1
|
Verdys P, Rey Barroso J, Girel A, Vermeil J, Bergert M, Sanchez T, Métais A, Mangeat T, Bellard E, Bigot C, Astarie-Dequeker C, Labrousse A, Girard JP, Maridonneau-Parini I, Vérollet C, Lagarrigue F, Diz-Muñoz A, Heuvingh J, Piel M, du Roure O, Le Cabec V, Carréno S, Poincloux R. Ezrin, radixin, and moesin are dispensable for macrophage migration and cellular cortex mechanics. EMBO J 2024; 43:4822-4845. [PMID: 39026000 PMCID: PMC11535515 DOI: 10.1038/s44318-024-00173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
The cellular cortex provides crucial mechanical support and plays critical roles during cell division and migration. The proteins of the ERM family, comprised of ezrin, radixin, and moesin, are central to these processes by linking the plasma membrane to the actin cytoskeleton. To investigate the contributions of the ERM proteins to leukocyte migration, we generated single and triple ERM knockout macrophages. Surprisingly, we found that even in the absence of ERM proteins, macrophages still form the different actin structures promoting cell migration, such as filopodia, lamellipodia, podosomes, and ruffles. Furthermore, we discovered that, unlike every other cell type previously investigated, the single or triple knockout of ERM proteins does not affect macrophage migration in diverse contexts. Finally, we demonstrated that the loss of ERMs in macrophages does not affect the mechanical properties of their cortex. These findings challenge the notion that ERMs are universally essential for cortex mechanics and cell migration and support the notion that the macrophage cortex may have diverged from that of other cells to allow for their uniquely adaptive cortical plasticity.
Collapse
Affiliation(s)
- Perrine Verdys
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Canada
| | - Javier Rey Barroso
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Adeline Girel
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Joseph Vermeil
- PMMH, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Martin Bergert
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Thibaut Sanchez
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Arnaud Métais
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Thomas Mangeat
- LITC Core Facility, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Elisabeth Bellard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Claire Bigot
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Catherine Astarie-Dequeker
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Arnaud Labrousse
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Christel Vérollet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Frédéric Lagarrigue
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Julien Heuvingh
- PMMH, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| | - Olivia du Roure
- PMMH, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Véronique Le Cabec
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| | - Sébastien Carréno
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Canada.
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
2
|
Steen EA, Basilaia M, Kim W, Getz T, Gustafson JL, Zage PE. Targeting the RET tyrosine kinase in neuroblastoma: A review and application of a novel selective drug design strategy. Biochem Pharmacol 2023; 216:115751. [PMID: 37595672 PMCID: PMC10911250 DOI: 10.1016/j.bcp.2023.115751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The RET (REarranged during Transfection) gene, which encodes for a transmembrane receptor tyrosine kinase, is an established oncogene associated with the etiology and progression of multiple types of cancer. Oncogenic RET mutations and rearrangements resulting in gene fusions have been identified in many adult cancers, including medullary and papillary thyroid cancers, lung adenocarcinomas, colon and breast cancers, and many others. While genetic RET aberrations are much less common in pediatric solid tumors, increased RET expression has been shown to be associated with poor prognosis in children with solid tumors such as neuroblastoma, prompting an interest in RET inhibition as a form of therapy for these children. A number of kinase inhibitors currently in use for patients with cancer have RET inhibitory activity, but these inhibitors also display activity against other kinases, resulting in unwanted side effects and limiting their safety and efficacy. Recent efforts have been focused on developing more specific RET inhibitors, but due to high levels of conservation between kinase binding pockets, specificity remains a drug design challenge. Here, we review the background of RET as a potential therapeutic target in neuroblastoma tumors and the results of recent preclinical studies and clinical trials evaluating the safety and efficacy of RET inhibition in adults and children. We also present a novel approach to drug discovery leveraging the chemical phenomenon of atropisomerism to develop specific RET inhibitors and present preliminary data demonstrating the efficacy of a novel RET inhibitor against neuroblastoma tumor cells.
Collapse
Affiliation(s)
- Erica A Steen
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA
| | - Mariam Basilaia
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA; Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA
| | - William Kim
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Taelor Getz
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA
| | - Jeffrey L Gustafson
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA
| | - Peter E Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA; Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital, San Diego, CA.
| |
Collapse
|
3
|
Buenaventura RGM, Merlino G, Yu Y. Ez-Metastasizing: The Crucial Roles of Ezrin in Metastasis. Cells 2023; 12:1620. [PMID: 37371090 DOI: 10.3390/cells12121620] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Ezrin is the cytoskeletal organizer and functions in the modulation of membrane-cytoskeleton interaction, maintenance of cell shape and structure, and regulation of cell-cell adhesion and movement, as well as cell survival. Ezrin plays a critical role in regulating tumor metastasis through interaction with other binding proteins. Notably, Ezrin has been reported to interact with immune cells, allowing tumor cells to escape immune attack in metastasis. Here, we review the main functions of Ezrin, the mechanisms through which it acts, its role in tumor metastasis, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rand Gabriel M Buenaventura
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Barik GK, Sahay O, Paul D, Santra MK. Ezrin gone rogue in cancer progression and metastasis: An enticing therapeutic target. Biochim Biophys Acta Rev Cancer 2022; 1877:188753. [PMID: 35752404 DOI: 10.1016/j.bbcan.2022.188753] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 12/12/2022]
Abstract
Cancer metastasis is the primary cause of morbidity and mortality in cancer as it remains the most complicated, devastating, and enigmatic aspect of cancer. Several decades of extensive research have identified several key players closely associated with metastasis. Among these players, cytoskeletal linker Ezrin (the founding member of the ERM (Ezrin-Radixin-Moesin) family) was identified as a critical promoter of metastasis in pediatric cancers in the early 21st century. Ezrin was discovered 40 years ago as a aminor component of intestinal epithelial microvillus core protein, which is enriched in actin-containing cell surface structures. It controls gastric acid secretion and plays diverse physiological roles including maintaining cell polarity, regulating cell adhesion, cell motility and morphogenesis. Extensive research for more than two decades evinces that Ezrin is frequently dysregulated in several human cancers. Overexpression, altered subcellular localization and/or aberrant activation of Ezrin are closely associated with higher metastatic incidence and patient mortality, thereby justifying Ezrin as a valuable prognostic biomarker in cancer. Ezrin plays multifaceted role in multiple aspects of cancer, with its significant contribution in the complex metastatic cascade, through reorganizing the cytoskeleton and deregulating various cellular signaling pathways. Current preclinical studies using genetic and/or pharmacological approaches reveal that inactivation of Ezrin results in significant inhibition of Ezrin-mediated tumor growth and metastasis as well as increase in the sensitivity of cancer cells to various chemotherapeutic drugs. In this review, we discuss the recent advances illuminating the molecular mechanisms responsible for Ezrin dysregulation in cancer and its pleiotropic role in cancer progression and metastasis. We also highlight its potential as a prognostic biomarker and therapeutic target in various cancers. More importantly, we put forward some potential questions, which we strongly believe, will stimulate both basic and translational research to better understand Ezrin-mediated malignancy, ultimately leading to the development of Ezrin-targeted cancer therapy for the betterment of human life.
Collapse
Affiliation(s)
- Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Osheen Sahay
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Debasish Paul
- Laboratory of Cancer Biology and Genetics, Centre for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Manas Kumar Santra
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
5
|
Zhang L, Moccia M, Briggs DC, Bharate JB, Lakkaniga NR, Knowles P, Yan W, Tran P, Kharbanda A, Wang X, Leung YK, Frett B, Santoro M, McDonald NQ, Carlomagno F, Li HY. Discovery of N-Trisubstituted Pyrimidine Derivatives as Type I RET and RET Gatekeeper Mutant Inhibitors with a Novel Kinase Binding Pose. J Med Chem 2022; 65:1536-1551. [PMID: 35081714 PMCID: PMC10536133 DOI: 10.1021/acs.jmedchem.1c01280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mutations of the rearranged during transfection (RET) kinase are frequently reported in cancer, which make it as an attractive therapeutic target. Herein, we discovered a series of N-trisubstituted pyrimidine derivatives as potent inhibitors for both wild-type (wt) RET and RETV804M, which is a resistant mutant for several FDA-approved inhibitors. The X-ray structure of a representative inhibitor with RET revealed that the compound binds in a unique pose that bifurcates beneath the P-loop and confirmed the compound as a type I inhibitor. Through the structure-activity relationship (SAR) study, compound 20 was identified as a lead compound, showing potent inhibition of both RET and RETV804M. Additionally, compound 20 displayed potent antiproliferative activity of CCDC6-RET-driven LC-2/ad cells. Analysis of RET phosphorylation indicated that biological activity was mediated by RET inhibition. Collectively, N-trisubstituted pyrimidine derivatives could serve as scaffolds for the discovery and development of potent inhibitors of type I RET and its gatekeeper mutant for the treatment of RET-driven cancers.
Collapse
Affiliation(s)
- Lingtian Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Marialuisa Moccia
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italia
| | - David C Briggs
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London NW1 1AT, U.K
| | - Jaideep B Bharate
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Naga Rajiv Lakkaniga
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Phillip Knowles
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London NW1 1AT, U.K
| | - Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Phuc Tran
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Anupreet Kharbanda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Xiuqi Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Yuet-Kin Leung
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Massimo Santoro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italia
| | - Neil Q McDonald
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London NW1 1AT, U.K
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, U.K
| | - Francesca Carlomagno
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italia
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, 80131 Napoli, Italia
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| |
Collapse
|
6
|
Pardo-Sánchez JM, Mancheño N, Cerón J, Jordá C, Ansotegui E, Juan Ó, Palanca S, Cremades A, Gandía C, Farràs R. Increased Tumor Growth Rate and Mesenchymal Properties of NSCLC-Patient-Derived Xenograft Models during Serial Transplantation. Cancers (Basel) 2021; 13:cancers13122980. [PMID: 34198671 PMCID: PMC8232339 DOI: 10.3390/cancers13122980] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. The high mortality is very often a consequence of its late diagnosis when the cancer is already locally advanced or has disseminated. Advances in the study of NSCLC tumors have been achieved by using in vivo models, such as patient-derived xenografts. Apart from drug screening, this approach may also be useful for study of the biology of the tumors. In the present study, surgically resected primary lung cancer samples (n = 33) were implanted in immunodeficient mice, and nine were engrafted successfully, including seven adenocarcinomas, one squamous-cell carcinoma, and one large-cell carcinoma. ADC tumors bearing the KRAS-G12C mutation were the most frequently engrafted in our PDX collection. Protein expression of vimentin, ezrin, and Ki67 were evaluated in NSCLC primary tumors and during serial transplantation by immunohistochemistry, using H-score. Our data indicated a more suitable environment for solid adenocarcinoma, compared to other lung tumor subtypes, to grow and preserve its architecture in mice, and a correlation between higher vimentin and ezrin expression in solid adenocarcinomas. A correlation between high vimentin expression and lung adenocarcinoma tumors bearing KRAS-G12C mutation was also observed. In addition, tumor evolution towards more proliferative and mesenchymal phenotypes was already observed in early PDX tumor passages. These PDX models provide a valuable platform for biomarker discovery and drug screening against tumor growth and EMT for lung cancer translational research.
Collapse
Affiliation(s)
- José Miguel Pardo-Sánchez
- Oncogenic Signalling Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (J.M.P.-S.); (C.G.)
| | - Nuria Mancheño
- Department of Pathology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain;
| | - José Cerón
- Department of Thoracic Surgery, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain; (J.C.); (C.J.)
| | - Carlos Jordá
- Department of Thoracic Surgery, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain; (J.C.); (C.J.)
| | - Emilio Ansotegui
- Department of Pulmonology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain;
| | - Óscar Juan
- Department of Medical Oncology, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain;
| | - Sarai Palanca
- Molecular Biology Unit, Service of Clinical Analysis, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain;
| | - Antonio Cremades
- Department of Pathology, Hospital Universitario de la Ribera, 46600 Alzira, Spain;
| | - Carolina Gandía
- Oncogenic Signalling Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (J.M.P.-S.); (C.G.)
| | - Rosa Farràs
- Oncogenic Signalling Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; (J.M.P.-S.); (C.G.)
- Correspondence:
| |
Collapse
|
7
|
Liu L, Zhao L, Zhang J, Song G, Shields CL, Wei R. Aberrantly expressed GFRα-1/RET in patients with lacrimal adenoid cystic carcinoma is associated with high recurrence risk: a retrospective study of 51 LACC cases. Cancer Biol Med 2021; 18:199-205. [PMID: 33628594 PMCID: PMC7877180 DOI: 10.20892/j.issn.2095-3941.2020.0271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022] Open
Abstract
Objective: Because of the poor prognosis of lacrimal adenoid cystic carcinoma (LACC), we aimed to investigate the effects of perineural invasion (PNI) and consequent aberrations in GDNF/GFRα-1/RET protein expression on LACC recurrence. Methods: Clinicopathological data for 51 histologically confirmed patients with LACC enrolled between 2001 and 2017 were retrospectively analyzed. Hematoxylin and eosin staining was applied to assess PNI. Tissue-based immunohistochemistry (IHC) detection of GDNF, GFRα-1, and RET proteins was performed on LACC formalin-fixed, paraffin-embedded specimens. We generated semi-quantitative data of the IHC results and compared them with the clinicopathological data for the 51 patients. Results: Of the 51 patients, 19 (37.3%) were PNI positive. Recurrence was more common for LACC with than without PNI (73.7% vs. 37.5%, P = 0.01). GDNF, GFRα-1, and RET proteins were expressed in 62.7%, 62.7%, and 54.9% of the 51 patients with LACC, respectively. The expression of all 3 proteins was more common in patients with than without PNI. In agreement with previous findings, PNI-associated GFRα-1 and RET positivity, as detected by IHC, remained significantly associated with recurrence, whereas GDNF expression, as detected by IHC, was not correlated with LACC recurrence. Specifically, patients with concurrent GFRα-1 and RET expression may have a high risk of PNI (89.5% positivity rate) and recurrence (84.2% positivity rate). Conclusions: PNI may contribute to LACC recurrence. The concurrent expression of GFRα-1 and RET proteins, as detected by IHC, may potentially be associated with LACC PNI and recurrence.
Collapse
Affiliation(s)
- Lin Liu
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Liqiong Zhao
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Jie Zhang
- Tianjin Orbit Institute, Ophthalmology Department, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Guoxiang Song
- Tianjin Orbit Institute, Ophthalmology Department, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Carol L Shields
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia 19107, PA, USA
| | - Ruihua Wei
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| |
Collapse
|
8
|
Song Y, Ma X, Zhang M, Wang M, Wang G, Ye Y, Xia W. Ezrin Mediates Invasion and Metastasis in Tumorigenesis: A Review. Front Cell Dev Biol 2020; 8:588801. [PMID: 33240887 PMCID: PMC7683424 DOI: 10.3389/fcell.2020.588801] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Ezrin, as encoded by the EZR gene, is a member of the Ezrin/Radixin/Moesin (ERM) family. The ERM family includes three highly related actin filament binding proteins, Ezrin, Radixin, and Moesin. These three members share similar structural properties containing an N-terminal domain named FERM, a central helical linker region, and a C-terminal domain that mediates the interaction with F-actin. Ezrin protein is highly regulated through the conformational change between a closed, inactivate form and an open, active form. As a membrane-cytoskeleton linker protein, Ezrin facilitates numerous signal transductions in tumorigenesis and mediates diverse essential functions through interactions with a variety of growth factor receptors and adhesion molecules. Emerging evidence has demonstrated that Ezrin is an oncogene protein, as high levels of Ezrin are associated with metastatic behavior in various types of cancer. The diverse functions attributed to Ezrin and the understanding of how Ezrin drives the deadly process of metastasis are complex and often controversial. Here by reviewing recent findings across a wide spectrum of cancer types we will highlight the structures, protein interactions and oncogenic roles of Ezrin as well as the emerging therapeutic agents targeting Ezrin. This review provides a comprehensive framework to guide future studies of Ezrin and other ERM proteins in basic and clinical studies.
Collapse
Affiliation(s)
- Yanan Song
- Central Laboratory, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaokun Ma
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Miao Zhang
- Central Laboratory, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Menghan Wang
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guoyu Wang
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Ye
- Central Laboratory, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Xia
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Fan C, Qu H, Xiong F, Tang Y, Tang T, Zhang L, Mo Y, Li X, Guo C, Zhang S, Gong Z, Li Z, Xiang B, Deng H, Zhou M, Liao Q, Zhou Y, Li X, Li Y, Li G, Wang F, Zeng Z. CircARHGAP12 promotes nasopharyngeal carcinoma migration and invasion via ezrin-mediated cytoskeletal remodeling. Cancer Lett 2020; 496:41-56. [PMID: 32931883 DOI: 10.1016/j.canlet.2020.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
An increasing number of studies have shown that circular RNAs (circRNAs) play important roles in malignant tumor initiation and progression; however, many circRNAs are yet unidentified, and the role of circRNAs in nasopharyngeal carcinoma (NPC) is unclear. Using RNA sequencing, we discovered a novel circRNA, termed circARHGAP12, that was processed from the pre-mRNA of the ARHGAP12 gene. CircARHGAP12 was significantly upregulated in NPC tissues and cell lines and promoted NPC cell migration and invasion. Overexpression or knockdown experiments revealed that circARHGAP12 regulates the expression of cytoskeletal remodeling-related proteins EZR, TPM3, and RhoA. CircARHGAP12 was found to bind directly to the 3' UTR of EZR mRNA and promote its stability; moreover, EZR protein interacted with TPM3 and RhoA and formed a complex to promote NPC cell invasion and metastasis. This study identified the novel circRNA circARHGAP12, characterized its biological function and mechanism, and increased our understanding of circRNAs in NPC pathogenesis. In particular, circARHGAP12 was found to promote the malignant biological phenotype of NPC via cytoskeletal remodeling, thus providing a clue for targeted therapy of NPC.
Collapse
Affiliation(s)
- Chunmei Fan
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, PR China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Hongke Qu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, PR China
| | - Fang Xiong
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yanyan Tang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
| | - Ting Tang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, PR China
| | - Lishen Zhang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, PR China
| | - Yongzhen Mo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, PR China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, PR China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Zheng Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, PR China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, PR China
| | - Hao Deng
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, PR China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
| | - Yujuan Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, PR China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, PR China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Fuyan Wang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, PR China.
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, PR China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
10
|
RET isoforms contribute differentially to invasive processes in pancreatic ductal adenocarcinoma. Oncogene 2020; 39:6493-6510. [PMID: 32884116 DOI: 10.1038/s41388-020-01448-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a therapeutically challenging disease with poor survival rates, owing to late diagnosis and early dissemination. These tumors frequently undergo perineural invasion, spreading along nerves regionally and to distant sites. The RET receptor tyrosine kinase is implicated in increased aggressiveness, local invasion, and metastasis in multiple cancers, including PDAC. RET mediates directional motility and invasion towards sources of its neurotrophic factor ligands, suggesting that it may enhance perineural invasion of tumor cells towards nerves. RET is expressed as two main isoforms, RET9 and RET51, which differ in their protein interactions and oncogenic potentials, however, the contributions of RET isoforms to neural invasion have not been investigated. In this study, we generated total RET and isoform-specific knockdown PDAC cell lines and assessed the contributions of RET isoforms to PDAC invasive spread. Our data show that RET activity induces cell polarization and actin remodeling through activation of CDC42 and RHOA GTPases to promote directional motility in PDAC cells. Further, we show that RET interacts with the adaptor protein TKS5 to induce invadopodia formation, enhance matrix degradation and promote tumor cell invasion through a SRC and GRB2-dependent mechanism. Finally, we show that RET51 is the predominant isoform contributing to these RET-mediated invasive processes in PDAC. Together, our work suggests that RET expression in pancreatic cancers may enhance tumor aggressiveness by promoting perineural invasion, and that RET expression may be a valuable marker of invasiveness, and a potential therapeutic target in the treatment of these cancers.
Collapse
|
11
|
Tang L, Xu M, Zhang L, Qu L, Liu X. Role of αVβ3 in Prostate Cancer: Metastasis Initiator and Important Therapeutic Target. Onco Targets Ther 2020; 13:7411-7422. [PMID: 32801764 PMCID: PMC7395689 DOI: 10.2147/ott.s258252] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
In prostate cancer, distant organ metastasis is the leading cause of patient death. Although the mechanism of malignant tumor metastasis is unclear, studies have confirmed that integrin αVβ3 plays an important role in this process. In prostate cancer, αVβ3 mediates adhesion, invasion, immune escape and neovascularization through interactions with different ligands. Among these ligands and in addition to proteins that are directly related to tumor invasion, other proteins that contain the RGD structure could also bind to αVβ3 and cause a number of biological effects. In this article, we summarized the ligand and downstream proteins related to αVβ3-mediated prostate cancer metastasis as well as some diagnostic and therapeutic measures targeting αVβ3.
Collapse
Affiliation(s)
- Lin Tang
- College of Mathematics and Computer Science, Chifeng University, Chifeng, The Inner Mongol Autonomous Region 024005, People's Republic of China
| | - Meng Xu
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, People's Republic of China.,R&D Department, Seekgene Technology Co., Ltd, Beijing 100000, People's Republic of China
| | - Long Zhang
- Department of Hepatobiliary Surgery, Yidu Central Hospital, Weifang, Shandong 262500, People's Republic of China
| | - Lin Qu
- Department of Orthopaedic Surgery, Anshan Hospital of the First Hospital of China Medical University, Anshan, Liaoning 114000, People's Republic of China
| | - Xiaoyan Liu
- Department of Pathology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing 100000, People's Republic of China
| |
Collapse
|