1
|
Yu T, Lok BH. Strategies to Target Chemoradiotherapy Resistance in Small Cell Lung Cancer. Cancers (Basel) 2024; 16:3438. [PMID: 39456533 PMCID: PMC11506711 DOI: 10.3390/cancers16203438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Small cell lung cancer (SCLC) is a lethal form of lung cancer with few treatment options and a high rate of relapse. While SCLC is initially sensitive to first-line DNA-damaging chemo- and radiotherapy, relapse disease is almost universally therapy-resistant. As a result, there has been interest in understanding the mechanisms of therapeutic resistance in this disease. Conclusions: Progress has been made in elucidating these mechanisms, particularly as they relate to the DNA damage response and SCLC differentiation and transformation, leading to many clinical trials investigating new therapies and combinations. Yet there remain many gaps in our understanding, such as the effect of epigenetics or the tumor microenvironment on treatment response, and no single mechanism has been found to be ubiquitous, suggesting a significant heterogeneity in the mechanisms of acquired resistance. Nevertheless, the advancement of techniques in the laboratory and the clinic will improve our ability to study this disease, especially in patient populations, and identify methods to surmount therapeutic resistance.
Collapse
Affiliation(s)
- Tony Yu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Benjamin H. Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2M9, Canada
- Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 6 Queen’s Park Crescent, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
2
|
Zhang J, Zeng X, Guo Q, Sheng Z, Chen Y, Wan S, Zhang L, Zhang P. Small cell lung cancer: emerging subtypes, signaling pathways, and therapeutic vulnerabilities. Exp Hematol Oncol 2024; 13:78. [PMID: 39103941 DOI: 10.1186/s40164-024-00548-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/27/2024] [Indexed: 08/07/2024] Open
Abstract
Small cell lung cancer (SCLC) is a recalcitrant cancer characterized by early metastasis, rapid tumor growth and poor prognosis. In recent decades, the epidemiology, initiation and mutation characteristics of SCLC, as well as abnormal signaling pathways contributing to its progression, have been widely studied. Despite extensive investigation, fewer drugs have been approved for SCLC. Recent advancements in multi-omics studies have revealed diverse classifications of SCLC that are featured by distinct characteristics and therapeutic vulnerabilities. With the accumulation of SCLC samples, different subtypes of SCLC and specific treatments for these subtypes were further explored. The identification of different molecular subtypes has opened up novel avenues for the treatment of SCLC; however, the inconsistent and uncertain classification of SCLC has hindered the translation from basic research to clinical applications. Therefore, a comprehensives review is essential to conclude these emerging subtypes and related drugs targeting specific therapeutic vulnerabilities within abnormal signaling pathways. In this current review, we summarized the epidemiology, risk factors, mutation characteristics of and classification, related molecular pathways and treatments for SCLC. We hope that this review will facilitate the translation of molecular subtyping of SCLC from theory to clinical application.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Xiaoping Zeng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qiji Guo
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Zhenxin Sheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yan Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Shiyue Wan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Lele Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Liu Q, Zhang J, Guo C, Wang M, Wang C, Yan Y, Sun L, Wang D, Zhang L, Yu H, Hou L, Wu C, Zhu Y, Jiang G, Zhu H, Zhou Y, Fang S, Zhang T, Hu L, Li J, Liu Y, Zhang H, Zhang B, Ding L, Robles AI, Rodriguez H, Gao D, Ji H, Zhou H, Zhang P. Proteogenomic characterization of small cell lung cancer identifies biological insights and subtype-specific therapeutic strategies. Cell 2024; 187:184-203.e28. [PMID: 38181741 DOI: 10.1016/j.cell.2023.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/25/2023] [Accepted: 12/01/2023] [Indexed: 01/07/2024]
Abstract
We performed comprehensive proteogenomic characterization of small cell lung cancer (SCLC) using paired tumors and adjacent lung tissues from 112 treatment-naive patients who underwent surgical resection. Integrated multi-omics analysis illustrated cancer biology downstream of genetic aberrations and highlighted oncogenic roles of FAT1 mutation, RB1 deletion, and chromosome 5q loss. Two prognostic biomarkers, HMGB3 and CASP10, were identified. Overexpression of HMGB3 promoted SCLC cell migration via transcriptional regulation of cell junction-related genes. Immune landscape characterization revealed an association between ZFHX3 mutation and high immune infiltration and underscored a potential immunosuppressive role of elevated DNA damage response activity via inhibition of the cGAS-STING pathway. Multi-omics clustering identified four subtypes with subtype-specific therapeutic vulnerabilities. Cell line and patient-derived xenograft-based drug tests validated the specific therapeutic responses predicted by multi-omics subtyping. This study provides a valuable resource as well as insights to better understand SCLC biology and improve clinical practice.
Collapse
Affiliation(s)
- Qian Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Chenchen Guo
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mengcheng Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yilv Yan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Liangdong Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Di Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Lele Zhang
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Huansha Yu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Likun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yuming Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Hongwen Zhu
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanting Zhou
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shanhua Fang
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tengfei Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junqiang Li
- D1 Medical Technology, Shanghai 201800, China
| | - Yansheng Liu
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT 06516, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li Ding
- Department of Medicine, McDonnell Genome Institute, Washington University, St. Louis, MO 63108, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Daming Gao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200120, China.
| | - Hu Zhou
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| |
Collapse
|
4
|
Tabata S, Umemura S, Narita M, Udagawa H, Ishikawa T, Tsuboi M, Goto K, Ishii G, Tsuchihara K, Ochiai A, Kobayashi SS, Soga T, Makinoshima H. Metabolic Hallmarks for Purine Nucleotide Biosynthesis in Small Cell Lung Carcinoma. Mol Cancer Res 2024; 22:82-93. [PMID: 37773022 PMCID: PMC10758693 DOI: 10.1158/1541-7786.mcr-23-0386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/16/2023] [Accepted: 09/25/2023] [Indexed: 09/30/2023]
Abstract
Small cell lung cancer (SCLC) has a poor prognosis, emphasizing the necessity for developing new therapies. The de novo synthesis pathway of purine nucleotides, which is involved in the malignant growth of SCLC, has emerged as a novel therapeutic target. Purine nucleotides are supplied by two pathways: de novo and salvage. However, the role of the salvage pathway in SCLC and the differences in utilization and crosstalk between the two pathways remain largely unclear. Here, we found that deletion of the HPRT1 gene, which codes for the rate-limiting enzyme of the purine salvage pathway, significantly suppressed tumor growth in vivo in several SCLC cells. We also demonstrated that HPRT1 expression confers resistance to lemetrexol (LMX), an inhibitor of the purine de novo pathway. Interestingly, HPRT1-knockout had less effect on SCLC SBC-5 cells, which are more sensitive to LMX than other SCLC cell lines, suggesting that a preference for either the purine de novo or salvage pathway occurs in SCLC. Furthermore, metabolome analysis of HPRT1-knockout cells revealed increased intermediates in the pentose phosphate pathway and elevated metabolic flux in the purine de novo pathway, indicating compensated metabolism between the de novo and salvage pathways in purine nucleotide biosynthesis. These results suggest that HPRT1 has therapeutic implications in SCLC and provide fundamental insights into the regulation of purine nucleotide biosynthesis. IMPLICATIONS SCLC tumors preferentially utilize either the de novo or salvage pathway in purine nucleotide biosynthesis, and HPRT1 has therapeutic implications in SCLC.
Collapse
Affiliation(s)
- Sho Tabata
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan
- Shonai Regional Industry Promotion Center, Tsuruoka, Japan
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Shigeki Umemura
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Miyu Narita
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan
- Shonai Regional Industry Promotion Center, Tsuruoka, Japan
| | - Hibiki Udagawa
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takamasa Ishikawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Genichiro Ishii
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Katsuya Tsuchihara
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Atsushi Ochiai
- Division of Biomarker Discovery, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Susumu S. Kobayashi
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Tomoyoshi Soga
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hideki Makinoshima
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan
- Shonai Regional Industry Promotion Center, Tsuruoka, Japan
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
- Yamagata University, Yamagata, Japan
| |
Collapse
|
5
|
Deng H, Chen Y, Wang L, Zhang Y, Hang Q, Li P, Zhang P, Ji J, Song H, Chen M, Jin Y. PI3K/mTOR inhibitors promote G6PD autophagic degradation and exacerbate oxidative stress damage to radiosensitize small cell lung cancer. Cell Death Dis 2023; 14:652. [PMID: 37802999 PMCID: PMC10558571 DOI: 10.1038/s41419-023-06171-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/08/2023]
Abstract
Our previous study revealed that PI3K/AKT/mTOR signaling was associated with SCLC radioresistance. SBC2 cells were used as primary radioresistance models, while H446 cells were continuously exposed to ionizing radiation (IR) to develop acquired radioresistance. Cell viability and apoptosis assays were used to investigate synergistic effects of BEZ235/GSK2126458 and IR in vitro, while immunoblotting, metabolite quantitative analysis and bioinformatic analyses were utilized to explore the underlying mechanism. Both genetically engineered mouse models (GEMM) and subcutaneous tumor models were used to confirm the synergistic effect in vivo. Key molecules of PI3K/AKT/mTOR signaling were upregulated after IR, which was correlated with primary radioresistance, and they were more expressed in acquired radioresistant cells. BEZ235/GSK2126458 effectively enhanced the cytotoxic effects of IR. BEZ235/GSK2126458 plus IR elevated γ-H2AX and p-Nrf2 expression, suggesting DNA and oxidative stress damage were intensified. Mechanistically, BEZ235/GSK2126458 plus IR significantly reduced the expression of G6PD protein, the rate-limiting enzyme of the pentose phosphate pathway (PPP). In detail, PI3K/mTOR inhibitors reinforced interaction between G6PD and HSPA8/HSC70, and G6PD was degraded by chaperone-mediated autophagy processes. Their metabolites (NADPH and R-5P) were decreased, and ROS levels were indirectly elevated, both of which exacerbated cell death. PI3K/AKT/mTOR signaling activator, insulin, enhanced SCLC radioresistance, while the synergistic effect of BEZ235/GSK2126458 and IR can be attenuated by N-acetylcysteine, and enhanced by 6-amino niacinamide. GEMM and allograft transplantation assays further confirmed their synergistic effect in vivo. This study provided insights into the connection between PI3K/AKT/mTOR signaling and the PPP underlying radioresistance and provided evidence of mechanisms supporting PI3K/mTOR inhibitors as possible therapeutic strategies to abrogate SCLC radioresistance.
Collapse
Affiliation(s)
- Huan Deng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yamei Chen
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200240, China
| | - Li Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yibi Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 331800, China
| | - Qingqing Hang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Peijing Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Peng Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Jing Ji
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Hai Song
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Ming Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- United Laboratory of Frontier Radiotherapy Technology of Sun Yat-sen University & Chinese Academy of Sciences Ion Medical Technology Co., Ltd, Guangzhou, China.
| | - Ying Jin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
6
|
Deng H, Chen Y, Li P, Hang Q, Zhang P, Jin Y, Chen M. PI3K/AKT/mTOR pathway, hypoxia, and glucose metabolism: Potential targets to overcome radioresistance in small cell lung cancer. CANCER PATHOGENESIS AND THERAPY 2023; 1:56-66. [PMID: 38328610 PMCID: PMC10846321 DOI: 10.1016/j.cpt.2022.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/02/2022] [Accepted: 09/25/2022] [Indexed: 02/09/2024]
Abstract
Small cell lung cancer (SCLC) is a highly aggressive tumor type for which limited therapeutic progress has been made. Platinum-based chemotherapy with or without thoracic radiotherapy remains the backbone of treatment, but most patients with SCLC acquire therapeutic resistance. Given the need for more effective therapies, better elucidation of the molecular pathogenesis of SCLC is imperative. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is frequently activated in SCLC and strongly associated with resistance to ionizing radiation in many solid tumors. This pathway is an important regulator of cancer cell glucose metabolism, and its activation probably effects radioresistance by influencing bioenergetic processes in SCLC. Glucose metabolism has three main branches-aerobic glycolysis, oxidative phosphorylation, and the pentose phosphate pathway-involved in radioresistance. The interaction between the PI3K/AKT/mTOR pathway and glucose metabolism is largely mediated by hypoxia-inducible factor 1 (HIF-1) signaling. The PI3K/AKT/mTOR pathway also influences glucose metabolism through other mechanisms to participate in radioresistance, including inhibiting the ubiquitination of rate-limiting enzymes of the pentose phosphate pathway. This review summarizes our understanding of links among the PI3K/AKT/mTOR pathway, hypoxia, and glucose metabolism in SCLC radioresistance and highlights promising research directions to promote cancer cell death and improve the clinical outcome of patients with this devastating disease.
Collapse
Affiliation(s)
- Huan Deng
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yamei Chen
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Peijing Li
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Qingqing Hang
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Peng Zhang
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ying Jin
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, Zhejiang 310022, China
- Department of Radiation Oncology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ming Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| |
Collapse
|
7
|
Zhu Y, Cui Y, Zheng X, Zhao Y, Sun G. Small-cell lung cancer brain metastasis: From molecular mechanisms to diagnosis and treatment. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166557. [PMID: 36162624 DOI: 10.1016/j.bbadis.2022.166557] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/27/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022]
Abstract
Lung cancer is the most malignant human cancer worldwide, also with the highest incidence rate. However, small-cell lung cancer (SCLC) accounts for 14 % of all lung cancer cases. Approximately 10 % of patients with SCLC have brain metastasis at the time of diagnosis, which is the leading cause of death of patients with SCLC worldwide. The median overall survival is only 4.9 months, and a long-tern cure exists for patients with SCLC brain metastasis due to limited common therapeutic options. Recent studies have enhanced our understanding of the molecular mechanisms leading to meningeal metastasis, and multimodality treatments have brought new hopes for a better cure for the disease. This review aimed to offer an insight into the cellular processes of different metastatic stages of SCLC revealed by the established animal models, and into the major diagnostic methods of SCLC. Additionally, it provided in-depth information on the recent advances in SCLC treatments, and highlighted several new models and biomarkers with promises to improve the prognosis of SCLC.
Collapse
Affiliation(s)
- Yingze Zhu
- Department of Hebei Key Laboratory of Medical-industrial Integration Precision Medicine, School of Clinical Medicine, Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Yishuang Cui
- Department of Hebei Key Laboratory of Medical-industrial Integration Precision Medicine, School of Clinical Medicine, Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Xuan Zheng
- Department of Hebei Key Laboratory of Medical-industrial Integration Precision Medicine, School of Clinical Medicine, Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Yue Zhao
- Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China.
| | - Guogui Sun
- Department of Hebei Key Laboratory of Medical-industrial Integration Precision Medicine, School of Clinical Medicine, Affiliated Hospital, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063000, China.
| |
Collapse
|
8
|
Hamilton G. Comparative characteristics of small cell lung cancer and Ewing's sarcoma: a narrative review. Transl Lung Cancer Res 2022; 11:1185-1198. [PMID: 35832443 PMCID: PMC9271444 DOI: 10.21037/tlcr-22-58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022]
Abstract
Background and Objective Small cell lung cancer (SCLC) and Ewing's sarcoma (ES) at the disseminated stage are not amenable to therapy and have a dismal prognosis with low survival rates. Despite representing different tumor entities, treatment for both malignancies relies on cytotoxic chemotherapy that has not considerably changed for the past decades. The genomic background has been extensively studied and found to comprise inactivation of p53 and RB1 in case of SCLC and EWSR1/FLI1 rearrangement in case of ES resulting in aggressive tumors in adults with heavy tobacco consumption and as bone tumor in juveniles, respectively. New therapeutic modalities are urgently needed to improve the outcomes of both tumor entities, especially in patients with metastatic disease or recurrences. This review summarizes the common cell biologic and clinical characteristics of difficult-to-treat SCLC and ES and discusses their refractoriness and options to improve the therapeutic efficacy. Methods PubMed and Euro PMC were searched from January 1st, 2012 to January 16th, 2022 using the following key words: "SCLC", "Ewing´s sarcoma", "Genomics" and "Chemoresistance" as well as own work. Key Content and Findings Therapy of SCLC and ES involves the use of undirected cytotoxic drugs in multimodal chemotherapy and administration of topotecan for 2nd line SCLC regimens. Despite highly aggressive chemotherapies, outcomes are dismal for patients with disseminated tumors. A host of unrelated drugs and targeted therapeutics have failed to result in progress for the patients and the underlying mechanisms of chemoresistance are still not clear. Identification of chemoresistance-reversing modulators in vitro and patient-derived xenografts of SCLC and ES has not translated into new therapies. Conclusions The global chemoresistance of SCLC and ES may be explained by physiological resistance at the tumor level and formation of larger spheroids that contain quiescent and hypoxic tumor cells in regions that occlude therapeutics. This type of chemoresistance is difficult to overcome and prevent the accumulation of effective drug concentration at the tumor cell level to a significant degree leaving therapeutic interventions of any kind ineffective.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
EGFR signaling pathway as therapeutic target in human cancers. Semin Cancer Biol 2022; 85:253-275. [PMID: 35427766 DOI: 10.1016/j.semcancer.2022.04.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/12/2022] [Accepted: 04/04/2022] [Indexed: 02/08/2023]
Abstract
Epidermal Growth Factor Receptor (EGFR) enacts major roles in the maintenance of epithelial tissues. However, when EGFR signaling is altered, it becomes the grand orchestrator of epithelial transformation, and hence one of the most world-wide studied tyrosine kinase receptors involved in neoplasia, in several tissues. In the last decades, EGFR-targeted therapies shaped the new era of precision-oncology. Despite major advances, the dream of converting solid tumors into a chronic disease is still unfulfilled, and long-term remission eludes us. Studies investigating the function of this protein in solid malignancies have revealed numerous ways how tumor cells dysregulate EGFR function. Starting from preclinical models (cell lines, organoids, murine models) and validating in clinical specimens, EGFR-related oncogenic pathways, mechanisms of resistance, and novel avenues to inhibit tumor growth and metastatic spread enriching the therapeutic portfolios, were identified. Focusing on non-small cell lung cancer (NSCLC), where EGFR mutations are major players in the adenocarcinoma subtype, we will go over the most relevant discoveries that led us to understand EGFR and beyond, and highlight how they revolutionized cancer treatment by expanding the therapeutic arsenal at our disposal.
Collapse
|
10
|
Feng J, Wang Y, Yao W, Luo J, Yu K. Comprehensive analysis of prognostic predictors for patients with limited-stage small-cell lung cancer who underwent resection followed by adjuvant chemotherapy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1169. [PMID: 34430610 PMCID: PMC8350675 DOI: 10.21037/atm-21-3353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/13/2021] [Indexed: 11/06/2022]
Abstract
Background The prognosis of patients with limited-stage small-cell lung cancer (LS-SCLC) who undergo resection followed by adjuvant chemotherapy (ACT) is uncertain. Thus, we combined clinicopathological characteristics and next-generation sequencing (NGS) to answer this question. Methods In total, the data of 51 LS-SCLC patients who had undergone complete surgical resection and postoperative ACT were retrospectively collected. NGS examinations with a 68-gene panel were performed for each specimen. Patients' genetic status and potentially clinical correlations were statistically evaluated. Progression-free survival (PFS) and overall survival (OS) were plotted using Kaplan-Meier curves. The independent prognostic factors for the primary cohort were investigated using univariable and multivariable cox proportional hazard regression analyses. Subgroup analyses were also conducted based on retinoblastoma protein 1 (RB1) status. Results Combined SCLC (c-SCLC) had similar clinical and pathological characteristics to that of pure SCLC (p-SCLC). TP53 and RB1 were 2 major genetic mutations present in both p-SCLC and c-SCLC. c-SCLC had a unique genetic profile that was related to the PI3K/AKT/mTOR and WNT/β-catenin signaling pathways. There was no prognostic difference between c-SCLC and p-SCLC. However, the pathological node (N) stage of lymphovascular invasion (LVI), which was related to PFS and age, corelated with OS. Neither pathological subtypes nor genetic mutations affected the survival outcomes. Notably, RB1 mutated c-SCLC resulted in poorer DFS compared to that of p-SCLC among LS-SCLC patients who underwent resection followed by ACT. Conclusions Our examination of LS-SCLC patients who underwent resection followed by ACT showed that c-SCLC and p-SCLC had a clinical and prognostic similarity and a genetic peculiarity. Thus, it is essential that a new classification system be proposed for SCLC. Such a system is especially needed for LS-SCLC.
Collapse
Affiliation(s)
- Jian Feng
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yiyang Wang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhua Yao
- Department of Science and Education, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jizhuang Luo
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Keke Yu
- Department of Science and Education, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Molecular Signature of Small Cell Lung Cancer after Treatment Failure: The MCM Complex as Therapeutic Target. Cancers (Basel) 2021; 13:cancers13061187. [PMID: 33801812 PMCID: PMC7998124 DOI: 10.3390/cancers13061187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Small cell lung cancer (SCLC) is a highly aggressive cancer, and patients who become refractory to first-line treatment have a poor prognosis. The development of effective treatment regimens is urgently needed. In this study, we identified a gene expression signature of SCLC after treatment failure using SCLC clinical specimens (GEO accession number: GSE162102). A total of 1,136 genes were significantly upregulated in SCLC tissues. These upregulated genes were subjected to KEGG pathway analysis, and "cell cycle", "Fanconi anemia", "alcoholism", "systemic lupus erythematosus", "oocyte meiosis", "homologous recombination", "DNA replication", and "p53 signaling" were identified as the enriched pathways among the genes. We focused on the cell cycle pathway and investigated the clinical significance of four genes associated with this pathway: minichromosome maintenance (MCM) 2, MCM4, MCM6, and MCM7. The overexpression of these MCM genes was confirmed in SCLC clinical specimens. Knockdown assays using siRNAs targeting each of these four MCM genes showed significant attenuation of cancer cell proliferation. Moreover, siRNA-mediated knockdown of each MCM gene enhanced the cisplatin sensitivity of SCLC cells. Our SCLC molecular signature based on SCLC clinical specimens after treatment failure will provide useful information to identify novel molecular targets for this disease.
Collapse
|
12
|
Abstract
Small-cell lung cancer (SCLC) represents about 15% of all lung cancers and is marked by an exceptionally high proliferative rate, strong predilection for early metastasis and poor prognosis. SCLC is strongly associated with exposure to tobacco carcinogens. Most patients have metastatic disease at diagnosis, with only one-third having earlier-stage disease that is amenable to potentially curative multimodality therapy. Genomic profiling of SCLC reveals extensive chromosomal rearrangements and a high mutation burden, almost always including functional inactivation of the tumour suppressor genes TP53 and RB1. Analyses of both human SCLC and murine models have defined subtypes of disease based on the relative expression of dominant transcriptional regulators and have also revealed substantial intratumoural heterogeneity. Aspects of this heterogeneity have been implicated in tumour evolution, metastasis and acquired therapeutic resistance. Although clinical progress in SCLC treatment has been notoriously slow, a better understanding of the biology of disease has uncovered novel vulnerabilities that might be amenable to targeted therapeutic approaches. The recent introduction of immune checkpoint blockade into the treatment of patients with SCLC is offering new hope, with a small subset of patients deriving prolonged benefit. Strategies to direct targeted therapies to those patients who are most likely to respond and to extend the durable benefit of effective antitumour immunity to a greater fraction of patients are urgently needed and are now being actively explored.
Collapse
Affiliation(s)
- Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Elisabeth Brambilla
- Institute for Advanced Biosciences, Université Grenoble Alpes, Grenoble, France
| | - Corinne Faivre-Finn
- Department of Clinical Oncology, The Christie Hospital NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| |
Collapse
|
13
|
Yang Y, Wang Y. [Present and Future of Efficacy Biomarkers in Immune Checkpoint Inhibitors
of Small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:897-903. [PMID: 32773012 PMCID: PMC7583877 DOI: 10.3779/j.issn.1009-3419.2020.101.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
近年来,免疫治疗在小细胞肺癌领域取得了令人瞩目的突破,为患者带来生存获益。然而,现有的临床研究结果表明试验组通常在治疗开始3个月-6个月以后方可看出获益的趋势,因此如何筛选优势人群是免疫治疗研究的重点。目前已有的临床试验对生物标记物进行了不断地探索,但结果不尽一致。我们亟需有力可靠的疗效预测指标有效地筛选优势人群、扩大受益群体。故本文将对小细胞肺癌免疫治疗疗效预测指标的现状及未来的发展前进方向展开阐述。
Collapse
Affiliation(s)
- Yaning Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
14
|
Yokouchi H, Nishihara H, Harada T, Yamazaki S, Kikuchi H, Oizumi S, Uramoto H, Tanaka F, Harada M, Akie K, Sugaya F, Fujita Y, Takamura K, Kojima T, Higuchi M, Honjo O, Minami Y, Watanabe N, Nishimura M, Suzuki H, Dosaka-Akita H, Isobe H. Detection of somatic TP53 mutation in surgically resected small-cell lung cancer by targeted exome sequencing: association with longer relapse-free survival. Heliyon 2020; 6:e04439. [PMID: 32685741 PMCID: PMC7358392 DOI: 10.1016/j.heliyon.2020.e04439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/14/2020] [Accepted: 07/09/2020] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Few reports have explored clinical biomarkers, including those identified by targeted exome sequencing (TES) of surgically resected small-cell lung cancer (SCLC) and correlation with patient survival. PATIENTS AND METHODS We collected formalin-fixed paraffin-embedded tumor samples from 127 patients with SCLC who had undergone surgery and analysed nonsynonymous somatic gene mutation profiles by TES of 26 cancer-related genes using next-generation sequencing (NGS) and web databases (UMIN Registration No. 000010117). RESULTS We detected 38 nonsynonymous somatic tumor protein p53 (TP53) mutations in 43 (54.4%) patients. Among these TP53 lesions, we identified clinically relevant mutations including those encoding Y220C, R248W, R249M, M237I, and R273L substitutions in the p53 protein. These mutations have been reported to be associated with certain clinical outcomes or biology in other types of malignancies but not in SCLC. Moreover, nonsynonymous somatic mutations of TP53 were positively associated with relapse-free survival (RFS) (median, 17.33 months [95% confidence interval (CI), 3.86-30.79] in a mutation-positive group vs 10.39 months (6.96-13.82) in a mutation-negative group, p = 0.042). Multivariate analysis revealed that nonsynonymous somatic TP53 mutation was an independent factor of prolongation of RFS (hazard ratio: 0.51, 95% CI: 0.29-0.89, p = 0.019) but not overall survival (OS). CONCLUSION These data suggested that TES may play a critical role for promoting reverse-translational studies, including investigations of the biology of TP53 mutations in different stages of SCLC. Accumulation of the data using cancer panels with a broader range of genes, including TP53, is expected to be useful for future clinical applications for patients with SCLC.
Collapse
Affiliation(s)
- Hiroshi Yokouchi
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
- Department of Respiratory Medicine, National Hospital Organization Hokkaido Cancer Center, Sapporo 003-0804, Japan
| | - Hiroshi Nishihara
- Department of Translational Pathology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Toshiyuki Harada
- Center for Respiratory Diseases, JCHO Hokkaido Hospital, Sapporo 062-8618, Japan
| | - Shigeo Yamazaki
- Department of Thoracic Surgery, Keiyukai Sapporo Hospital, Sapporo 003-0027, Japan
| | - Hajime Kikuchi
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
- First Department of Medicine, Obihiro Kosei Hospital, Obihiro 080-0016, Japan
| | - Satoshi Oizumi
- Department of Respiratory Medicine, National Hospital Organization Hokkaido Cancer Center, Sapporo 003-0804, Japan
| | - Hidetaka Uramoto
- Second Department of Surgery, University of Occupational and Environmental Health, Kita-kyushu 807-8555, Japan
- Department of Thoracic Surgery, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Fumihiro Tanaka
- Second Department of Surgery, University of Occupational and Environmental Health, Kita-kyushu 807-8555, Japan
| | - Masao Harada
- Department of Respiratory Medicine, National Hospital Organization Hokkaido Cancer Center, Sapporo 003-0804, Japan
| | - Kenji Akie
- Department of Respiratory Disease, Sapporo City General Hospital, Sapporo 060-8604, Japan
| | - Fumiko Sugaya
- Department of Respiratory Medicine, Teine Keijinkai Hospital, Sapporo 006-8555, Japan
| | - Yuka Fujita
- Department of Respiratory Medicine, National Hospital Organization Asahikawa Medical Center, Asahikawa 070-8644, Japan
| | - Kei Takamura
- First Department of Medicine, Obihiro Kosei Hospital, Obihiro 080-0016, Japan
| | - Tetsuya Kojima
- Department of Medical Oncology, KKR Sapporo Medical Center, Sapporo 062-0931, Japan
| | - Mitsunori Higuchi
- Department of Thoracic Surgery, Fukushima Red Cross Hospital, Fukushima 960-8530, Japan
- Department of Thoracic Surgery, Aizu Medical Center, Aizuwakamatsu, Fukushima 969-3492, Japan
| | - Osamu Honjo
- Department of Respiratory Medicine, Sapporo-Kosei General Hospital, Sapporo 060-0033, Japan
- Department of Respiratory Medicine, Sapporo Minami Sanjo Hospital, Sapporo 060-0063, Japan
| | - Yoshinori Minami
- Respiratory Center, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Naomi Watanabe
- Department of Internal Medicine, Sunagawa City Medical Center, Sunagawa 073-0196, Japan
| | - Masaharu Nishimura
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - Hiroyuki Suzuki
- Department of Chest Surgery, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hirotoshi Dosaka-Akita
- Department of Medical Oncology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Hiroshi Isobe
- Department of Medical Oncology, KKR Sapporo Medical Center, Sapporo 062-0931, Japan
| |
Collapse
|
15
|
Mao Y, Xue P, Li L, Xu P, Cai Y, Chu X, Jiang P, Zhu S. Bioinformatics analysis of mRNA and miRNA microarray to identify the key miRNA‑gene pairs in small‑cell lung cancer. Mol Med Rep 2019; 20:2199-2208. [PMID: 31257520 PMCID: PMC6691276 DOI: 10.3892/mmr.2019.10441] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
Small-cell lung cancer (SCLC) is a type of lung cancer with early metastasis, and high recurrence and mortality rates. The molecular mechanism is still unclear and further research is required. The aim of the present study was to examine the pathogenesis and potential molecular markers of SCLC by comparing the differential expression of mRNA and microRNA (miRNA) between SCLC tissue and normal lung tissue. A transcriptome sequencing dataset (GSE6044) and a non-coding RNA sequence dataset (GSE19945) were downloaded from the Gene Expression Omnibus (GEO) database. In total, 451 differentially expressed genes (DEGs) and 134 differentially expressed miRNAs (DEMs) were identified using the R limma software package and the GEO2R tool of the GEO, respectively. The Gene Ontology function was significantly enriched for 28 terms, and the Kyoto Encyclopedia of Genes and Genomes database had 19 enrichment pathways, mainly related to ‘cell cycle’, ‘DNA replication’ and ‘oocyte meiosis mismatch repair’. The protein-protein interaction network was constructed using Cytoscape software to identify the molecular mechanisms of key signaling pathways and cellular activities in SCLC. The 1,402 miRNA-gene pairs encompassed 602 target genes of the DEMs using miRNAWalk, which is a bioinformatics platform that predicts DEM target genes and miRNA-gene pairs. There were 19 overlapping genes regulated by 32 miRNAs between target genes of the DEMs and DEGs. Bioinformatics analysis may help to better understand the role of DEGs, DEMs and miRNA-gene pairs in cell proliferation and signal transduction. The related hub genes may be used as biomarkers for the diagnosis and prognosis of SCLC, and as potential drug targets.
Collapse
Affiliation(s)
- Yun Mao
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Peng Xue
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| | - Linlu Li
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Pengpeng Xu
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Yafang Cai
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Xuelei Chu
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Pengyuan Jiang
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Shijie Zhu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| |
Collapse
|
16
|
Schulze AB, Evers G, Kerkhoff A, Mohr M, Schliemann C, Berdel WE, Schmidt LH. Future Options of Molecular-Targeted Therapy in Small Cell Lung Cancer. Cancers (Basel) 2019; 11:E690. [PMID: 31108964 PMCID: PMC6562929 DOI: 10.3390/cancers11050690] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/29/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. With a focus on histology, there are two major subtypes: Non-small cell lung cancer (NSCLC) (the more frequent subtype), and small cell lung cancer (SCLC) (the more aggressive one). Even though SCLC, in general, is a chemosensitive malignancy, relapses following induction therapy are frequent. The standard of care treatment of SCLC consists of platinum-based chemotherapy in combination with etoposide that is subsequently enhanced by PD-L1-inhibiting atezolizumab in the extensive-stage disease, as the addition of immune-checkpoint inhibition yielded improved overall survival. Although there are promising molecular pathways with potential therapeutic impacts, targeted therapies are still not an integral part of routine treatment. Against this background, we evaluated current literature for potential new molecular candidates such as surface markers (e.g., DLL3, TROP-2 or CD56), apoptotic factors (e.g., BCL-2, BET), genetic alterations (e.g., CREBBP, NOTCH or PTEN) or vascular markers (e.g., VEGF, FGFR1 or CD13). Apart from these factors, the application of so-called 'poly-(ADP)-ribose polymerases' (PARP) inhibitors can influence tumor repair mechanisms and thus offer new perspectives for future treatment. Another promising therapeutic concept is the inhibition of 'enhancer of zeste homolog 2' (EZH2) in the loss of function of tumor suppressors or amplification of (proto-) oncogenes. Considering the poor prognosis of SCLC patients, new molecular pathways require further investigation to augment our therapeutic armamentarium in the future.
Collapse
Affiliation(s)
- Arik Bernard Schulze
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Georg Evers
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Andrea Kerkhoff
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Michael Mohr
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Christoph Schliemann
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Wolfgang E Berdel
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Lars Henning Schmidt
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| |
Collapse
|