1
|
Chrisochoidou Y, Roy R, Farahmand P, Gonzalez G, Doig J, Krasny L, Rimmer EF, Willis AE, MacFarlane M, Huang PH, Carragher NO, Munro AF, Murphy DJ, Veselkov K, Seckl MJ, Moffatt MF, Cookson WOC, Pardo OE. Crosstalk with lung fibroblasts shapes the growth and therapeutic response of mesothelioma cells. Cell Death Dis 2023; 14:725. [PMID: 37938546 PMCID: PMC10632403 DOI: 10.1038/s41419-023-06240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
Mesothelioma is an aggressive cancer of the mesothelial layer associated with an extensive fibrotic response. The latter is in large part mediated by cancer-associated fibroblasts which mediate tumour progression and poor prognosis. However, understanding of the crosstalk between cancer cells and fibroblasts in this disease is mostly lacking. Here, using co-cultures of patient-derived mesothelioma cell lines and lung fibroblasts, we demonstrate that fibroblast activation is a self-propagated process producing a fibrotic extracellular matrix (ECM) and triggering drug resistance in mesothelioma cells. Following characterisation of mesothelioma cells/fibroblasts signalling crosstalk, we identify several FDA-approved targeted therapies as far more potent than standard-of-care Cisplatin/Pemetrexed in ECM-embedded co-culture spheroid models. In particular, the SRC family kinase inhibitor, Saracatinib, extends overall survival well beyond standard-of-care in a mesothelioma genetically-engineered mouse model. In short, we lay the foundation for the rational design of novel therapeutic strategies targeting mesothelioma/fibroblast communication for the treatment of mesothelioma patients.
Collapse
Affiliation(s)
| | - Rajat Roy
- Division of Cancer, Imperial College, Du Cane Road, London, W12 0NN, UK
| | - Pooyeh Farahmand
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Guadalupe Gonzalez
- Department of Computing, Faculty of Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jennifer Doig
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Lukas Krasny
- Molecular and Systems Oncology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Ella F Rimmer
- Division of Cancer, Imperial College, Du Cane Road, London, W12 0NN, UK
| | - Anne E Willis
- MRC Toxicology Unit, Tennis Ct Rd, Cambridge, CB2 1QR, UK
| | | | - Paul H Huang
- Molecular and Systems Oncology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Neil O Carragher
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Alison F Munro
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Daniel J Murphy
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Kirill Veselkov
- Division of Cancer, Imperial College, Du Cane Road, London, W12 0NN, UK
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Michael J Seckl
- Division of Cancer, Imperial College, Du Cane Road, London, W12 0NN, UK
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College, Dovehouse St, London, SW3 6LY, UK
| | - William O C Cookson
- National Heart and Lung Institute, Imperial College, Dovehouse St, London, SW3 6LY, UK.
| | - Olivier E Pardo
- Division of Cancer, Imperial College, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
2
|
Borea F, Franczak MA, Garcia M, Perrino M, Cordua N, Smolenski RT, Peters GJ, Dziadziuszko R, Santoro A, Zucali PA, Giovannetti E. Target Therapy in Malignant Pleural Mesothelioma: Hope or Mirage? Int J Mol Sci 2023; 24:ijms24119165. [PMID: 37298116 DOI: 10.3390/ijms24119165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Malignant Pleural Mesothelioma (MPM) is a rare neoplasm that is typically diagnosed in a locally advanced stage, making it not eligible for radical surgery and requiring systemic treatment. Chemotherapy with platinum compounds and pemetrexed has been the only approved standard of care for approximately 20 years, without any relevant therapeutic advance until the introduction of immune checkpoint inhibitors. Nevertheless, the prognosis remains poor, with an average survival of only 18 months. Thanks to a better understanding of the molecular mechanisms underlying tumor biology, targeted therapy has become an essential therapeutic option in several solid malignancies. Unfortunately, most of the clinical trials evaluating potentially targeted drugs for MPM have failed. This review aims to present the main findings of the most promising targeted therapies in MPM, and to explore possible reasons leading to treatments failures. The ultimate goal is to determine whether there is still a place for continued preclinical/clinical research in this area.
Collapse
Affiliation(s)
- Federica Borea
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Marika A Franczak
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Maria Garcia
- Faculty of Experimental Science, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Matteo Perrino
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Nadia Cordua
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Ryszard T Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Godefridus J Peters
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Rafal Dziadziuszko
- Department of Oncology and Radiotherapy and Early Phase Clinical Trials Centre, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Paolo A Zucali
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUmc, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Fondazione Pisana per la Scienza, 56017 Pisa, Italy
| |
Collapse
|
3
|
Liu Q, Luo L, Gao X, Zhang D, Feng X, Yang P, Li H, Mao S. Co-Delivery of Daunorubicin and Homoharringtonine in Folic Acid Modified-Liposomes for Enhancing Therapeutic Effect on Acute Myeloid Leukemia. J Pharm Sci 2023; 112:123-131. [PMID: 35469834 DOI: 10.1016/j.xphs.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022]
Abstract
Acute myeloid leukemia (AML) remains a threatening disease due to severe complications, drug resistance, and high recurrence rates. Many drug combinations have demonstrated enhanced therapeutic effects in clinical practice. However, it requires complicated dosing regimens and is accompanied by increased toxicity. This study explored the combined effect of two therapeutic agents, daunorubicin (DNR) and homoharringtonine (HHT) in cell viability, apoptosis, and cell cycle in vitro and verified their synergistic effect. We encapsulated the two drugs into liposomes to construct a folic acid-modified co-delivery system (FA-DH-LP) to achieve an effective and safe therapeutic strategy. The FA-DH-LP was prepared by film hydration method. The resultant FA-DH-LP was homogeneously spherical and showed good blood compatibility with high encapsulation efficiency for DNR and HHT. The FA-DH-LP exhibited higher cellular uptake in HL60 and K562 cells and enhanced cytotoxicity than DNR/HHT co-delivery liposomes without folic acid modification (DH-LP) in vitro. In the HL60 subcutaneous xenotransplantation model, FA-DH-LP showed improved tumor targeting ability, anti-leukemia activity and safety profile superior to free combinational drugs and DH-LP after 18-day treatment. The results demonstrated that FA-DH-LP might present a promising delivery strategy to improve the efficacy of the two combinational chemotherapeutics while reducing toxicity.
Collapse
Affiliation(s)
- Qi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lijun Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaofeng Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Di Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xinqian Feng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Peng Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hui Li
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| | - Shengjun Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Ollila H, Paajanen J, Wolff H, Ilonen I, Sutinen E, Välimäki K, Östman A, Anttila S, Kettunen E, Räsänen J, Kallioniemi O, Myllärniemi M, Mäyränpää MI, Pellinen T. High tumor cell platelet-derived growth factor receptor beta expression is associated with shorter survival in malignant pleural epithelioid mesothelioma. J Pathol Clin Res 2021; 7:482-494. [PMID: 33955203 PMCID: PMC8363931 DOI: 10.1002/cjp2.218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/10/2021] [Accepted: 04/01/2021] [Indexed: 11/11/2022]
Abstract
Malignant pleural mesothelioma (MPM) has a rich stromal component containing mesenchymal fibroblasts. However, the properties and interplay of MPM tumor cells and their surrounding stromal fibroblasts are poorly characterized. Our objective was to spatially profile known mesenchymal markers in both tumor cells and associated fibroblasts and correlate their expression with patient survival. The primary study cohort consisted of 74 MPM patients, including 16 patients who survived at least 60 months. We analyzed location-specific tissue expression of seven fibroblast markers in clinical samples using multiplexed fluorescence immunohistochemistry (mfIHC) and digital image analysis. Effect on survival was assessed using Cox regression analyses. The outcome measurement was all-cause mortality. Univariate analysis revealed that high expression of secreted protein acidic and cysteine rich (SPARC) and fibroblast activation protein in stromal cells was associated with shorter survival. Importantly, high expression of platelet-derived growth factor receptor beta (PDGFRB) in tumor cells, but not in stromal cells, was associated with shorter survival (hazard ratio [HR] = 1.02, p < 0.001). A multivariable survival analysis adjusted for clinical parameters and stromal mfIHC markers revealed that tumor cell PDGFRB and stromal SPARC remained independently associated with survival (HR = 1.01, 95% confidence interval [CI] = 1.00-1.03 and HR = 1.05, 95% CI = 1.00-1.11, respectively). The prognostic effect of PDGFRB was validated with an artificial intelligence-based analysis method and further externally validated in another cohort of 117 MPM patients. In external validation, high tumor cell PDGFRB expression associated with shorter survival, especially in the epithelioid subtype. Our findings suggest PDGFRB and SPARC as potential markers for risk stratification and as targets for therapy.
Collapse
Affiliation(s)
- Hely Ollila
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Pulmonary MedicineHeart and Lung Center, University of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Juuso Paajanen
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Pulmonary MedicineHeart and Lung Center, University of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Henrik Wolff
- Laboratory of PathologyFinnish Institute of Occupational HealthHelsinkiFinland
- Department of PathologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Ilkka Ilonen
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of General Thoracic and Esophageal SurgeryHeart and Lung Center, University of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Eva Sutinen
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Pulmonary MedicineHeart and Lung Center, University of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Katja Välimäki
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
| | - Arne Östman
- Department of Oncology‐PathologyKarolinska InstitutetSolnaSweden
| | - Sisko Anttila
- Department of PathologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Eeva Kettunen
- Laboratory of PathologyFinnish Institute of Occupational HealthHelsinkiFinland
| | - Jari Räsänen
- Department of General Thoracic and Esophageal SurgeryHeart and Lung Center, University of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
| | - Marjukka Myllärniemi
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Pulmonary MedicineHeart and Lung Center, University of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Mikko I Mäyränpää
- Department of PathologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Teijo Pellinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
| |
Collapse
|
5
|
Zhu H, Shi Y, Jiao X, Yang G, Wang R, Yuan Y. Synergistic antitumor effect of dual PI3K and mTOR inhibitor NVP-BEZ235 in combination with cisplatin on drug-resistant non-small cell lung cancer cell. Oncol Lett 2020; 20:326. [PMID: 33123242 PMCID: PMC7584016 DOI: 10.3892/ol.2020.12189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Cisplatin resistance is an obstacle for the effective treatment of non-small cell lung cancer (NSCLC). The combined use of two or more chemotherapeutic agents displays advantages for the clinical treatment of drug-resistant lung cancer. The present study aimed to assess the synergy of the dual PI3K/Akt/mTOR signaling pathway inhibitor NVP-BEZ235 and cisplatin, a chemotherapeutic agent, on proliferation, apoptosis, cell cycle arrest and protein expression in cisplatin-resistant NSCLC A549/diamminedichloroplatinum resistance (DDP) cells. Cell proliferation was determined by performing Cell Counting Kit 8 and colony formation assays. Combination index (CI) was used to assess the combinatorial effects of NVP-BEZ235 and cisplatin. Cellular apoptosis and cell cycle arrest were detected via flow cytometry. Western blotting was performed to evaluate protein expression levels relative to β-actin. Cisplatin and NVP-BEZ235 displayed the strongest synergy (CI50=0.23) at the mass ratio of 10:1. The half inhibitory concentrations of cisplatin and NVP-BEZ235 at 10:1 were 1.53 and 0.15 µg/ml, respectively. Compared with the control group, the combination of cisplatin and NVP-BEZ235 induced cell apoptosis and inhibited colony formation. Furthermore, compared with the control group, phosphorylation of Akt and p70S6 Kinase was significantly inhibited and cell cycle was arrested at G0G1 phase in the combination treatment group. The expression levels of drug efflux proteins, such as multidrug resistance-associated protein 1 and ATP-binding cassette sub-family G member 2, were significantly decreased when A549/DDP cells were treated with a combination of cisplatin and NVP-BEZ235 compared with the control group. Collectively, the present study indicated that the combined treatment of cisplatin and NVP-BEZ235 displayed synergistic antitumor effects on drug-resistant A549/DDP cells, by which the antiproliferative effects may occur via inhibition of the PI3K/Akt/mTOR signaling pathway and downregulation of drug efflux.
Collapse
Affiliation(s)
- Hao Zhu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Yuhuan Shi
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xiuxiu Jiao
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Gang Yang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Rong Wang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|