1
|
Jia H, Bian Y, Yuan J, Zhang Y, Zhang S. The Potential Role of C4 MYH11+ Fibroblasts and the MDK-SDC2 Ligand-Receptor Pair in Lung Adenocarcinoma: Implications for Prognosis and Therapeutic Strategies. Transl Oncol 2025; 55:102364. [PMID: 40121996 DOI: 10.1016/j.tranon.2025.102364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/09/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) posed a significant threat to global human health. This study employed single-cell RNA sequencing (scRNA-seq) to analyze transcriptomic data from nine LUAD patients at different stages of tumor infiltration, aiming to elucidate the tumor microenvironment and key biological processes of LUAD. METHODS In this study, we processed the scRNA-seq data using the Seurat package and sequentially applied principal component analysis followed by the Harmony package to effectively correct for batch effects, identifying 105,725 high-quality cells. Through cell clustering and gene expression profiling, we identified critical cell subpopulations and gene expression patterns in LUAD patients. RESULTS Our analysis revealed that the C4 MYH11+ Fibroblasts subtype was primarily involved in biological processes related to muscle function. Further investigations uncovered the MDK-SDC2 ligand-receptor pair as a critical regulator of tumor cell invasion, proliferation, and migration, driving LUAD progression. Additionally, we developed a gene-based prognostic model that effectively predicted patient survival, providing valuable clinical insights. CONCLUSION This study provided a comprehensive atlas of the LUAD tumor microenvironment, highlighted the role of the C4 MYH11+ Fibroblasts in tumor progression. It also proposed the MDK-SDC2 ligand-receptor pair as a novel mechanism, addressing a significant gap in this area of research. And presented a gene-based prognostic model as a novel perspective for research into immunotherapy and drug sensitivity in LUAD.
Collapse
Affiliation(s)
- Hongling Jia
- Department of Thoracic Surgery, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.; The first clinical medical college of Shandong university of Traditional Chinese Medicine, Jinan, China
| | - Yanjie Bian
- Xinxiang Medical University, Xinxiang, China
| | - Jie Yuan
- Sijing Town Community Healthcare Center, Shanghai, China
| | - Yi Zhang
- Department of Thoracic Surgery, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China..
| | - Shengyi Zhang
- Department of Thoracic Surgery, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China..
| |
Collapse
|
2
|
Tekatli H, Bohoudi O, Hardcastle N, Palacios MA, Schneiders FL, Bruynzeel AME, Siva S, Senan S. Artificial intelligence-assisted quantitative CT analysis of airway changes following SABR for central lung tumors. Radiother Oncol 2024; 198:110376. [PMID: 38857700 DOI: 10.1016/j.radonc.2024.110376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Use of stereotactic ablative radiotherapy (SABR) for central lung tumors can result in up to a 35% incidence of late pulmonary toxicity. We evaluated an automated scoring method to quantify post-SABR bronchial changes by using artificial intelligence (AI)-based airway segmentation. MATERIALS AND METHODS Central lung SABR patients treated at Amsterdam UMC (AUMC, internal reference dataset) and Peter MacCallum Cancer Centre (PMCC, external validation dataset) were identified. Patients were eligible if they had pre- and post-SABR CT scans with ≤ 1 mm resolution. The first step of the automated scoring method involved AI-based airway auto-segmentation using MEDPSeg, an end-to-end deep learning-based model. The Vascular Modeling Toolkit in 3D Slicer was then used to extract a centerline curve through the auto-segmented airway lumen, and cross-sectional measurements were computed along each bronchus for all CT scans. For AUMC patients, airway stenosis/occlusion was evaluated by both visual assessment and automated scoring. Only the automated method was applied to the PMCC dataset. RESULTS Study patients comprised 26 from AUMC, and 33 from PMCC. Visual scoring identified stenosis/occlusion in 8 AUMC patients (31 %), most frequently in the segmental bronchi. After airway auto-segmentation, minor manual edits were needed in 9 % of patients. Segmentation for a single scan averaged 83sec (range 73-136). Automated scoring nearly doubled detected airway stenosis/occlusion (n = 15, 58 %), and allowed for earlier detection in 5/8 patients who had also visually scored changes. Estimated rates were 48 % and 66 % at 1- and 2-years, respectively, for the internal dataset. The automated detection rate was 52 % in the external dataset, with 1- and 2-year risks of 56 % and 61 %, respectively. CONCLUSION An AI-based automated scoring method allows for detection of more bronchial stenosis/occlusion after lung SABR, and at an earlier time-point. This tool can facilitate studies to determine early airway changes and establish more reliable airway tolerance doses.
Collapse
Affiliation(s)
- Hilâl Tekatli
- Department of Radiation Oncology, Amsterdam UMC (location VUmc), the Netherlands.
| | - Omar Bohoudi
- Department of Radiation Oncology, Amsterdam UMC (location VUmc), the Netherlands
| | - Nicholas Hardcastle
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Miguel A Palacios
- Department of Radiation Oncology, Amsterdam UMC (location VUmc), the Netherlands
| | - Famke L Schneiders
- Department of Radiation Oncology, Amsterdam UMC (location VUmc), the Netherlands
| | - Anna M E Bruynzeel
- Department of Radiation Oncology, Amsterdam UMC (location VUmc), the Netherlands
| | - Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Suresh Senan
- Department of Radiation Oncology, Amsterdam UMC (location VUmc), the Netherlands
| |
Collapse
|
3
|
Aoki S, Ishikawa H, Nakajima M, Yamamoto N, Mori S, Wakatsuki M, Okonogi N, Murata K, Tada Y, Mizobuchi T, Yoshino I, Yamada S. Long-Term Outcomes of Ablative Carbon-Ion Radiotherapy for Central Non-Small Cell Lung Cancer: A Single-Center, Retrospective Study. Cancers (Basel) 2024; 16:933. [PMID: 38473295 DOI: 10.3390/cancers16050933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this study is to assess the efficacy and safety of ablative carbon ion radiotherapy (CIRT) for early stage central non-small cell lung cancer (NSCLC). We retrospectively reviewed 30 patients who had received CIRT at 68.4 Gy in 12 fractions for central NSCLC in 2006-2019. The median age was 75 years, and the median Karnofsky Performance Scale score was 90%. All patients had concomitant chronic obstructive pulmonary disease, and 20 patients (67%) were considered inoperable. In DVH analysis, the median lung V5 and V20 were 15.5% and 10.4%, and the median Dmax, D0.5cc, D2cc of proximal bronchial tree was 65.6 Gy, 52.8 Gy, and 10.0 Gy, respectively. At a median follow-up of 43 months, the 3-year overall survival, disease-specific survival, and local control rates were 72.4, 75.8, and 88.7%, respectively. Two patients experienced grade 3 pneumonitis, but no grade ≥3 adverse events involving the mediastinal organs occurred. Ablative CIRT is feasible and effective for central NSCLC and could be considered as a treatment option, especially for patients who are intolerant of other curative treatments.
Collapse
Affiliation(s)
- Shuri Aoki
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Radiology, University of Tokyo Hospital, 3-7-1 Hongo, Tokyo 113-8655, Japan
| | - Hitoshi Ishikawa
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Mio Nakajima
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Naoyoshi Yamamoto
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shinichiro Mori
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masaru Wakatsuki
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Noriyuki Okonogi
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Radiation Oncology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Tokyo 113-8421, Japan
| | - Kazutoshi Murata
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yuji Tada
- Department of Pulmonary Medicine, International University of Health and Welfare, Narita Hospital, Hatakeda 852, Chiba 286-8520, Japan
| | - Teruaki Mizobuchi
- Department of Respiratory Surgery, Social Welfare Organization Saiseikai Imperial Gift Foundation, Chibaken Saiseikai Narashino Hospital, 1-1-1 Izumi-cho, Chiba 275-8580, Japan
| | - Ichiro Yoshino
- Department of Thoracic Surgery, International University of Health and Welfare, Narita Hospital, Hatakeda 852, Chiba 286-8520, Japan
| | - Shigeru Yamada
- QST Hospital, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
4
|
Iovoli AJ, Prasad S, Ma SJ, Fekrmandi F, Malik NK, Fung-Kee-Fung S, Farrugia MK, Singh AK. Long-Term Survival and Failure Outcomes of Single-Fraction Stereotactic Body Radiation Therapy in Early Stage NSCLC. JTO Clin Res Rep 2023; 4:100598. [PMID: 38124792 PMCID: PMC10730364 DOI: 10.1016/j.jtocrr.2023.100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction This study aims to report our 13-year institutional experience with single-fraction stereotactic body radiation therapy (SF-SBRT) for early stage NSCLC. Methods A single-institutional retrospective review of patients with biopsy-proven peripheral cT1-2N0M0 NSCLC undergoing definitive SF-SBRT between September 2008 and May 2022 was performed. All patients were treated to 27 Gy with heterogeneity corrections or 30 Gy without. Primary outcomes were overall survival and progression-free survival. Secondary outcomes included local failure, nodal failure, distant failure, and second primary lung cancer. Results Among 263 eligible patients, the median age was 76 years (interquartile range [IQR]: 70-81 y) and median follow-up time was 27.2 months (IQR: 14.25-44.9 mo). Median tumor size was 1.9 cm (IQR: 1.4-2.6 cm), and 224 (85%) tumors were T1. There were 92 patients (35%) alive at the time of analysis with a median follow-up of 34.0 months (IQR: 16.6-50.0 mo). Two- and five-year overall survival was 65% and 26%, respectively. A total of 74 patients (28%) developed disease progression. Rates of five-year local failure, nodal failure, distant failure, and second primary lung cancer were 12.7%, 14.7%, 23.5%, and 12.0%, respectively. Conclusions Consistent with multiple prospective randomized trials, in a large real-world retrospective cohort, SF-SBRT for peripheral early stage NSCLC was an effective treatment approach.
Collapse
Affiliation(s)
- Austin J. Iovoli
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Sharan Prasad
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Sung Jun Ma
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Fatemeh Fekrmandi
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Nadia K. Malik
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Simon Fung-Kee-Fung
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Mark K. Farrugia
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Anurag K. Singh
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
5
|
Song X, Zhao L, Jiang N, Ding N, Zong D, Zhang N, Wang D, Wen J, He X, Kong C, Zhu X. Long-term outcomes in patients with central and ultracentral non-small cell lung cancer treated with stereotactic body radiotherapy: single-institution experience. Curr Probl Cancer 2023; 47:100956. [DOI: 10.1016/j.currproblcancer.2023.100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 03/13/2023]
|
6
|
Guo X, Su H, Wan F, Zhao X, Cao T, Dai Z, Zhang H. Dosimetric and biological comparisons of single planning and double plannings for bilateral lung cancer SBRT planning based on the Cyber-Knife system. Front Oncol 2022; 12:1015999. [DOI: 10.3389/fonc.2022.1015999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
Abstract
ObjectiveThe aim is to investigate the influence of single planning (Plan S) and double plannings (Plan D) on bilateral lung cancer stereotactic body radiation therapy planning from the perspective of dosimetry and biology respectively. Methods Cases with bilateral lung cancer patients who had undergone SBRT with the Cyber-Knife were enrolled, and a single planning and double plannings were designed in the Multiplan@4.2 treatment planning system equipped with the Cyber-Knife system. The single plan was to optimize the two target volumes in a separate plan, while the dual plan is to optimize two target volumes respectively in two separate plans, then perform dose superposition. Then based on the dosimetric results, the biological parameters were calculated. Thus the quality of SBRT plans for those bilateral lung cancer designed by the two methods were compared and evaluated according to the dosimetric and biological results.ResultsThe dose distribution of both planning target volumes and surrounding organs at risk in Plan S and Plan D could meet the clinical prescription requirements. The target conformity index and the new conformity index of PTV were closer to 1 in the Double plannings, and the dose gradient GI in the Plan D was smaller than Plan S. For organs at risks, the doses received by the Plan D were relatively small. In terms of biological models, for the equivalent uniform dose of normal lung tissue, heart and esophagus, the Plan D was 6.51% (P=0.045), 19.8% (P=0.022), 27.08% (P>0.05) lower than Plan S respectively. The results showed that the equivalent uniform dose of normal tissue in the Plan D was lower relative to Plan S.ConclusionsDosimetric and biological results show that both the use of Plan D have an advantage of protecting normal tissues, and it was suggested that to design double plannings for bilateral lung cancer stereotactic body radiation therapy planning based on Cyber-Knife in the clinical practice.
Collapse
|
7
|
Kang TM, Hardcastle N, Singh AK, Slotman BJ, Videtic GMM, Stephans KL, Couñago F, Louie AV, Guckenberger M, Harden SV, Plumridge NM, Siva S. Practical considerations of single-fraction stereotactic ablative radiotherapy to the lung. Lung Cancer 2022; 170:185-193. [PMID: 35843149 DOI: 10.1016/j.lungcan.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
Stereotactic ablative radiotherapy (SABR) is a well-established treatment for patients with medically inoperable early-stage non-small cell lung cancer (NSCLC) and pulmonary oligometastases. The use of single-fraction SABR in this setting is supported by excellent local control and safety profiles which appear equivalent to multi-fraction SABR based on the available data. The resource efficiency and reduction in hospital outpatient visits associated with single-fraction SABR have been particularly advantageous during the COVID-19 pandemic. Despite the increased interest, single-fraction SABR in subgroups of patients remains controversial, including those with centrally located tumours, synchronous targets, proximity to dose-limiting organs at risk, and concomitant severe respiratory illness. This review provides an overview of the published randomised evidence evaluating single-fraction SABR in primary lung cancer and pulmonary oligometastases, the common clinical challenges faced, immunogenic effect of SABR, as well as technical and cost-utility considerations.
Collapse
Affiliation(s)
- Therese Mj Kang
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum, Department of Oncology, University of Melbourne, Australia; Centre for Medical Radiation Physics, University of Wollongong, New South Wales, Australia
| | - Anurag K Singh
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Ben J Slotman
- Department of Radiation Oncology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Gregory M M Videtic
- Department of Radiation Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, USA
| | - Kevin L Stephans
- Department of Radiation Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, USA
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud, Madrid, Spain
| | - Alexander V Louie
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Susan V Harden
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Nikki M Plumridge
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum, Department of Oncology, University of Melbourne, Australia.
| |
Collapse
|
8
|
Yu S, Wang Y, He P, Shao B, Liu F, Xiang Z, Yang T, Zeng Y, He T, Ma J, Wang X, Liu L. Effective Combinations of Immunotherapy and Radiotherapy for Cancer Treatment. Front Oncol 2022; 12:809304. [PMID: 35198442 PMCID: PMC8858950 DOI: 10.3389/fonc.2022.809304] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Though single tumor immunotherapy and radiotherapy have significantly improved the survival rate of tumor patients, there are certain limitations in overcoming tumor metastasis, recurrence, and reducing side effects. Therefore, it is urgent to explore new tumor treatment methods. The new combination of radiotherapy and immunotherapy shows promise in improving therapeutic efficacy and reducing recurrence by enhancing the ability of the immune system to recognize and eradicate tumor cells, to overcome tumor immune tolerance mechanisms. Nanomaterials, as new drug-delivery-system materials of the 21st century, can maintain the activity of drugs, improve drug targeting, and reduce side effects in tumor immunotherapy. Additionally, nanomaterials, as radiosensitizers, have shown great potential in tumor radiotherapy due to their unique properties, such as light, heat, electromagnetic effects. Here, we review the mechanisms of tumor immunotherapy and radiotherapy and the synergy of radiotherapy with multiple types of immunotherapies, including immune checkpoint inhibitors (ICIs), tumor vaccines, adoptive cell therapy, and cytokine therapy. Finally, we propose the potential for nanomaterials in tumor radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Siting Yu
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ping He
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Bianfei Shao
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Liu
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongzheng Xiang
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Yang
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyuan Zeng
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Tao He
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiachun Ma
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiran Wang
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Liu
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Lei Liu,
| |
Collapse
|
9
|
Khalil AA, Knap MM, Møller DS, Nyeng TB, Kjeldsen R, Hoffmann L. Local control after stereotactic body radiotherapy of centrally located lung tumours. Acta Oncol 2021; 60:1069-1073. [PMID: 33988493 DOI: 10.1080/0284186x.2021.1914345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- A. A. Khalil
- Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark
| | - M. M. Knap
- Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark
| | - D. S. Møller
- Department of Medical Physics, Aarhus University Hospital, Aarhus N, Denmark
| | - T. B. Nyeng
- Department of Medical Physics, Aarhus University Hospital, Aarhus N, Denmark
| | - R. Kjeldsen
- Department of Oncology, Aalborg University Hospital, Aarhus N, Denmark
| | - L. Hoffmann
- Department of Medical Physics, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
10
|
Kepka L, Socha J. Dose and fractionation schedules in radiotherapy for non-small cell lung cancer. Transl Lung Cancer Res 2021; 10:1969-1982. [PMID: 34012807 PMCID: PMC8107746 DOI: 10.21037/tlcr-20-253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the field of radiotherapy (RT), the issues of total dose, fractionation, and overall treatment time for non-small cell lung cancer (NSCLC) have been extensively investigated. There is some evidence to suggest that higher treatment intensity of RT, when given alone or sequentially with chemotherapy (CHT), is associated with improved survival. However, there is no evidence that the outcome is improved by RT at a higher dose and/or higher intensity when it is used concurrently with CHT. Moreover, some reports on the combination of full dose CHT with a higher biological dose of RT warn of the significant risk posed by such intensification. Stereotactic body radiotherapy (SBRT) provides a high rate of local control in the management of early-stage NSCLC through the use of high ablative doses. However, in centrally located tumors the use of SBRT may carry a risk of serious damage to the great vessels, bronchi, and esophagus, owing to the high ablative doses needed for optimal tumor control. There is a similar problem with moderate hypofractionation in radical RT for locally advanced NSCLC, and more evidence needs to be gathered regarding the safety of such schedules, especially when used in combination with CHT. In this article, we review the current evidence and questions related to RT dose/fractionation in NSCLC.
Collapse
Affiliation(s)
- Lucyna Kepka
- Department of Radiotherapy, Military Institute of Medicine, Warsaw, Poland
| | - Joanna Socha
- Department of Radiotherapy, Military Institute of Medicine, Warsaw, Poland
| |
Collapse
|
11
|
Rabe M, Paganelli C, Riboldi M, Bondesson D, Jörg Schneider M, Chmielewski T, Baroni G, Dinkel J, Reiner M, Landry G, Parodi K, Belka C, Kamp F, Kurz C. Porcine lung phantom-based validation of estimated 4D-MRI using orthogonal cine imaging for low-field MR-Linacs. Phys Med Biol 2021; 66:055006. [PMID: 33171458 DOI: 10.1088/1361-6560/abc937] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Real-time motion monitoring of lung tumors with low-field magnetic resonance imaging-guided linear accelerators (MR-Linacs) is currently limited to sagittal 2D cine magnetic resonance imaging (MRI). To provide input data for improved intrafractional and interfractional adaptive radiotherapy, the 4D anatomy has to be inferred from data with lower dimensionality. The purpose of this study was to experimentally validate a previously proposed propagation method that provides continuous time-resolved estimated 4D-MRI based on orthogonal cine MRI for a low-field MR-Linac. Ex vivo porcine lungs were injected with artificial nodules and mounted in a dedicated phantom that allows for the simulation of periodic and reproducible breathing motion. The phantom was scanned with a research version of a commercial 0.35 T MR-Linac. Respiratory-correlated 4D-MRI were reconstructed and served as ground truth images. Series of interleaved orthogonal slices in sagittal and coronal orientation, intersecting the injected targets, were acquired at 7.3 Hz. Estimated 4D-MRI at 3.65 Hz were created in post-processing using the propagation method and compared to the ground truth 4D-MRI. Eight datasets at different breathing frequencies and motion amplitudes were acquired for three porcine lungs. The overall median (95[Formula: see text] percentile) deviation between ground truth and estimated deformation vector fields was 2.3 mm (5.7 mm), corresponding to 0.7 (1.6) times the in-plane imaging resolution (3.5 × 3.5 mm2). Median (95[Formula: see text] percentile) estimated nodule position errors were 1.5 mm (3.8 mm) for nodules intersected by orthogonal slices and 2.1 mm (7.1 mm) for nodules located more than 2 cm away from either of the orthogonal slices. The estimation error depended on the breathing phase, the motion amplitude and the location of the estimated position with respect to the orthogonal slices. By using the propagation method, the 4D motion within the porcine lung phantom could be accurately and robustly estimated. The method could provide valuable information for treatment planning, real-time motion monitoring, treatment adaptation, and post-treatment evaluation of MR-guided radiotherapy treatments.
Collapse
Affiliation(s)
- Moritz Rabe
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Chiara Paganelli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Marco Riboldi
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching (Munich), Germany
| | - David Bondesson
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.,Comprehensive Pneumology Center, German Center for Lung Research (DZL), Munich, Germany
| | - Moritz Jörg Schneider
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.,Comprehensive Pneumology Center, German Center for Lung Research (DZL), Munich, Germany
| | | | - Guido Baroni
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy.,Bioengineering Unit, Centro Nazionale di Adroterapia Oncologica, Pavia, Italy
| | - Julien Dinkel
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.,Comprehensive Pneumology Center, German Center for Lung Research (DZL), Munich, Germany
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching (Munich), Germany
| | - Katia Parodi
- Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching (Munich), Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Florian Kamp
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,Department of Medical Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching (Munich), Germany
| |
Collapse
|
12
|
Filice A, Casali M, Ciammella P, Galaverni M, Fioroni F, Iotti C, Versari A. Radiotherapy Planning and Molecular Imaging in Lung Cancer. Curr Radiopharm 2020; 13:204-217. [PMID: 32186275 PMCID: PMC8206193 DOI: 10.2174/1874471013666200318144154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/11/2019] [Accepted: 11/11/2019] [Indexed: 12/24/2022]
Abstract
INTRODUCTION In patients suitable for radical chemoradiotherapy for lung cancer, 18F-FDGPET/ CT is a proposed management to improve the accuracy of high dose radiotherapy. However, there is a high rate of locoregional failure in patients with locally advanced non-small cell lung cancer (NSCLC), probably due to the fact that standard dosing may not be effective in all patients. The aim of the present review was to address some criticisms associated with the radiotherapy image-guided in NSCLC. MATERIALS AND METHODS A systematic literature search was conducted. Only published articles that met the following criteria were included: articles, only original papers, radiopharmaceutical ([18F]FDG and any tracer other than [18F]FDG), target, only specific for lung cancer radiotherapy planning, and experimental design (eventually "in vitro" studies were excluded). Peer-reviewed indexed journals, regardless of publication status (published, ahead of print, in press, etc.) were included. Reviews, case reports, abstracts, editorials, poster presentations, and publications in languages other than English were excluded. The decision to include or exclude an article was made by consensus and any disagreement was resolved through discussion. RESULTS Hundred eligible full-text articles were assessed. Diverse information is now available in the literature about the role of FDG and new alternative radiopharmaceuticals for the planning of radiotherapy in NSCLC. In particular, the role of alternative technologies for the segmentation of FDG uptake is essential, although indeterminate for RT planning. The pros and cons of the available techniques have been extensively reported. CONCLUSION PET/CT has a central place in the planning of radiotherapy for lung cancer and, in particular, for NSCLC assuming a substantial role in the delineation of tumor volume. The development of new radiopharmaceuticals can help overcome the problems related to the disadvantage of FDG to accumulate also in activated inflammatory cells, thus improving tumor characterization and providing new prognostic biomarkers.
Collapse
Affiliation(s)
- Angelina Filice
- Address correspondence to this author at the Nuclear Medicine Unit, Azienda Unità Sanitaria Locale, Istituto di Ricovero e Cura a Carattere Scientifico, Reggio Emilia, Italy; E-mail:
| | | | | | | | | | | | | |
Collapse
|
13
|
Li M, Zhan C. Stereotactic ablative radiotherapy for early-stage central lung tumors: status, challenges, and future considerations. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S199. [PMID: 31656778 DOI: 10.21037/atm.2019.07.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ming Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
14
|
Meng MB, Wang HH, Zaorsky NG, Sun BS, Zhu L, Song YC, Li FT, Dong Y, Wang JS, Chen HM, Yu XY, Yuan ZY. Risk-adapted stereotactic body radiation therapy for central and ultra-central early-stage inoperable non-small cell lung cancer. Cancer Sci 2019; 110:3553-3564. [PMID: 31464032 PMCID: PMC6825012 DOI: 10.1111/cas.14185] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/29/2019] [Accepted: 08/24/2019] [Indexed: 12/23/2022] Open
Abstract
To determine the therapeutic efficacy and safety of risk‐adapted stereotactic body radiation therapy (SBRT) schedules for patients with early‐stage central and ultra‐central inoperable non‐small cell lung cancer. From 2006 to 2015, 80 inoperable T1‐2N0M0 NSCLC patients were treated with two median dose levels: 60 Gy in six fractions (range, 48‐60 Gy in 4‐8 fractions) prescribed to the 74% isodose line (range, 58%‐79%) for central lesions (ie within 2 cm of, but not abutting, the proximal bronchial tree; n = 43), and 56 Gy in seven fractions (range, 48‐60 Gy in 5‐10 fractions) prescribed to the 74% isodose line (range, 60%‐80%) for ultra‐central lesions (ie abutting the proximal bronchial tree; n = 37) on consecutive days. Primary endpoint was overall survival (OS); secondary endpoints included progression‐free survival (PFS), tumor local control rate (LC), and toxicity. Median OS and PFS were 64.47 and 32.10 months (respectively) for ultra‐central patients, and not reached for central patients. Median time to local failure, regional failure, and any distant failures for central versus ultra‐central lesions were: 27.37 versus 26.07 months, 20.90 versus 12.53 months, and 20.85 versus 15.53 months, respectively, all P < .05. Multivariate analyses showed that tumor categorization (ultra‐central) and planning target volume ≥52.76 mL were poor prognostic factors of OS, PFS, and LC, respectively (all P < .05). There was one grade 5 toxicity; all other toxicities were grade 1‐2. Our results showed that ultra‐central tumors have a poor OS, PFS, and LC compared with central patients because of the use of risk‐adapted SBRT schedules that allow for equal and favorable toxicity profiles.
Collapse
Affiliation(s)
- Mao-Bin Meng
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Huan-Huan Wang
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, Penn State Cancer Institute, Hershey, PA, USA
| | - Bing-Shen Sun
- Department of Lung Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Lei Zhu
- Department of Molecular Imaging and Nuclear Medicine and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yong-Chun Song
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Feng-Tong Li
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yang Dong
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Jing-Sheng Wang
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Hua-Ming Chen
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Xu-Yao Yu
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Zhi-Yong Yuan
- Department of Radiation Oncology, CyberKnife Center, and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
15
|
Kaiss H, Mornex F. [Stereotactic radiotherapy of stage I non-small cell lung cancer. State of the art in 2019 and recommendations: Stereotaxy as an alternative to surgery?]. Cancer Radiother 2019; 23:720-731. [PMID: 31471255 DOI: 10.1016/j.canrad.2019.07.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 11/24/2022]
Abstract
Stereotactic radiotherapy (or Stereotactic body radiotherapy [SBRT]) is a technique currently well established in the therapeutic arsenal for the management of bronchial cancers. It represents the standard treatment for inoperable patients or who refuses surgery. It is well tolerated, especially in elderly and frail patients, and the current issue is to define its indications in operated patients, based on retrospective and randomized trials comparing stereotactic radiotherapy and surgery, with results equivalents. This work analyzes in detail the different aspects of pulmonary stereotactic radiotherapy and suggests arguments that help in the therapeutic choice between surgery and stereotaxic irradiation. In all cases, the therapeutic decision must be discussed in a multidisciplinary consultation meeting, while informing the patient of the possible therapeutic options.
Collapse
Affiliation(s)
- H Kaiss
- Département de radiothérapie oncologie, centre hospitalier Lyon-Sud, 165, chemin du Grand-Revoyet, 69495 Pierre-Bénite cedex, France.
| | - F Mornex
- Département de radiothérapie oncologie, centre hospitalier Lyon-Sud, 165, chemin du Grand-Revoyet, 69495 Pierre-Bénite cedex, France.
| |
Collapse
|
16
|
Palma DA, Olson R, Harrow S, Correa RJM, Schneiders F, Haasbeek CJA, Rodrigues GB, Lock M, Yaremko BP, Bauman GS, Ahmad B, Schellenberg D, Liu M, Gaede S, Laba J, Mulroy L, Senthi S, Louie AV, Swaminath A, Chalmers A, Warner A, Slotman BJ, de Gruijl TD, Allan A, Senan S. Stereotactic ablative radiotherapy for the comprehensive treatment of 4-10 oligometastatic tumors (SABR-COMET-10): study protocol for a randomized phase III trial. BMC Cancer 2019; 19:816. [PMID: 31426760 PMCID: PMC6699121 DOI: 10.1186/s12885-019-5977-6] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022] Open
Abstract
Background Stereotactic ablative radiotherapy (SABR) has emerged as a new treatment option for patients with oligometastatic disease. SABR delivers precise, high-dose, hypofractionated radiotherapy, and achieves excellent rates of local control for primary tumors or metastases. A recent randomized phase II trial evaluated SABR in a group of patients with a small burden of oligometastatic disease (mostly with 1–3 metastatic lesions), and found that SABR was associated with benefits in progression-free survival and overall survival. The goal of this phase III trial is to assess the impact of SABR in patients with 4–10 metastatic cancer lesions. Methods One hundred and fifty-nine patients will be randomized in a 1:2 ratio between the control arm (consisting of standard of care palliative-intent treatments), and the SABR arm (consisting of standard of care treatment + SABR to all sites of known disease). Randomization will be stratified by two factors: histology (Group 1: prostate, breast, or renal; Group 2: all others), and type of pre-specified systemic therapy (Group 1: immunotherapy/targeted; Group 2: cytotoxic; Group 3: observation). SABR is to be completed within 2 weeks, allowing for rapid initiation of systemic therapy. Recommended SABR doses are 20 Gy in 1 fraction, 30 Gy in 3 fractions, or 35 Gy in 5 fractions, chosen to minimize risks of toxicity. The primary endpoint is overall survival, and secondary endpoints include progression-free survival, time to development of new metastatic lesions, quality of life, and toxicity. Translational endpoints include assessment of circulating tumor cells, cell-free DNA, and tumor tissue as prognostic and predictive markers, including assessment of immunological predictors of response and long-term survival. Discussion This study will provide an assessment of the impact of SABR on clinical outcomes and quality of life, to determine if long-term survival can be achieved for selected patients with 4–10 oligometastatic lesions. Trial registration Clinicaltrials.gov identifier: NCT03721341. Date of registration: October 26, 2018. Electronic supplementary material The online version of this article (10.1186/s12885-019-5977-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David A Palma
- Department of Oncology Western University, London Health Sciences Centre, 790 Commissioners Rd. E, London, Ontario, N6A4L6, Canada.
| | - Robert Olson
- Department of Radiation Oncology, British Columbia Cancer, Centre for the North, Prince George, BC, Canada
| | | | - Rohann J M Correa
- Department of Oncology Western University, London Health Sciences Centre, 790 Commissioners Rd. E, London, Ontario, N6A4L6, Canada
| | - Famke Schneiders
- Department of Radiation Oncology, Amsterdam UMC Vrije Universiteit Amsterdam Radiation Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Cornelis J A Haasbeek
- Department of Radiation Oncology, Amsterdam UMC Vrije Universiteit Amsterdam Radiation Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - George B Rodrigues
- Department of Oncology Western University, London Health Sciences Centre, 790 Commissioners Rd. E, London, Ontario, N6A4L6, Canada
| | - Michael Lock
- Department of Oncology Western University, London Health Sciences Centre, 790 Commissioners Rd. E, London, Ontario, N6A4L6, Canada
| | - Brian P Yaremko
- Department of Oncology Western University, London Health Sciences Centre, 790 Commissioners Rd. E, London, Ontario, N6A4L6, Canada
| | - Glenn S Bauman
- Department of Oncology Western University, London Health Sciences Centre, 790 Commissioners Rd. E, London, Ontario, N6A4L6, Canada
| | - Belal Ahmad
- Department of Oncology Western University, London Health Sciences Centre, 790 Commissioners Rd. E, London, Ontario, N6A4L6, Canada
| | - Devin Schellenberg
- Department of Radiation Oncology, British Columbia Cancer, Centre for the North, Prince George, BC, Canada
| | - Mitchell Liu
- Department of Radiation Oncology, British Columbia Cancer, Centre for the North, Prince George, BC, Canada
| | - Stewart Gaede
- Department of Oncology Western University, London Health Sciences Centre, 790 Commissioners Rd. E, London, Ontario, N6A4L6, Canada
| | - Joanna Laba
- Department of Oncology Western University, London Health Sciences Centre, 790 Commissioners Rd. E, London, Ontario, N6A4L6, Canada
| | - Liam Mulroy
- Nova Scotia Cancer Centre, Halifax, NS, Canada
| | | | - Alexander V Louie
- Department of Radiation Oncology, Sunnybrook Cancer Centre, Toronto, Canada
| | | | - Anthony Chalmers
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Andrew Warner
- Department of Oncology Western University, London Health Sciences Centre, 790 Commissioners Rd. E, London, Ontario, N6A4L6, Canada
| | - Ben J Slotman
- Department of Radiation Oncology, Amsterdam UMC Vrije Universiteit Amsterdam Radiation Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Radiation Oncology, Amsterdam UMC Vrije Universiteit Amsterdam Radiation Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Alison Allan
- Department of Oncology Western University, London Health Sciences Centre, 790 Commissioners Rd. E, London, Ontario, N6A4L6, Canada
| | - Suresh Senan
- Department of Radiation Oncology, Amsterdam UMC Vrije Universiteit Amsterdam Radiation Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Finazzi T, Palacios MA, Spoelstra FO, Haasbeek CJ, Bruynzeel AM, Slotman BJ, Lagerwaard FJ, Senan S. Role of On-Table Plan Adaptation in MR-Guided Ablative Radiation Therapy for Central Lung Tumors. Int J Radiat Oncol Biol Phys 2019; 104:933-941. [DOI: 10.1016/j.ijrobp.2019.03.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 12/25/2022]
|