1
|
Ou SHI, Le X, Nagasaka M, Reungwetwattana T, Ahn MJ, Lim DWT, Santos ES, Shum E, Lau SCM, Lee JB, Calles A, Wu F, Lopes G, Sriuranpong V, Tanizaki J, Horinouchi H, Garassino MC, Popat S, Besse B, Rosell R, Soo RA. Top 20 EGFR+ NSCLC Clinical and Translational Science Papers That Shaped the 20 Years Since the Discovery of Activating EGFR Mutations in NSCLC. An Editor-in-Chief Expert Panel Consensus Survey. LUNG CANCER (AUCKLAND, N.Z.) 2024; 15:87-114. [PMID: 38938224 PMCID: PMC11208875 DOI: 10.2147/lctt.s463429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024]
Abstract
The year 2024 is the 20th anniversary of the discovery of activating epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC). Since then, tremendous advances have been made in the treatment of NSCLC based on this discovery. Some of these studies have led to seismic changes in the concept of oncology research and spurred treatment advances beyond NSCLC, leading to a current true era of precision oncology for all solid tumors. We now routinely molecularly profile all tumor types and even plasma samples of patients with NSCLC for multiple actionable driver mutations, independent of patient clinical characteristics nor is profiling limited to the advanced incurable stage. We are increasingly monitoring treatment responses and detecting resistance to targeted therapy by using plasma genotyping. Furthermore, we are now profiling early-stage NSCLC for appropriate adjuvant targeted treatment leading to an eventual potential "cure" in early-stage EGFR+ NSCLC which have societal implication on implementing lung cancer screening in never-smokers as most EGFR+ NSCLC patients are never-smokers. All these advances were unfathomable in 2004 when the five papers that described "discoveries" of activating EGFR mutations (del19, L858R, exon 20 insertions, and "uncommon" mutations) were published. To commemorate this 20th anniversary, we assembled a global panel of thoracic medical oncology experts to select the top 20 papers (publications or congress presentation) from the 20 years since this seminal discovery with December 31, 2023 as the cutoff date for inclusion of papers to be voted on. Papers ranked 21 to 30 were considered "honorable mention" and also annotated. Our objective is that these 30 papers with their annotations about their impact and even all the ranked papers will serve as "syllabus" for the education of future thoracic oncology trainees. Finally, we mentioned potential practice-changing clinical trials to be reported. One of them, LAURA was published online on June 2, 2024 was not included in the list of papers to be voted on but will surely be highly ranked if this consensus survery is performed again on the 25th anniversay of the discovery EGFR mutations (i.e. top 25 papers on the 25 years since the discovery of activating EGFR mutations).
Collapse
Affiliation(s)
- Sai-Hong Ignatius Ou
- University of California Irvine School of Medicine, Chao Family Comprehensive Cancer Center, Orange, CA, USA
| | - Xiuning Le
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Misako Nagasaka
- University of California Irvine School of Medicine, Chao Family Comprehensive Cancer Center, Orange, CA, USA
| | - Thanyanan Reungwetwattana
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Myung-Ju Ahn
- Department of Hematology and Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Darren W T Lim
- Duke-NUS School of medicine, National Cancer Center Singapore, Republic of Singapore
| | - Edgardo S Santos
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Elaine Shum
- NYU Langone Perlmutter Cancer Center, NY, NY, USA
| | | | - Jii Bum Lee
- Yonsei Cancer Center Yonsei University, Seoul, Republic of Korea
| | - Antonio Calles
- Department of Medicine, Division of Medical Oncology, Early Drug Development and Phase I Unit, Hospital General Universitario Gregorio Marañón, Madrid, 28007, Spain
| | - Fengying Wu
- Shanghai Chest hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Gilberto Lopes
- Department of Medicine, Division of Medical Oncology, Sylvester Comprehensive Cancer Center at the University of Miami and the Miller School of Medicine, Miami, FL, 33136, USA
| | - Virote Sriuranpong
- Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Junko Tanizaki
- Department of Medicine, Kindai University School of Medicine, Osaka, Japan
| | - Hidehito Horinouchi
- Department of Thoracic Oncology, National Cancer Center Hospital Tokyo, Tokyo, Japan
| | - Marina C Garassino
- Department of Medicine, Division of Medical Oncology-Hematology, University of Chicago Medicine, Chicago, IL, USA
| | - Sanjay Popat
- Royal Marsden Hospital, London, Imperial College, London, UK
| | - Benjamin Besse
- Gustave Roussy Cancer Campus, Villejuif, France; Paris-Saclay University, Orsay, France
| | - Rafael Rosell
- Department of Hematology-Oncology, National University Cancer Institute, National University Hospital Singapore, Republic of Singapore
| | - Ross A Soo
- IOR, Quirón-Dexeus University Institute; ICO, Catalan Institute of Oncology; IGTP, Germans Trias i Pujol Research Institute, Barcelona, Spain
| |
Collapse
|
2
|
Nishihara S, Yamaoka T, Ishikawa F, Higuchi K, Hasebe Y, Manabe R, Kishino Y, Kusumoto S, Ando K, Kuroda Y, Ohmori T, Sagara H, Yoshida H, Tsurutani J. Mechanisms of EGFR-TKI-Induced Apoptosis and Strategies Targeting Apoptosis in EGFR-Mutated Non-Small Cell Lung Cancer. Genes (Basel) 2022; 13:genes13122183. [PMID: 36553449 PMCID: PMC9778480 DOI: 10.3390/genes13122183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Homeostasis is achieved by balancing cell survival and death. In cancer cells, especially those carrying driver mutations, the processes and signals that promote apoptosis are inhibited, facilitating the survival and proliferation of these dysregulated cells. Apoptosis induction is an important mechanism underlying the therapeutic efficacy of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) for EGFR-mutated non-small cell lung cancer (NSCLC). However, the mechanisms by which EGFR-TKIs induce apoptosis have not been fully elucidated. A deeper understanding of the apoptotic pathways induced by EGFR-TKIs is essential for the developing novel strategies to overcome resistance to EGFR-TKIs or to enhance the initial efficacy through therapeutic synergistic combinations. Recently, therapeutic strategies targeting apoptosis have been developed for cancer. Here, we review the state of knowledge on EGFR-TKI-induced apoptotic pathways and discuss the therapeutic strategies for enhancing EGFR-TKI efficiency. We highlight the great progress achieved with third-generation EGFR-TKIs. In particular, combination therapies of EGFR-TKIs with anti-vascular endothelial growth factor/receptor inhibitors or chemotherapy have emerged as promising therapeutic strategies for patients with EGFR-mutated NSCLC. Nevertheless, further breakthroughs are needed to yield an appropriate standard care for patients with EGFR-mutated NSCLC, which requires gaining a deeper understanding of cancer cell dynamics in response to EGFR-TKIs.
Collapse
Affiliation(s)
- Shigetoshi Nishihara
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Toshimitsu Yamaoka
- Advanced Cancer Translational Research Institute, Showa University, Tokyo 142-8555, Japan
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
- Correspondence: ; Tel.: +81-3-3784-8146
| | | | - Kensuke Higuchi
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Yuki Hasebe
- Advanced Cancer Translational Research Institute, Showa University, Tokyo 142-8555, Japan
| | - Ryo Manabe
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Yasunari Kishino
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
- Tokyo Metropolitan Ebara Hospital, Tokyo 145-0065, Japan
| | - Sojiro Kusumoto
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Koichi Ando
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Yusuke Kuroda
- Tokyo Metropolitan Ebara Hospital, Tokyo 145-0065, Japan
| | - Tohru Ohmori
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
- Tokyo Metropolitan Ebara Hospital, Tokyo 145-0065, Japan
| | - Hironori Sagara
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Hitoshi Yoshida
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, Tokyo 142-8666, Japan
| | - Junji Tsurutani
- Advanced Cancer Translational Research Institute, Showa University, Tokyo 142-8555, Japan
| |
Collapse
|
3
|
Gong T, Huang Q, Tang F, Wang Y, Li Z, Luo Y, Min L, Zhou Y, Tu C. Activity and safety of apatinib monotherapy or apatinib combined with chemotherapy for patients with metastatic or unresectable osteosarcoma over the age of 40 years: A retrospective analysis. Front Oncol 2022; 12:1031787. [PMID: 36387068 PMCID: PMC9664205 DOI: 10.3389/fonc.2022.1031787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Osteosarcoma commonly develops during childhood and adolescence. Only one-third of osteosarcoma patients have been clinically detected over the age of 40 years, and the survivorship of those patients is quite dismal. Apatinib, a novel multitarget angiogenesis inhibitor, has shown a short-term efficacy in advanced or metastatic osteosarcoma. However, the data for apatinib in the older patients with osteosarcoma are limited. We aim to evaluate the efficacy and safety of apatinib combined with chemotherapy versus apatinib monotherapy in the treatment of patients over 40 years old with metastatic or unresectable osteosarcoma. METHODS We retrospectively analyzed the patients with metastatic osteosarcoma who were treated with apatinib monotherapy or apatinib combined with chemotherapy between May 2015 and December 2018 in the Department of Orthopedics at West China Hospital. Apatinib was initially administered with a dose of 500 mg daily, and the dose was adjusted according to toxicity. The objective response rate (ORR), disease control rate (DCR), duration of response (DOR), progression-free survival (PFS), and overall survival (OS) were investigated. The treatment-related adverse events and the safety of apatinib were also documented. RESULTS A total of 45 patients (28 men, 17 women) with metastatic or unresectable osteosarcoma were finally included, and 41 patients received at least one cycle of treatment and were evaluable for efficacy. Of 41 patients, 24 who were intolerant to intensive chemotherapy or have failed standard chemotherapy received apatinib monotherapy, and 17 patients were treated with apatinib plus chemotherapy. The median PFS and median OS were longer in the group treated with apatinib combined with chemotherapy than those of the apatinib monotherapy group (5.6 months vs. 2.6 months; 15.1 months vs. 9.7 months). Moreover, the median DOR was significantly prolonged in the group treated with apatinib combined with chemotherapy compared with that in the monotherapy group. CONCLUSION Apatinib demonstrated promising activity in patients over 40 years old with metastatic or unresectable osteosarcoma. The combination of apatinib and chemotherapy conferred a durable response compared with apatinib monotherapy, which might be an alternative therapeutic strategy for the management of osteosarcoma in older patients.
Collapse
Affiliation(s)
- Taojun Gong
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi Huang
- Operating Room, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Fan Tang
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yitian Wang
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhuangzhuang Li
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Luo
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Min
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yong Zhou
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chongqi Tu
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Guo H, Xu K, Duan G, Wen L, He Y. Progress and future prospective of FDG-PET/CT imaging combined with optimized procedures in lung cancer: toward precision medicine. Ann Nucl Med 2022; 36:1-14. [PMID: 34727331 DOI: 10.1007/s12149-021-01683-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
With a 5-year overall survival of approximately 20%, lung cancer has always been the number one cancer-specific killer all over the world. As a fusion of positron emission computed tomography (PET) and computed tomography (CT), PET/CT has revolutionized cancer imaging over the past 20 years. In this review, we focused on the optimization of the function of 18F-flurodeoxyglucose (FDG)-PET/CT in diagnosis, prognostic prediction and therapy management of lung cancers by computer programs. FDG-PET/CT has demonstrated a surprising role in development of therapeutic biomarkers, prediction of therapeutic responses and long-term survival, which could be conducive to solving existing dilemmas. Meanwhile, novel tracers and optimized procedures are also developed to control the quality and improve the effect of PET/CT. With the continuous development of some new imaging agents and their clinical applications, application value of PET/CT has broad prospects in this area.
Collapse
Affiliation(s)
- Haoyue Guo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
- School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
| | - Kandi Xu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
- School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
| | - Guangxin Duan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Ling Wen
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China.
- School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
5
|
Zeng Y, Yu D, Tian W, Wu F. Resistance mechanisms to osimertinib and emerging therapeutic strategies in nonsmall cell lung cancer. Curr Opin Oncol 2022; 34:54-65. [PMID: 34669648 DOI: 10.1097/cco.0000000000000805] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review aims to introduce the resistance mechanisms to osimertinib, discuss the therapeutic strategies, and make clinical updates in overcoming resistance to osimertinib. RECENT FINDINGS Osimertinib has shown favorable efficacy on second-line and first-line treatments in EGFR-mutant advanced nonsmall cell lung cancer (NSCLC). However, the presence of primary and acquired resistance to osimertinib restricts its clinical benefits. The primary resistance mainly consists of BIM deletion polymorphism and EGFR exon 20 insertions. Meanwhile, the heterogeneous mechanisms of acquired resistance include EGFR-dependent (on-target) and EGFR-independent (off-target) mechanisms. EGFR C797S mutation, MET amplification, HER2 amplification, and small cell lung cancer transformation were identified as frequent resistance mechanisms. Recently, more novel mechanisms, including rare EGFR point mutations and oncogenic fusions, were reported. With the results of completed and on-going clinical trials, the emerging therapeutic strategies of postosimertinib progression are summarized. SUMMARY The resistance mechanisms to osimertinib are heterogeneous and gradually perfected. The combination of osimertinib with bypass targeted therapy and other therapeutic approaches emerge as promising strategies.
Collapse
Affiliation(s)
- Yue Zeng
- Department of Oncology, The Second Xiangya Hospital, Central South University
| | - Danlei Yu
- Department of Oncology, The Second Xiangya Hospital, Central South University
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu
| | - Wentao Tian
- Department of Oncology, The Second Xiangya Hospital, Central South University
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre
- Hunan Key Laboratory of Tumor Models and Individualized Medicine
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan
| |
Collapse
|
6
|
Cardona AF, Ordóñez-Reyes C, Ruiz-Patiño A, Garcia-Robledo JE, Barron LZ, Recondo G, Rojas L, Corrales L, Martín C, Barrón F, Sotelo C, Rodríguez J, Ricaurte L, Rolfo C, Ávila J, Mayorga D, Archila P, Otero J, Mas L, Bermudez M, Gamez T, Carranza H, Vargas C, Rosell R, Arrieta O. EGFR Inhibitors Plus Bevacizumab are Superior Than EGFR Inhibitors Alone as First-Line Setting in Advanced NSCLC With EGFR Mutations and BIM Deletion Polymorphisms (BIM-CLICaP). JCO Precis Oncol 2021; 5:839-848. [DOI: 10.1200/po.20.00404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
PURPOSE BIM activation is essential for epidermal growth factor receptor ( EGFR)-tyrosine kinase inhibitor (TKI)–triggered apoptosis in EGFR-mutant non–small-cell lung cancer (NSCLC). A deletion in the intron two of the BIM gene results in generation of alternatively spliced isoforms that impairs their apoptotic response to TKIs, conferring the NSCLC cells intrinsic resistance to these medications. Patients with both alterations have poor clinical evolution. The current study aimed to investigate the clinical efficacy and tolerability of EGFR-TKIs plus bevacizumab (Bev) versus EGFR-TKIs alone as first-line treatment in advanced NSCLC patients with EGFR mutations and BIM deletions ( BIMdel). MATERIALS AND METHODS A retrospective analysis was conducted. BIMdel was detected using polymerase chain reaction analysis and direct sequencing of DNA. BIM protein expression was investigated by immunohistochemistry, and BIM mRNA levels by reverse transcriptase-polymerase chain reaction. Clinical characteristics, overall survival, progression-free survival (PFS), overall response rate (ORR), and treatment-related adverse events were compared between both groups. RESULTS Thirty-three patients were included; 15 received EGFR-TKIs, and 18 received EGFR-TKIs plus Bev. The median age was 63 years, with a majority of recruited female patients. All included individuals had an Eastern Cooperative Oncology Group performance score of 2 or less. The addition of Bev resulted in a significantly higher ORR (94.4% v 40%, P > .001). Median PFS was longer with the use of the combination therapy (11.12 v 7.87 months; P = .001). Median overall survival tended to be longer in the EGFR-TKIs plus Bev (30.9 v 25.4 months; P = .06) but failed to reach statistical significance. Response in terms of both partial and complete as well as overall favorably affected PFS. CONCLUSION EGFR-TKIs plus Bev conferred a significantly higher ORR and PFS in advanced NSCLC patients with EGFR mutation and BIMdel. Further prospective studies are needed to validate these findings.
Collapse
Affiliation(s)
- Andrés F. Cardona
- Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad el Bosque, Bogotá, Colombia
| | - Camila Ordóñez-Reyes
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad el Bosque, Bogotá, Colombia
| | - Alejandro Ruiz-Patiño
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad el Bosque, Bogotá, Colombia
| | | | | | - Gonzalo Recondo
- Thoracic Oncology Section, Centro de Educación Médica e Investigaciones Clínicas—CEMIC, Buenos Aires, Argentina
| | - Leonardo Rojas
- Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad el Bosque, Bogotá, Colombia
- Clinical Oncology Department, Clínica Colsanitas, Bogotá, Colombia
| | - Luis Corrales
- Oncology Unit, Hospital San Juan de Dios/Centro de Investigación y Manejo del Cáncer (CIMCA), San José, Costa Rica
| | - Claudio Martín
- Medical Oncology Department, Thoracic Oncology Section, Instituto Fleming, Buenos Aires, Argentina
| | - Feliciano Barrón
- Thoracic Oncology Unit, Instituto Nacional de Cancerología, México City, México
| | - Carolina Sotelo
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad el Bosque, Bogotá, Colombia
| | - July Rodríguez
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad el Bosque, Bogotá, Colombia
| | - Luisa Ricaurte
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad el Bosque, Bogotá, Colombia
- Pathology Department, Mayo Clinic, Rochester, MN
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jenny Ávila
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
| | - Diana Mayorga
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
| | - Pilar Archila
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad el Bosque, Bogotá, Colombia
| | - Jorge Otero
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad el Bosque, Bogotá, Colombia
| | - Luis Mas
- Thoracic Oncology Department, Instituto Nacional de Enfermedades Neoplásicas—INEN, Lima, Perú
| | - Maritza Bermudez
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad el Bosque, Bogotá, Colombia
| | - Tatiana Gamez
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad el Bosque, Bogotá, Colombia
| | - Hernán Carranza
- Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad el Bosque, Bogotá, Colombia
| | - Carlos Vargas
- Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad el Bosque, Bogotá, Colombia
| | - Rafael Rosell
- Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Barcelona, Spain
| | - Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología, México City, México
| |
Collapse
|
7
|
Guo Y, Song J, Wang Y, Huang L, Sun L, Zhao J, Zhang S, Jing W, Ma J, Han C. Concurrent Genetic Alterations and Other Biomarkers Predict Treatment Efficacy of EGFR-TKIs in EGFR-Mutant Non-Small Cell Lung Cancer: A Review. Front Oncol 2020; 10:610923. [PMID: 33363040 PMCID: PMC7758444 DOI: 10.3389/fonc.2020.610923] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) greatly improve the survival and quality of life of non-small cell lung cancer (NSCLC) patients with EGFR mutations. However, many patients exhibit de novo or primary/early resistance. In addition, patients who initially respond to EGFR-TKIs exhibit marked diversity in clinical outcomes. With the development of comprehensive genomic profiling, various mutations and concurrent (i.e., coexisting) genetic alterations have been discovered. Many studies have revealed that concurrent genetic alterations play an important role in the response and resistance of EGFR-mutant NSCLC to EGFR-TKIs. To optimize clinical outcomes, a better understanding of specific concurrent gene alterations and their impact on EGFR-TKI treatment efficacy is necessary. Further exploration of other biomarkers that can predict EGFR-TKI efficacy will help clinicians identify patients who may not respond to TKIs and allow them to choose appropriate treatment strategies. Here, we review the literature on specific gene alterations that coexist with EGFR mutations, including common alterations (intra-EGFR [on target] co-mutation, TP53, PIK3CA, and PTEN) and driver gene alterations (ALK, KRAS, ROS1, and MET). We also summarize data for other biomarkers (e.g., PD-L1 expression and BIM polymorphisms) associated with EGFR-TKI efficacy.
Collapse
Affiliation(s)
- Yijia Guo
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Song
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanru Wang
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Letian Huang
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Sun
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianzhu Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuling Zhang
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Jing
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jietao Ma
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chengbo Han
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Li X, Zhang D, Li B, Zou B, Wang S, Fan B, Li W, Yu J, Wang L. Clinical implications of germline BCL2L11 deletion polymorphism in pretreated advanced NSCLC patients with osimertinib therapy. Lung Cancer 2020; 151:39-43. [PMID: 33296806 DOI: 10.1016/j.lungcan.2020.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION B-cell lymphoma 2-like 11 (BCL-2-like 11, BCL2L11, also known as BIM) deletion polymorphism (BIM-del) has been associated with resistance to first-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), and is a poor prognostic factor for EGFR-mutant non-small-cell lung cancer (NSCLC) patients. Nevertheless, the impact of BIM-del in advanced NSCLC patients treated with the third-generation EGFR-TKI osimertinib remains undetermined. This study aims to evaluate the relationship between BIM-del and therapeutic efficacy of osimertinib in pretreated NSCLC patients. METHODS Patients subjected to EGFR T790 M detection and prior osimertinib treatment between December 2015 and December 2019 in our hospital were enrolled in this study. Peripheral blood samples from these patients were collected to detect BIM-del by polymerase chain reaction. Cox proportional hazards models were used to analyze the clinical outcomes of patients with and without BIM-del. RESULTS In total, 152 Chinese Han NSCLC patients-including 143 T790M-positive and nine T790M-negative patients-were enrolled. BIM-del was detected in only 17.5 % of T790M-positive patients (25/143). The majority of patients were aged <65 years (81.8 %, 117/143), were female (58.7 %, 84/143), were non-smokers (82.5 %, 118/143), had Eastern Cooperative Oncology Group (ECOG) performance status (PS) 0-1 (88.8 %, 129/143), and exhibited metastases in the central nervous system (CNS) (54.5 %, 78/143). There were no associations between the BIM-del and clinical characteristics (including age, sex, histology, smoking status, stage, ECOG PS score, and CNS metastases). Patients with BIM-del had a poorer objective response rate than those without (28.0 % versus 52.5 %, p = 0.026). Besides, BIM-del was associated with a significantly shorter progression-free survival (PFS) and a moderately shorter overall survival (OS) (8.3 versus 10.5 months, p = 0.031 and 15.9 versus 25.2 months, p = 0.1, respectively). Multivariate analysis indicated that BIM-del was an independent prognostic factor for PFS but not for OS in EGFR T790 M NSCLC patients. CONCLUSIONS BIM-del is associated with poor clinical responses and outcomes, and might be a negative predictive and prognostic biomarker in EGFR T790 M NSCLC patients with osimertinib treatment.
Collapse
Affiliation(s)
- Xuanzong Li
- Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Dai Zhang
- School of Medicine, Shandong University, Jinan, China
| | - Butuo Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Bing Zou
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shijiang Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Bingjie Fan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wanlong Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Linlin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
9
|
Yeo CD, Kim IK, Ban WH, Kang HS, Kim JW, Kim SJ, Park JY, Lee SH. Chronic nicotine exposure affects programmed death-ligand 1 expression and sensitivity to epidermal growth factor receptor-tyrosine kinase inhibitor in lung cancer. Transl Cancer Res 2019; 8:S378-S388. [PMID: 35117115 PMCID: PMC8797781 DOI: 10.21037/tcr.2019.05.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/30/2019] [Indexed: 01/03/2023]
Abstract
Background Smoking histories are independently associated with poor response to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) patients with activating EGFR mutations. The aim of the present study was to determine the effect of nicotine exposure on programmed death-ligand 1 (PD-L1) expression in EGFR mutant lung cancer cells. Methods Human lung adenocarcinoma PC9 cells were exposed to 1 µM nicotine for 3 months designated as PC9/N, and cells were stimulated with gefitinib (0, 0.1, or 1 µM) for 48 hrs. Cell viability by the MTT assay and morphological changes by immunofluorescence staining were assessed. The protein expression of EGFR, mTOR, AKT, α1-nicotine acetylcholine receptor (nAchR) and PD-L1 were measured by Western blot. Gene expression of α1-nAchR and PD-L1 were examined by RT-PCR. Intratumoral levels of PD-L1 expression were compared according to the burden of smoking dosage in 54 EGFR mutant lung cancer patients. Results Cellular growth was inhibited by treatment with gefitinib, and PC9 cells were significantly more sensitive to gefitinib than PC9/N cells. Pleomorphic appearance with atypical nuclei and to be detached and shrunken with condensed nuclei in PC9 than PC9/N cells. The gene expression level of α1-nAchR and PD-L1 gene were higher in PC9/N cells compared to those in PC9 cells after treatment with gefitinib. Phosphorylation levels of EGFR, mTOR, AKT and PD-L1 level were decreased by gefitinib in PC9/N cells, which was to a lesser extent than that in PC9 cells. In tumors, heavy smokers (≥30 PY) showed 28.5% of ≥50% PD-L1 tumor proportion score (TPS) while light smoker and never smokers had 12.5% and 9.7% of ≥50% PD-L1 TPS, respectively. However, there was no statistical significance (P value =0.628). Conclusions Chronic nicotine exposure could increase PD-L1 expression related to intrinsic resistance to EGFR-TKI in NSCLC patients harboring activating EGFR mutation. Considering the clinical importance of inevitable EGFR resistance, further studies regarding the role of anti-PD-1/PD-L1 treatment are needed, especially in EGFR mutant smokers.
Collapse
Affiliation(s)
- Chang Dong Yeo
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.,Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - In Kyoung Kim
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.,Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Woo Ho Ban
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hye Seon Kang
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jin Woo Kim
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seung Joon Kim
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.,Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jong Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Sang Haak Lee
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.,Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|