, HR, 0.333; 95% CI, 0.264-0.422; p < .0001 for T+E; HR, 0.449; 95% CI, 0.353-0.576; p < .0001 for P+E). The VS-G population had higher OS than the VS-P population within Eastern Cooperative Oncology Group (ECOG) performance score (PS) categories. VS-G patients on the T+E arm had longer PFS, but not OS, than VS-G patients on the P+E arm (p = .0108). Among EGFR mutation-positive patients, those with VS-G status had a median OS more than twice that of any other group (OS: 31.6 mo for T+E and 22.8 mo for P+E), whereas VS-P patients had similar survival rates as VS-G, EGFR-wild type patients (OS: 13.7 mo for T+E and 6.5 mo for P+E). CONCLUSION In these analyses, VeriStrat showed a prognostic role within EGOC PS categories and regardless of treatment arm and EGFR status, suggesting that VeriStrat could be used to identify EGFR mutation-positive patients who will have a poor response to EGFR tyrosine kinase inhibitors. IMPLICATIONS FOR PRACTICE This study suggests that VeriStrat testing could enhance the prognostic role of performance status and smoking status and replicates findings from other trials that showed that the VeriStrat test identifies EGFR mutation-positive patients likely to have a poor response to EGFR tyrosine kinase inhibitors (TKIs). Although these findings should be confirmed in other populations, VeriStrat use could be considered in EGFR mutation-positive patients as an additional prognostic tool, and these results suggest that EGFR mutation-positive patients with VeriStrat "poor" classification could benefit from other therapeutic agents given in conjunction with TKI monotherapy.
Collapse
Affiliation(s)
- Consuelo Buttigliero
- Division of Medical Oncology, Department of Oncology, University of Torino at San Luigi Gonzaga Hospital, Turin, Italy
| | | | | | | | - Sergey Orlov
- St. Petersburg State Medical University, St. Petersburg, Russian Federation
| | | | | | - Vera Hirsh
- McGill University Health Centre, Montreal, Canada
| | - Rodryg Ramlau
- Oncology Department, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | - David Spigel
- Tennessee Oncology Associates, Nashville, Tennessee, USA
| | - Silvia Novello
- Division of Medical Oncology, Department of Oncology, University of Torino at San Luigi Gonzaga Hospital, Turin, Italy
| | | | - Giorgio V Scagliotti
- Division of Medical Oncology, Department of Oncology, University of Torino at San Luigi Gonzaga Hospital, Turin, Italy
| |
Collapse
|